, Send(Stop) to all players

, Send(Test) to all players; 'Stable' messages received then Send End

, Else Restart local clock

, If BR(x) = x k Send(Stable) to sender

, 26 else Send(Unstable) to sender

, 27 Restart Clock

D. Aldous and J. A. Fill, Reversible markov chains and random walks on graphs, 2002.

C. Alos-ferrer and N. Netzer, The logit-response dynamics, Games and Economic Behavior, vol.68, issue.2, pp.413-427, 2010.

M. Beckman, C. B. Mcguire, and C. B. Winsten, Studies in the Economics of Transportation, 1956.

P. W. Goldberg, C. Daskalakis, and C. H. Papadimitriou, The complexity of computing a Nash equilibrium, SIAM Journal on Computing, vol.39, issue.3, pp.195-259, 2009.

H. Thomas, C. E. Cormen, R. L. Leiserson, C. Rivest, and . Stein, Introduction to Algorithms, Third Edition, 2009.

S. Durand, F. Garin, and B. Gaujal, Distributed best response algorithms for potential games, European Control Conference, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01726836

A. Fabrikant, C. Papadimitriou, and K. Talwar, The complexity of pure Nash equilibria, Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC '04, pp.604-612, 2004.

R. G. Gallager, A minimum delay routing algorithm using distributed computation, IEEE Transactions on Communications, vol.25, issue.1, pp.73-85, 1977.

J. R. Jackson, Job shop-like queueing systems, Management Sci, vol.10, p.131, 1963.

R. Frank-thomson-leighton and . Rivest, The Markov Chain Tree Theorem, 1983.

S. Jun and . Liu, The collapsed gibbs sampler in bayesian computations with applications to a gene regulation problem, Journal of the American Statistical Association, vol.89, issue.427, pp.958-966, 1994.

J. R. Marden and J. S. Shamma, Revisiting log-linear learning: Asynchrony, completeness and payoff-based implementation, Games and Economic Behavior, vol.75, issue.2, pp.788-808, 2012.

D. Monderer and L. Shapley, Potential games. Games and economic behavior, vol.14, pp.124-143, 1996.

D. Monderer and L. S. Shapley, Potential games. Games and Economic Behavior, vol.14, pp.124-143, 1996.

J. Nash, Equilibrium points in n-person games, Proc. of the Nat. Acad. of Sciences, vol.38, pp.48-49, 1950.

A. Orda, R. Rom, and N. Shimkin, Competitive routing in multi-user communication networks, IEEE/ACM Trans. on Networking, vol.1, issue.5, pp.510-521, 1993.

R. W. Rosenthal, A class of games possessing pure-strategy Nash equilibria, Int. J. of Game Theory, vol.2, issue.1, pp.65-67, 1973.

T. Roughgarden, Selfish Routing and the Price of Anarchy, 2005.

H. William and . Sandholm, Population Games and Evolutionary Dynamics, 2010.

B. Scherrer, Improved and generalized upper bounds on the complexity of policy iteration, Mathematics of Operations Research, vol.41, issue.3, pp.758-774, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00829532

M. Voorneveld, Best-response potential games, Economics letters, vol.66, issue.3, pp.289-295, 2000.

J. G. Wardrop, Some theoretical aspects of road traffic research. Part ii, Proc. of the Institute of Civil Engineers, vol.1, pp.325-378, 1954.