Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Supervised Categorical Metric Learning with Schatten p-Norms

Abstract : Metric learning has been successful in learning new metrics adapted to numerical datasets. However, its development on categorical data still needs further exploration. In this paper, we propose a method, called CPML for categorical projected metric learning, that tries to efficiently (i.e. less computational time and better prediction accuracy) address the problem of metric learning in categorical data. We make use of the Value Distance Metric to represent our data and propose new distances based on this representation. We then show how to efficiently learn new metrics. We also generalize several previous regularizers through the Schatten p-norm and provides a generalization bound for it that complements the standard generalization bound for metric learning. Experimental results show that our method provides state-of-the-art results while being faster.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.univ-grenoble-alpes.fr/hal-03352770
Contributeur : Anne-Christine Jacob Connectez-vous pour contacter le contributeur
Soumis le : jeudi 23 septembre 2021 - 14:52:05
Dernière modification le : mardi 9 novembre 2021 - 12:26:02

Fichier

FanXuhui_GaussierEric_2020.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Xuhui Fan, Éric Gaussier, Yaqiong Li. Supervised Categorical Metric Learning with Schatten p-Norms. IEEE Transactions on Cybernetics, IEEE, 2020, pp.1-11. ⟨10.1109/TCYB.2020.3004437⟩. ⟨hal-03352770⟩

Partager

Métriques

Consultations de la notice

27

Téléchargements de fichiers

43