Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Regularized extended estimation with stabilized exponential forgetting

Abstract : This technical note concerns the problem of variable regularized estimation of time-varying nonlinear systems from the Bayesian viewpoint. The questions of how to impose the posterior information being variably regularized and how to forget this information are carefully discussed. The estimator design adopts the strategy of the iterated Kalman filter but differs in that, instead of the separated moments of the linearized system, only the augmented covariance matrix is updated. To suppress obsolete information, a decision problem involving the Kullback-Leibler divergence is solved. The decision provides the best combination of a pair of time-evolution model hypotheses in terms of the geometric mean. As a result, exponential forgetting with the adaptively tuned factor is inserted into the estimation process. The regularization of the investigated statistics is induced through the processing of externally supplied information. The presented estimator allows for absolute discarding or, conversely, retention of external information produced in terms of the Normal-Wishart distribution.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Alina Voda <>
Soumis le : lundi 6 février 2017 - 10:49:45
Dernière modification le : mercredi 14 octobre 2020 - 03:51:33



Jakub Dokoupil, Alina Voda, Pavel Vaclavec. Regularized extended estimation with stabilized exponential forgetting. IEEE Transactions on Automatic Control, Institute of Electrical and Electronics Engineers, 2017, 62 (12), pp.6513-6520. ⟨10.1109/TAC.2017.2656379⟩. ⟨hal-01456997⟩



Consultations de la notice