Shaken and stirred: Random organization reduces viscosity and dissipation in granular suspensions - Université Grenoble Alpes Accéder directement au contenu
Article Dans Une Revue Science Advances Année : 2018

Shaken and stirred: Random organization reduces viscosity and dissipation in granular suspensions

Résumé

The viscosity of suspensions of large (≥ 10 μm) particles diverges at high solid fractions due to proliferation of frictional particle contacts. Reducing friction, to allow or improve flowability, is usually achieved by tuning the composition, either changing particle sizes and shapes or by adding lubricating molecules. We present numerical simulations that demonstrate a complementary approach whereby the viscosity divergence is shifted by driven flow tuning, using superimposed shear oscillations in various configurations to facilitate a primary flow. The oscillations drive the suspension towards an out-of-equilibrium, absorbing state phase transition, where frictional particle contacts that dominate the viscosity are reduced in a self-organizing manner. The method can allow otherwise jammed states to flow; even for unjammed states, it can substantially decrease the energy dissipated per unit strain. This creates a practicable route to flow enhancement across a broad range of suspensions where compositional tuning is undesirable or problematic
Fichier principal
Vignette du fichier
biaxial.pdf (19.76 Mo) Télécharger le fichier
SI.pdf (1.13 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01954128 , version 1 (09-05-2022)

Licence

Paternité - Pas d'utilisation commerciale

Identifiants

Citer

Christopher Ness, Romain Mari, Michael E Cates. Shaken and stirred: Random organization reduces viscosity and dissipation in granular suspensions. Science Advances , 2018, 4 (3), pp.eaar3296. ⟨10.1126/sciadv.aar3296⟩. ⟨hal-01954128⟩

Collections

UGA CNRS
24 Consultations
13 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More