R. Aghamohammadi and J. A. , A continuum model for cities based on the macroscopic fundamental diagram: A semi-Lagrangian solution method, Transportation Research Part B: Methodological, p.17, 2019.

R. Aghamohammadi and J. A. Laval, Dynamic Traffic Assignment using the Macroscopic Fundamental Diagram: A Review of Vehicular and Pedestrian Flow Models, p.16, 2018.

C. Balzotti, Understanding Human Mobility Flows from Aggregated Mobile Phone Data, IFAC-PapersOnLine, vol.51, p.84, 2018.

M. Beckmann, A continuous model of transportation, Econometrica: Journal of the Econometric Society, p.13, 1952.

S. Benzoni-gavage and R. M. Colombo, An n-populations model for traffic flow, European Journal of Applied Mathematics, vol.14, p.69, 2003.

M. Carey and M. Bowers, A review of properties of flow-density functions, Transport Reviews, vol.32, pp.49-73, 2012.

G. Chen, D. Li, and D. Tan, Structure of Riemann solutions for 2-dimensional scalar conservation laws, journal of differential equations, vol.127, p.23, 1996.

G. Chen, Multidimensional conservation laws: overview, problems, and perspective, Nonlinear conservation laws and applications, p.72, 2011.

B. N. Chetverushkin, N. G. Churbanova, and M. A. Trapeznikova, Traffic Flow Simulation by 2D Macro-and Microscopic Models, Latest Trends on Urban Planning Transportation, p.17, 2010.

G. M. Coclite, M. Garavello, and B. Piccoli, Traffic flow on a road network, SIAM journal on mathematical analysis, vol.36, pp.1862-1886, 2005.

F. Carlos and . Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory, Transportation Research Part B: Methodological, vol.28, p.44, 1994.

F. Carlos, N. Daganzo, and . Geroliminis, An analytical approximation for the macroscopic fundamental diagram of urban traffic, Transportation Research Part B: Methodological, vol.42, p.13, 2008.

. Bibliography,

F. Della-rossa, C. D. Angelo, and A. Quarteroni, A distributed model of traffic flows on extended regions, p.16

J. Du, Revisiting Jiang's dynamic continuum model for urban cities, Transportation Research Part B: Methodological, vol.56, p.16, 2013.

S. Fan, Data-fitted generic second order macroscopic traffic flow models, p.28, 2013.

S. Fan, M. Herty, and B. Seibold, Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model, p.28, 2013.

P. Ronald and . Fedkiw, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method, Journal of computational physics, vol.152, p.26, 1999.

R. E. Franklin, The structure of a traffic shock wave, vol.46, p.5, 1961.

M. Garavello and B. Piccoli, American institute of mathematical sciences Springfield, vol.1, p.10, 2006.

N. Geroliminis, F. Carlos, and . Daganzo, Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings, Transportation Research Part B: Methodological, vol.42, pp.759-770, 2008.

P. Goatin and M. Mimault, A mixed system modeling two-directional pedestrian flows, Mathematical biosciences and engineering, vol.12, pp.375-392, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00968396

S. Konstantinovich and G. , A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Matematicheskii Sbornik, vol.89, pp.271-306, 1959.

L. Gosse, A two-dimensional version of the Godunov scheme for scalar balance laws, SIAM Journal on Numerical Analysis, vol.52, p.24, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00870221

B. Douglas-greenshields, The photographic method of studying traffic behavior, Highway Research Board Proceedings, vol.13, 1934.

M. Hajiahmadi, Optimal dynamic route guidance: A model predictive approach using the macroscopic fundamental diagram, Intelligent Transportation Systems-(ITSC), p.15, 2013.

M. Herty, A. Fazekas, and G. Visconti, A two-dimensional data-driven model for traffic flow on highways, Networks and Heterogeneous Media, vol.13, p.17, 2018.

H. W. Ho and . Wong, Two-dimensional continuum modeling approach to transportation problems, Journal of Transportation Systems Engineering and Information Technology, vol.6, issue.6, p.13, 2006.

H. Holden and N. H. Risebro, Front tracking for hyperbolic conservation laws, vol.152, p.59, 2015.

S. P. Hoogendoorn, Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena, Physica A: Statistical Mechanics and its Applications, vol.416, p.17, 2014.

L. Roger and . Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, vol.36, issue.6, p.37, 2002.

Y. Jiang, P. Ma, and S. Zhou, Macroscopic modeling approach to estimate traffic-related emissions in urban areas, Transportation Research Part D: Transport and Environment, p.16, 2015.

Y. Jiang, A dynamic traffic assignment model for a continuum transportation system, Transportation Research Part B: Methodological, vol.45, p.16, 2011.

M. Kenneth-h-karlsen, E. Rascle, and . Tadmor, On the existence and compactness of a two-dimensional resonant system of conservation laws, Communications in Mathematical Sciences, vol.5, issue.2, p.23, 2007.

F. Klügl and G. Rindsfüser, Large-scale agent-based pedestrian simulation, German conference on multiagent system technologies, p.17, 2007.

K. Stanislav-nikolaevich, First order quasilinear equations in several independent variables, Matematicheskii Sbornik, vol.123, p.22, 1970.

R. Lamotte and N. Geroliminis, The morning commute in urban areas with heterogeneous trip lengths, Papers Selected for the 22nd International Symposium on Transportation and Traffic Theory, vol.23, p.15, 2017.

. Jp-lebacque and . Khoshyaran, First order macroscopic traffic flow models for networks in the context of dynamic assignment, Transportation Planning, vol.17, p.10, 2004.

L. Leclercq, A. Sénécat, and G. Mariotte, Dynamic macroscopic simulation of on-street parking search: A trip-based approach, Transportation Research Part B: Methodological, vol.101, p.15, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01518515

L. Leclercq, Macroscopic traffic dynamics with heterogeneous route patterns, Transportation Research Procedia, vol.7, p.15, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01215757

K. Lie, A dimensional splitting method for quasilinear hyperbolic equations with variable coefficients, BIT Numerical Mathematics, vol.39, pp.683-700, 1999.

. Bibliography,

J. Michael, G. Lighthill, and . Beresford-whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.229, p.7, 1178.

. Zy-lin, A predictive continuum dynamic user-optimal model for a polycentric urban city, In: Transportmetrica B: Transport Dynamics, vol.5, p.17, 2017.

M. Guilhem, Dynamic Modeling of Large-Scale Urban Transportation Systems, p.16, 2018.

G. Mariotte and L. Leclercq, Flow exchanges in multi-reservoir systems with spillbacks, Transportation Research Part B: Methodological, vol.122, p.15, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02068069

G. Mariotte, L. Leclercq, and J. A. Laval, Dual expression of macroscopic urban models: analytical and numerical investigations with piecewise linear functions, 96th Transportation Research Board Annual Meeting. Transportation Research Board-TRB, p.15, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01493408

S. Mollier, M. L. Delle-monache, and C. Canudas-de-wit, 2D-LWR in large-scale network with space dependent fundamental diagram, 2018 21st International Conference on Intelligent Transportation Systems (ITSC)
URL : https://hal.archives-ouvertes.fr/hal-01866959

. Maui, , p.78, 2018.

S. Mollier, M. L. Delle-monache, and C. Canudas-de-wit, A Simple Example of a Two-Dimensional Model for Traffic: Discussion about Assumptions and Numerical Methods, Transportation Research Record 2672, vol.20, p.37, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01665285

S. Mollier, M. L. Delle-monache, and C. Wit, A decision support and planning mobility method for large scale traffic networks, ECC 2019 -European Control Conference, p.70, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02157899

S. Mollier, M. L. Delle-monache, and C. Wit, A step towards a multidirectional 2D model for large scale traffic networks, TRB 2019 -98th Annual Meeting Transportation Research Board, p.70, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01948466

S. Mollier, Two-dimensional macroscopic model for large scale traffic networks, Transportation Research Part B: Methodological, vol.122, p.46, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01819013

F. Gordon and . Newell, A theory of traffic flow in tunnels, Theory of Traffic Flow, pp.193-206, 1961.

G. Newell, A simplified car-following theory: a lower order model, Transportation Research Part B: Methodological, vol.36, issue.3, p.7, 2002.

L. Legesse and . Obsu, Traffic flow optimization on roundabouts, Mathematical Methods in the Applied Sciences, vol.38, issue.14, p.12, 2015.

. Paul-i-richards, Shock waves on the highway, Operations research, vol.4, pp.42-51, 1956.

L. Perez and F. G. Benitez, Outline of Diffusion Advection in Traffic Flow Modeling, Transportation Research Board 87th Annual Meeting, p.16, 2008.

E. Rossi, Hyperbolic Differential Equations, p.23, 2017.

M. Saeedmanesh and N. Geroliminis, Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks, Papers Selected for the 22nd International Symposium on Transportation and Traffic Theory, vol.23, p.15, 2017.

T. Saumtally, Modèles bidimensionnels de trafic, p.17, 2012.

C. Shu, High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM review, vol.51, p.75, 2009.

S. Kwami, J. Sossoe, and . Lebacque, Reactive Dynamic Assignment for a Bi-dimensional Traffic Flow Model, International Conference on Systems Science, p.17, 2016.

G. Strang, On the construction and comparison of difference schemes, SIAM Journal on Numerical Analysis, vol.5, p.24, 1968.

A. Borisovna-sukhinova, Two-dimensional macroscopic model of traffic flows, Mathematical models and computer simulations, vol.1, p.17, 2009.

F. Eleuterio and . Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 2013.

. Femke-van-wageningen-kessels, Genealogy of traffic flow models, EURO Journal on Transportation and Logistics, vol.4, p.7, 2015.

H. David and . Wagner, The Riemann Problem in Two Space Dimensions for a Single Conservation Law, p.23, 1983.

. Sc-wong, Multi-commodity traffic assignment by continuum approximation of network flow with variable demand, Transportation Research Part B: Methodological, vol.32, pp.567-581, 1998.

J. Zhang, Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram, Journal of Statistical Mechanics: Theory and Experiment, vol.02, p.2002, 2012.