Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Robust sensor placement for signal extraction

Abstract : This paper proposes an efficient algorithm for robust sensor placement with the purpose of recovering a source signal from noisy measurements. To model uncertainty on the spatiallyvariant sensors gain and on the spatially correlated noise, we assume that both are realizations of Gaussian processes. Since the signal to noise ratio (SNR) is also uncertain in this context, to achieve a robust signal extraction, we propose a new placement criterion based on the maximization of the probability that the SNR exceeds a given threshold. This criterion can be easily evaluated using the Gaussian process assumption. Moreover, to reduce the computational complexity of the joint maximization of the criterion with respect to all sensor positions, we suggest a sequential maximization approach, where the sensor positions are chosen one at a time. Finally, we present numerical results showing the superior robustness of the proposed approach when compared to standard sensor placement criteria aimed at interpolating the spatial gain and to a recently proposed criterion aimed at maximizing the average SNR.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.univ-grenoble-alpes.fr/hal-03325710
Contributeur : Christian Jutten <>
Soumis le : mercredi 25 août 2021 - 11:09:14
Dernière modification le : lundi 30 août 2021 - 10:14:07

Fichier

RSP_TSP_2021_A-1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Fateme Ghayem, Bertrand Rivet, Rodrigo Cabral Farias, Christian Jutten. Robust sensor placement for signal extraction. IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2021, 69, pp.4513-4528. ⟨10.1109/TSP.2021.3099954⟩. ⟨hal-03325710⟩

Partager

Métriques

Consultations de la notice

28

Téléchargements de fichiers

26