Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests - Université Grenoble Alpes
Article Dans Une Revue European Respiratory Journal Année : 2019

Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests

Marko Topalovic
  • Fonction : Auteur
Nilakash Das
  • Fonction : Auteur
Pierre-Régis Burgel
Marc Daenen
  • Fonction : Auteur
Eric Derom
  • Fonction : Auteur
Christel Haenebalcke
  • Fonction : Auteur
Rob Janssen
  • Fonction : Auteur
Huib A.M. Kerstjens
  • Fonction : Auteur
Giuseppe Liistro
  • Fonction : Auteur
Renaud Louis
  • Fonction : Auteur
Vincent Ninane
  • Fonction : Auteur
Marc Schlesser
  • Fonction : Auteur
Piet Vercauter
  • Fonction : Auteur
Claus Vogelmeier
  • Fonction : Auteur
Emiel Wouters
  • Fonction : Auteur
Jokke Wynants
  • Fonction : Auteur
Wim Janssens
  • Fonction : Auteur

Résumé

The interpretation of pulmonary function tests (PFTs) to diagnose respiratory diseases is built on expert opinion that relies on the recognition of patterns and the clinical context for detection of specific diseases. In this study, we aimed to explore the accuracy and interrater variability of pulmonologists when interpreting PFTs compared with artificial intelligence (AI)-based software that was developed and validated in more than 1500 historical patient cases.120 pulmonologists from 16 European hospitals evaluated 50 cases with PFT and clinical information, resulting in 6000 independent interpretations. The AI software examined the same data. American Thoracic Society/European Respiratory Society guidelines were used as the gold standard for PFT pattern interpretation. The gold standard for diagnosis was derived from clinical history, PFT and all additional tests.The pattern recognition of PFTs by pulmonologists (senior 73%, junior 27%) matched the guidelines in 74.4±5.9% of the cases (range 56-88%). The interrater variability of κ=0.67 pointed to a common agreement. Pulmonologists made correct diagnoses in 44.6±8.7% of the cases (range 24-62%) with a large interrater variability (κ=0.35). The AI-based software perfectly matched the PFT pattern interpretations (100%) and assigned a correct diagnosis in 82% of all cases (p<0.0001 for both measures).The interpretation of PFTs by pulmonologists leads to marked variations and errors. AI-based software provides more accurate interpretations and may serve as a powerful decision support tool to improve clinical practice.

Dates et versions

Identifiants

Citer

Marko Topalovic, Nilakash Das, Pierre-Régis Burgel, Marc Daenen, Eric Derom, et al.. Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests. European Respiratory Journal, 2019, 53 (4), pp.1801660. ⟨10.1183/13993003.01660-2018⟩. ⟨hal-02393537⟩

Collections

UGA LBFA
56 Consultations
0 Téléchargements

Altmetric

Partager

More