Cysteine oxidation and disulfide formation in the ribosomal exit tunnel - Université Grenoble Alpes
Article Dans Une Revue Nature Communications Année : 2020

Cysteine oxidation and disulfide formation in the ribosomal exit tunnel

Martin Blackledge

Résumé

Understanding the conformational sampling of translation-arrested ribosome nascent chain complexes is key to understand co-translational folding. Up to now, coupling of cysteine oxidation, disulfide bond formation and structure formation in nascent chains has remained elusive. Here, we investigate the eye-lens protein γB-crystallin in the ribosomal exit tunnel. Using mass spectrometry, theoretical simulations, dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance and cryo-electron microscopy, we show that thiol groups of cysteine residues undergo S-glutathionylation and S-nitrosylation and form non-native disulfide bonds. Thus, covalent modification chemistry occurs already prior to nascent chain release as the ribosome exit tunnel provides sufficient space even for disulfide bond formation which can guide protein folding.

Dates et versions

hal-03119733 , version 1 (25-01-2021)

Identifiants

Citer

Linda Schulte, Jiafei Mao, Julian Reitz, Sridhar Sreeramulu, Denis Kudlinzki, et al.. Cysteine oxidation and disulfide formation in the ribosomal exit tunnel. Nature Communications, 2020, 11 (1), pp.5569. ⟨10.1038/s41467-020-19372-x⟩. ⟨hal-03119733⟩
197 Consultations
0 Téléchargements

Altmetric

Partager

More