3D inference of the scoliotic spine from depth maps of the back - MORPHEO Access content directly
Preprints, Working Papers, ... Year : 2023

3D inference of the scoliotic spine from depth maps of the back

Inférence 3D du rachis scoliotique depuis une carte de profondeur du dos

Abstract

Recent advances combining outer images and deep-learning algorithms (DLA) show promising results in the detection and the characterization of the Adolescent Idiopathic Scoliosis (AIS). However, these methods are providing a limited 2D characterization while scoliosis is defined in 3D. In this study we propose an inference method that takes as input a depth map of the back of a person and outputs the 3D shape estimation of the thoracolumbar spine. Our DLA method predicts 3D vertebrae positions with an average 3D error of 7.1mm (std: 4.7mm). From the predicted 3D positions, scoliosis can be located and estimated with a mean absolute error (MAE) of 5.5° (std: 6.2°) in the frontal plane. Moreover, sagittal alignments can be estimated with a MAE of 6.4° (std: 5.5°) in kyphosis and 8.3° (std: 6.8°) in lordosis. In addition, our nonionizing approach can detect scoliosis with an accuracy of 89%.
Fichier principal
Vignette du fichier
ncomte_skintospine_2023_notemp.pdf (1.17 Mo) Télécharger le fichier
Origin Files produced by the author(s)
licence

Dates and versions

hal-04362152 , version 1 (22-12-2023)

Licence

Identifiers

  • HAL Id : hal-04362152 , version 1

Cite

Nicolas Comte, Sergi Pujades, Aurélien Courvoisier, Olivier Daniel, Jean-Sébastien Franco, et al.. 3D inference of the scoliotic spine from depth maps of the back. 2023. ⟨hal-04362152⟩
76 View
43 Download

Share

Gmail Mastodon Facebook X LinkedIn More