Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

RIEMANNIAN FRAMEWORK FOR ROBUST COVARIANCE MATRIX ESTIMATION IN SPIKED MODELS

Abstract : This paper aims at providing an original Riemannian geometry to derive robust covariance matrix estimators in spiked models (i.e. when the covariance matrix has a low-rank plus identity structure). The considered geometry is the one induced by the product of the Stiefel manifold and the manifold of Hermitian positive definite matrices, quotiented by the uni-tary group. One of the main contributions is to consider a Riemannian metric related to the Fisher information metric of elliptical distributions, leading to new representations for the tangent spaces and a new retraction. A new robust covari-ance matrix estimator is then obtained as the minimizer of Tyler's cost function, redefined directly on the set of low-rank plus identity matrices, and computed with the aforementioned tools. The main interest of this approach is that it appears well suited to the cases where the sample size is lower than the dimension , as illustrated by numerical experiments.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.univ-grenoble-alpes.fr/hal-02571084
Contributeur : Guillaume Ginolhac <>
Soumis le : mardi 12 mai 2020 - 16:14:13
Dernière modification le : vendredi 26 juin 2020 - 14:34:02

Fichier

2020_ICASSP_Tyler_LR.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02571084, version 1

Citation

Florent Bouchard, Arnaud Breloy, Guillaume Ginolhac, Frédéric Pascal. RIEMANNIAN FRAMEWORK FOR ROBUST COVARIANCE MATRIX ESTIMATION IN SPIKED MODELS. IEEE ICASSP 2020, May 2020, Barcelona, Spain. ⟨hal-02571084⟩

Partager

Métriques

Consultations de la notice

54

Téléchargements de fichiers

64