Map-aided annotation for pole base detection - Systèmes Robotiques en Interaction
Communication Dans Un Congrès Année : 2023

Map-aided annotation for pole base detection

Résumé

For autonomous navigation, high definition maps are a widely used source of information. Pole-like features encoded in HD maps such as traffic signs, traffic lights or street lights can be used as landmarks for localization. For this purpose, they first need to be detected by the vehicle using its embedded sensors. While geometric models can be used to process 3D point clouds retrieved by lidar sensors, modern image-based approaches rely on deep neural network and therefore heavily depend on annotated training data. In this paper, a 2D HD map is used to automatically annotate pole-like features in images. In the absence of height information, the map features are represented as pole bases at the ground level. We show how an additional lidar sensor can be used to filter out occluded features and refine the ground projection. We also demonstrate how an object detector can be trained to detect a pole base. To evaluate our methodology, it is first validated with data manually annotated from semantic segmentation and then compared to our own automatically generated annotated data recorded in the city of Compiègne, France. Erratum: In the original version [1], an error occurred in the accuracy evaluation of the different models studied and the evaluation method applied on the detection results was not clearly defined. In this revision, we offer a rectification to this segment, presenting updated results, especially in terms of Mean Absolute Errors (MAE).
Fichier principal
Vignette du fichier
conference_101719.pdf (8.16 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04200337 , version 1 (08-09-2023)
hal-04200337 , version 2 (29-02-2024)
hal-04200337 , version 3 (01-03-2024)

Identifiants

Citer

Benjamin Missaoui, Maxime Noizet, Philippe Xu. Map-aided annotation for pole base detection. 35th IEEE Intelligent Vehicles Symposium (IV 2023), Jun 2023, Anchorage, AK, United States. ⟨10.1109/IV55152.2023.10186774⟩. ⟨hal-04200337v3⟩
155 Consultations
48 Téléchargements

Altmetric

Partager

More