Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Electrically driven electron spin resonance mediated by spin–valley–orbit coupling in a silicon quantum dot

Abstract : The ability to manipulate electron spins with voltage-dependent electric fields is key to the operation of quantum spintronics devices, such as spin-based semiconductor qubits. A natural approach to electrical spin control exploits the spin-orbit coupling (SOC) inherently present in all materials. So far, this approach could not be applied to electrons in silicon, due to their extremely weak SOC. Here we report an experimental realization of electrically driven electron-spin resonance in a silicon-on-insulator (SOI) nanowire quantum dot device. The underlying driving mechanism results from an interplay between SOC and the multi-valley structure of the silicon conduction band, which is enhanced in the investigated nanowire geometry. We present a simple model capturing the essential physics and use tight-binding simulations for a more quantitative analysis. We discuss the relevance of our findings to the development of compact and scalable electron-spin qubits in silicon.
Keywords : QUBIT NANOWIRE FIELD
Liste complète des métadonnées

https://hal.univ-grenoble-alpes.fr/hal-02005720
Contributeur : Marc Sanquer <>
Soumis le : lundi 4 février 2019 - 11:27:52
Dernière modification le : mardi 1 septembre 2020 - 15:24:05

Lien texte intégral

Identifiants

Collections

Citation

Andrea Corna, Leo Bourdet, Romain Maurand, Alessandro Crippa, Dharmraj Kotekar-Patil, et al.. Electrically driven electron spin resonance mediated by spin–valley–orbit coupling in a silicon quantum dot. npj Quantum Information, Nature, 2018, 4, pp.6. ⟨10.1038/s41534-018-0059-1⟩. ⟨hal-02005720⟩

Partager

Métriques

Consultations de la notice

498