Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Multivariate Linear Time-Frequency modeling and adaptive robust target detection in highly textured monovariate SAR image

Abstract : Usually, in radar imaging, the scatterers are supposed to respond the same way regardless of the angle from which they are viewed and have the same properties within the emitted spectral bandwidth. Nevertheless, new capacities in SAR imaging (large bandwidth, large angular extent) make this assumption obsolete. An original application of the Linear Time-Frequency Distributions (LTFD) in SAR imaging allows to highlight the spectral and angular diver-sities of these reflectors. This methodology allows to transform a monovariate SAR image onto multivariate SAR image. Robust detection schemes in Gaussian or non Gaussian background (Adap-tive Matched Filter (AMF), Adaptive Normalized Matched Filter (ANMF), Anomaly Kelly Detector) associated with classical or robust Covariance Matrix Estimates (Sample Covariance Matrix (SCM), M-estimators) can then be applied exploiting these diver-sities. The combined two-methodologies show their very good performance for target detection.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.univ-grenoble-alpes.fr/hal-01617057
Contributeur : Guillaume Ginolhac <>
Soumis le : lundi 16 octobre 2017 - 09:34:47
Dernière modification le : vendredi 26 juin 2020 - 14:34:02
Archivage à long terme le : : mercredi 17 janvier 2018 - 12:38:46

Fichier

PaperSARTimeFreq_ICASSP17[2].p...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Jean-Philippe Ovarlez, Guillaume Ginolhac, Abdourrahmane Atto. Multivariate Linear Time-Frequency modeling and adaptive robust target detection in highly textured monovariate SAR image. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2017) , Mar 2017, New Orleans, United States. pp.4029 - 4033, ⟨10.1109/ICASSP.2017.7952913⟩. ⟨hal-01617057⟩

Partager

Métriques

Consultations de la notice

221

Téléchargements de fichiers

440