Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

Extreme conditional expectile estimation in heavy-tailed heteroscedastic regression models

Abstract : Expectiles define a least squares analogue of quantiles. They have been the focus of a substantial quantity of research in the context of actuarial and financial risk assessment over the last decade. The behaviour and estimation of unconditional extreme expectiles using independent and identically distributed heavy-tailed observations has been investigated in a recent series of papers. We build here a general theory for the estimation of extreme conditional expectiles in heteroscedastic regression models with heavy-tailed noise; our approach is supported by general results of independent interest on residual-based extreme value estimators in heavy-tailed regression models, and is intended to cope with covariates having a large but fixed dimension. We demonstrate how our results can be applied to a wide class of important examples, among which linear models, single-index models as well as ARMA and GARCH time series models. Our estimators are showcased on a numerical simulation study and on real sets of actuarial and financial data.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

https://hal.inria.fr/hal-02531027
Contributeur : Stephane Girard <>
Soumis le : jeudi 3 décembre 2020 - 14:37:19
Dernière modification le : lundi 14 décembre 2020 - 18:08:12

Fichier

main_revised_v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02531027, version 2

Collections

Citation

Stéphane Girard, Gilles Stupfler, Antoine Usseglio-Carleve. Extreme conditional expectile estimation in heavy-tailed heteroscedastic regression models. 2020. ⟨hal-02531027v2⟩

Partager

Métriques

Consultations de la notice

377

Téléchargements de fichiers

64