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A B S T R A C T

Runtime verification is a promising technique to improve the safety of
complex systems. These systems can be instrumented to produce ex-
ecution traces enabling us to observe their usage in the field. A signif-
icant challenge is to provide software engineers with a simple formal
language adapted to the expression of their most important require-
ments. In this thesis, we focus on the verification of medical devices.
We performed a thorough analysis of a worldwide-used medical de-
vice in order to identify those requirements, as well as the precise
nature of its execution traces. In the light of this study, we propose
ParTraP, a formally defined language dedicated to property speci-
fication for finite traces. It is designed to be accessible to software
engineers with no training in formal methods thanks to its simplicity
and declarative style. The language extends the specification patterns
originally proposed by Dwyer et al. with parametrized constructs,
nested scopes, real-time and first-order quantification. We also pro-
pose a coverage measurement technique for ParTraP, and we show
that coverage information provides insights on a corpus of traces as
well as a deeper understanding of temporal properties. Finally, we
describe the implementation of an Integrated Development Environ-
ment for ParTraP, which is available under a free and open-source
license.
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R É S U M É

La vérification à l’exécution est une technique prometteuse pour amé-
liorer la sûreté des systèmes complexes. Ces systèmes peuvent être
instrumentés afin qu’ils produisent des traces d’exécution permettant
d’observer leur utilisation dans des conditions réelles. Un défi impor-
tant est de fournir aux ingénieurs logiciel un langage formel simple
adapté à l’expression des exigences les plus importantes. Dans cette
thèse, nous nous intéressons à la vérification de dispositifs médicaux.
Nous avons effectué l’analyse approfondie d’un dispositif médical
utilisé mondialement afin d’identifier les exigences les plus impor-
tantes, ainsi que la nature précise des traces d’exécution qu’il produit.
À partir de cette analyse, nous proposons ParTraP, un langage dé-
fini formellement et dédié à la spécification de propriétés sur des
traces finies. Il a été conçu pour être accessible à des ingénieurs logi-
ciels non qualifiés en méthodes formelles grâce à sa simplicité et son
style déclaratif. Le langage étend les patrons de spécification initia-
lement proposé par Dwyer et al. avec des opérateurs paramétriques
et temps-réel, des portées emboîtables, et des quantificateurs de pre-
mier ordre. Nous proposons également une technique de mesure de
couverture pour ParTraP, et montrons que le niveau de couverture
d’une propriété temporelle permet de mieux la comprendre, ainsi
que le jeu de traces sur lequel elle est évaluée. Finalement, nous dé-
crivons l’implémentation d’un environnement de développement in-
tégré pour ParTraP, qui est disponible sous une licence libre.
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1
I N T R O D U C T I O N

1.1 context

A new generation of medical devices emerges to support increasingly
more complex medical decisions and procedures. These Medical
Cyber-Physical Systems (MCPS) combine data from novel sensors and
existing modalities like scanners with elaborate software processing
to assist caregivers, in the same way flight management systems
help a pilot flying planes. For instance, Blue Ortho’s MCPS allows
performing Total Knee Arthroplasty more precisely (TKA, i.e. the
placement of a femoral and tibial knee prosthesis), potentially divid-
ing the number of revisions by two [67]. This is very beneficial to
the patients because the replacement of a first prosthesis by another
one incurs significant damage to the bones and very few patients can
walk normally after a TKA revision.

Unfortunately, innovation and safety of such MCPS is hindered by the
current software verification practices of the MCPS industry. The ex-
ample of the Therac-25, a radiation therapy machine which killed or
injured several patients, shows that bad development practices may
lead to catastrophic situations [52]. As a result of this tragedy, na-
tional health agencies have reinforced their expectations on software
development practices for medical devices, which are enforced with
thorough audits conducted pre- and post-market. To enable the de-
velopment of certifiable medical devices, several initiatives have pro-
moted the use of formal methods.

Formal methods refer to mathematically based techniques for the
specification, development and verification of software and hardware
systems. The specifications used in formal methods are well-formed
statements in a mathematical logic and the verifications are rigorous
deductions in that logic. Successful deductions correspond to proofs
that a system respects certain properties, such as its correctness with
respect to its specification. Formal methods encompass highly diverse
techniques ranging from fully automated, such as static type systems
in programming languages, to completely manual, such as some of
the most popular proof assistant.

Some formal methods have demonstrated their effectiveness for
decades in the most safety-critical industries (e.g. defense, avionics
[72], space [15], railways [33], or nuclear power plants [60]), but they
failed to gain broader adoption. In the medical industry, the Pace-
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2 introduction

maker Challenge [56] recently demonstrated that it is theoretically, if
not economically, possible to perform full verification of some med-
ical devices which interact in sufficiently restricted and controlled
ways with their environment. However, full formal verification of
new-generation MCPSs would be very difficult to achieve. This can be
attributed to several factors:

• Caregivers use various combinations of medical devices and
adapt procedures to fulfill the task at hand, making it difficult
and costly to completely formalize, hence verify, the whole sys-
tem a priori.

• Current regulations, such as ISO 62304 [44], do not ask for proofs
of safety: pre-market validation is based on development pro-
cess and risk analysis verifications; post-market surveillance can
be limited to informal follow-ups. Nonetheless, some regulatory
administrations like the United States Food and Drug Admin-
istration (FDA) are interested in evidences of safety, i.e. factual
data on the actual device.

• Last but not least, a number of verification tools only target
the C or Java programming languages, such as Frama-C [50] or
Krakatoa [55], while the MCPS industry mainly uses C++ for its
combination of abstraction and performance features (C being
limited to embedded medical software and Java to interoper-
ability with hospital information systems). Crocker gave a short
overview of the existing approaches and difficulties faced for
verifying C++ programs [22].

Most of the pioneering works for bringing formal methods to the
MCPS field are performed by academic research groups, and signif-
icant efforts need to be done in order to transfer these formal ap-
proaches into industrial practice. The MODMED research project is one
of those efforts, and this Ph.D. research was part of it. The project
gathers a research laboratory, a medical device manufacturer and a
software provided for medical devices, with the goal of improving
evaluation of MCPS safety by introducing formal verification to the
field. To maximize its relevance, MODMED research work is focused
on the study of a worldwide used MCPS made available by one of the
partners. Another key aspect of the MODMED approach is the use of
so-called “lightweight” formal methods to introduce formal verifica-
tion.

Since several years, a part of the formal methods community has pro-
moted a “lightweight” approach to the use of formal methods. Based
on the analysis of D. Jackson and J. Wing [45] which stated the pro-
hibitive cost of full verification, the lightweight approach to formal
methods advocates for:
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• partial application of formal methods techniques, including
specification of a subset of the system properties based on risk
evaluation and cost-effectiveness,

• the choice of a language which allows automated tool sup-
port, or

• the use of tools that partially check the system but actually find
bugs.

By trading completeness in favor of automation, lightweight tech-
niques make the use of formal methods practical and within reach
of a wider audience of software engineers. Runtime verification is an
example of those techniques.

Roughly speaking, runtime verification is a set of theories, techniques
and tools aiming towards efficient analysis of a system’s executions
and guaranteeing their correctness with respect to a specification.
Practically, runtime verification consists in taking as input some sys-
tem representation, performing some analysis, and yielding a verdict
indicating the correctness of the system in addition to some form of
feedback to the user. Runtime information must be directly obtained
from the execution of the system and automatically analyzed. This ap-
proach perfectly matches the previous description of lightweight for-
mal method as it only partially checks the system (a single execution
at a time), but does not require a full model and can be completely
automated.

1.2 thesis statement

MCPSs are powerful systems that can be easily equipped with elab-
orate tracing facilities. Exploiting their execution traces and sensor
data can provide us with an unbiased and precise understanding of
their behavior in the field. Consequently, runtime verification seems
particularly fit to the task at hand:

1. Systematic and automatic verification of execution traces can
significantly improve the post-market surveillance of such sys-
tems, which is usually limited to ineffective and informal follow-
ups of the device users. Trace analysis brings empirical evi-
dence that the system exhibits the expected behavior. Moreover,
it allows to understand how the system is actually used. For
instance, it could allow validating safety-related assertions on
users behavior [11] or hardware longevity [70].

2. It can complement the process-based validation of medical de-
vices. Dedicated tools can use models as reference for assessing
the functional coverage of existing tests (manual system tests as
well as automated “white-box” unitary tests). This would con-
tribute to establish the safety of the system by complementing
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the test report reviews, based on code coverage, with an inde-
pendent measure of the requirements captured in the model
and covered by tests.

Recording execution traces is already a standard practice in most in-
dustrial software, but their effective exploitation requires adequate
tools. A significant challenge is to provide medical software engineers
with a simple formal language adapted to the expression of their
most important requirements. In the field of runtime verification, sev-
eral proposals — such as Dwyer’s patterns [28] — allow expressing
temporal properties at a higher level than temporal logic. These pro-
posals are not directly suitable for the data-rich traces found in the
medical domain.

1.3 contributions

In this thesis, we report on the analysis of a worldwide-used MCPS

for total knee arthroplasty. After presenting the verification process
for this device and highlighting its limitations, we explain how trace
analysis can be used at several stages of development to overcome
those limitations in Chapter 2. Next, we describe our process to iden-
tify requirements for a property language adapted to this MCPS in
Chapter 3. After a brief presentation of runtime verification in Chap-
ter 4, we show that existing temporal specification languages focus
only on a specific subset of the identified requirements, and that a
more practical solution can be designed in Chapter 5.

Based on the previous analysis, we propose ParTraP, a language
dedicated to property specification for finite traces. Its design was
driven by two objectives: allowing elegant specification of properties
on traces produced by MCPSs, and being easy to apprehend by engi-
neers with no training in formal methods. ParTraP uses a declarative
style with a user-friendly syntax. It features intuitive temporal oper-
ators derived from the ones proposed by Dwyer et al. [28], with the
difference that they can be composed for increased expressiveness.
The language also features first-class support for data-carrying events
with arbitrarily complex data layouts. ParTraP’s semantics is fully
formalized and implemented in a compiler packaged together with
an Integrated Development Environment (IDE). It is available online
under a free and open-source license. Chapter 6 shows an informal
presentation of the language, Chapter 7 gives its formal semantics,
and Chapter 8 describes its IDE companion.

We also propose a technique to evaluate the coverage of properties
written in ParTraP over a set of traces in Chapter 9. Despite our
efforts to keep ParTraP simple, correctly specifying temporal prop-
erties remains delicate. Complex properties may contain subtle cases,
intricate to detect. Coverage information exposes them and the role
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they played in the satisfaction of a property. In particular, errors in
properties can be detected. We demonstrate this capability through
several examples, and show that it can also help refining proper-
ties and detecting malformed traces. This coverage evaluation relies
on the decomposition of properties into Disjunctive Normal Form,
which is itself accomplished by a Term Rewriting System specifically
designed for that purpose.

Chapter 10 concludes this thesis and discusses possible research di-
rections and applications for ParTraP.





2
C O N T E X T: A N I N D U S T R I A L C A S E S T U D Y

My Ph.D. research took place within the framework of the MODMED

research project, funded by the Agence Nationale de la Recherche (ANR),
the French national research agency. This project gathered three part-
ners located in Grenoble, France:

1. MinMaxMedical, a company specialized in software for medical
devices,

2. Blue Ortho, which develops medical devices, and

3. Laboratoire d’Informatique de Grenoble, a research laboratory.

Its main objective was to improve the evaluation of MCPSs safety and
performance in the field by the mean of automated model-based ver-
ification of execution traces. The motivations behind this strategy
were threefold. First, recording executions of MCPSs is relatively easy,
thanks to their power and flexibility. Second, systematic and auto-
matic verification of execution traces can significantly improve the
post-market surveillance of such systems, which is usually limited to
ineffective and informal follow-ups of the device users. Trace analysis
brings empirical evidence that the system exhibits the expected be-
havior, and it allows understanding how the system is actually used.
Finally, it can complement the process-based validation of medical
devices and contribute to establish their safety before reaching the
market.

To ensure the relevance of its research to the field, the MODMED project
was centered around an industrial case study. The medical device un-
der study was TKA, a surgery assistant designed and developed by
Blue Ortho for Exactech, a US-based implant manufacturer. The TKA

product was chosen for this project because, on the one hand, it ap-
pears as representative of new generation medical devices, and on the
other hand, it has been used worldwide for several years. Blue Ortho
already acquired more than 10 000 traces of execution resulting from
real surgeries, which provide a rich raw material for the MODMED

project.

In this chapter, we first present TKA in Section 2.1. Then, Section 2.2
briefly describes the international obligations for developing medi-
cal devices, and Section 2.3 details the methodology employed by
Blue Ortho to meet those obligations. In Section 2.4 and Section 2.5,
we describe the nature and role that execution traces currently play

7
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in the life-cycle of TKA. Section 2.6 presents the potential benefits of
trace verification for medical devices development, and how it fits in
the product life-cycle. Section 2.7 concludes the chapter.

2.1 presentation of tka

Figure 2.1: Usage of the TKA product during a surgery (photography from
Blue Ortho)

TKA is an application to guide total knee arthroplasty surgeries, i.e.
the replacement of both tibial and femoral cartilages with implants.
Figure 2.1 shows TKA in use during a surgery. The system is com-
posed of software, mechanical and electronic components. The station
on the left includes a touchscreen and a stereo vision camera on top
of it. Beside the station, the system also includes a set of trackers. They
are firmly attached to the bones of the patient and their position and
orientation can be detected by the camera. The camera also detects a
pointer device, which is used to acquire the position of some anatom-
ical points. Two trackers and the pointer device can be seen in more
details in Figure 2.2. The whole system can be manipulated directly
by the surgeon or their assistants through the touch screen, and us-
ing the pointer device. Once the system has acquired all the necessary
anatomic information, the surgeon can plan several cuts in order to
place the prosthesis. The system will then help them to position cut-
ting guides.

At a high level, performing a total knee arthroplasty with TKA mainly
consists in the following sequence of operations during the surgery:
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Figure 2.2: Pointer and trackers usage during the hands-on session

1 . acquisition After fixing the trackers to the patient’s bones, the
surgeon acquires a set of anatomic points by designating them
with the pointer device. Other points require performing cer-
tain movements with the patient’s leg, which are captured by
the attached trackers. Once all the necessary points have been
acquired, the system is able to construct a digital model of pa-
tient’s anatomy. Several mechanisms and safeguards encoded in
TKA software check that acquisitions are “correct” according to
rules established by Blue Ortho. However, the software cannot
judge whether the acquisitions correctly reflects the patient’s
anatomy. Therefore, surgeons are also trained to appreciate the
quality of the acquisitions themselves. Figure 2.3a shows the
interface of TKA allowing to visualize some of the performed
acquisitions.

2 . decision By combining the constructed model of the patient’s
anatomy and trackers position, TKA computes several metrics
which are updated in live when the surgeon manipulates the
patient. Thanks to this information, the surgeon is able to pre-
cisely adjust its preoperative planning for implant size and po-
sition. The interface displayed in Figure 2.3b allows the surgeon
to set up and visualize their plan.

3 . action The surgeon installs some cutting guides on the patient’s
bones and adjusts them according to the information on screen.
Thanks again to the live updating view, TKA directs the process
so that the position of cutting guides matches the plan up to
a degree or a millimeter. Figure 2.3c shows the interface corre-
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sponding to this step. Once the guides are setup, the surgeon
proceeds to cut the bones.

(a) Acquisition (b) Planning (c) Positioning

Figure 2.3: Screenshots of the TKA interface at different steps

Although this operation sequence appears very linear from the above
description, the low-level order in which all the steps are performed
is actually flexible and some of them may even be opted out. For in-
stance, surgeons decide whether they want to acquire optional redun-
dant anatomical points for additional confidence in the constructed
digital model. The actual low-level ordering is computed at the begin-
ning of a surgery according to surgeons’ preferences and their needs
for the present surgery. The order in which surgeons prefer to op-
erate is called a profile, and is defined by a Blue Ortho representative
during an interview. This feature introduces significant complexity in
the software but it is a key for the adoption of the device by surgeons,
who all have a preferred way to operate.

From a technical standpoint, TKA software is entirely written in C++

and composed of about 250 classes. It runs on machines using a Mi-
crosoft Windows operating system, to which the camera and screen
are connected.

2.2 verification and validation constraints for medi-
cal devices

Medical devices and their software are regulated by several interna-
tional standards. Their development must follows a classical V-Model
methodology complying with ISO 13485 [42], complemented with:

• an end-to-end requirements management complying with ISO

62304 [44], and

• a risk analysis of the medical device complying with ISO 14971

[43].

Before reaching clinics or hospitals in a country, medical devices must
get certified by national or international drug agencies. The develop-
ers of the medical device have to demonstrate that the development
process and the product are compliant with the aforementioned stan-
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dards. Most notably, they must justify the results of the risk analysis
for each software component, and show that the test coverage of each
component is appropriate for its established risk level. This audit pro-
cess is quite thorough and usually lasts several months. Anecdotally,
Blue Ortho reported that reviewers’ expectancies are high and that ev-
ery objection or question they have must be answered with hard facts.
Once the device has been certified and is used in production, the de-
vice is audited again periodically, as well as for minor revisions.

Medical device manufacturers are also expected to monitor all their
devices in use, known as “post-market surveillance”. However, this
requirement is vague and follow-ups are usually limited to informal
follow-ups of the device users, often ineffective.

2.3 blue ortho methodology for tka development

Blue Ortho followed a thorough methodology in the development
of TKA, with a focus on quality beyond of what is expected from
standard regulations. This methodology is based on a V-Model whose
process is tweaked for the medical device industry. It is represented
by the diagram in Figure 2.4, which was extracted from Blue Ortho
Quality Management System. The Blue Ortho V-Model is split in 3

Figure 2.4: Blue Ortho’s V-Model for TKA

levels depicted by dashed lines. Each of them is detailed by one or
several confidential documents. As they are audited by drug agencies,
these documents are high quality references which describe precisely
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the design and implementation of TKA’s software. From the least to
the most detailed, we can name these 3 levels: User, Technical and
Implementation.

2.3.1 User Level: From Intended Use to Validation

At the top-level, the design team, the development team and the qual-
ity managers along with some end-users (surgeons) write a document
called “Marketing Specifications”, describing the intended use of the
product and the corresponding high-level user needs, along with a
“Functional Specifications” document describing its components and
high-level usability requirements. At the very end of the design and
development procedure, the validation of the product will depend
on the result of “validation tests” typically performed by surgeons
on cadavers using a successfully verified device.

2.3.2 Technical Level: From Design to Verification

At the middle level, the design and development team together with
the help of their engineering team write the “Technical Specifica-
tions”. It is a confidential document describing the requirements onThis document is

more frequently
named by other
medical devices
manufacturers

“Sofware
Requirements

Specification” to
follow the United

States FDA
terminology.

its software, and more specifically by detailing its technical functions,
verification test plan, architectural design, interfaces, integration test
plan, risk measures test plan, and technical traceability. Many of those
are described through test scenarios and the “verification” of the
product consists in performing all these scenarios manually and an-
alyzing their results. “Technical Specifications” for TKA are 125 page-
long and performing all verification tests, as required for major revi-
sions of the product, takes approximately 1 person-month.

The whole TKA software is described through 32 groups named “Sys-
tem Functions”. These 32 functions are further decomposed in a total
of 319 test scenarios. They describe what is required to happen after
each step, or at the end of a scenario. On average, there are 10 tests per
function. Only 5 System Functions have more than 12 tests, and the
most complex one has 46 tests. The effort necessary to test each case
may greatly vary, depending on the number of initial environments.

These tests focus on the system accuracy and the user workflow. Accu-
racy cannot be tested with the medical device alone and is specifically
tested with a specifically designed hardware test bench. Most system
functions also include a test case where the tester is free to take un-
specified user actions and to appreciate whether the resulting system
behavior is normal. This illustrates the compromise between specify-
ing tests with well-defined acceptance criteria (even informally) and
the desire to verify the medical device under more situations without
having time to precisely describe their inputs and outputs.
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2.3.3 Implementation Level: From Development to Unit Testing

At the lowest level, engineers write “Detailed Specifications” docu-
ments for each software component in the form of unitary test plans.
They implement the components and write unit tests for each compo-
nent’s function. The nature of those components is very diverse, rang-
ing from geometric computation to graphical display. For instance,
the graphical component in Figure 2.5 is responsible for accurately
displaying named numerical values with the appropriate unit in var-
ious languages, and tested accordingly. TKA software contains 250 Figure 2.5: A TKA

graphical
component for
numerical values
display

C++ classes which source code also contains the unit tests. The ratio
“tests size over implementation size” can reach up to 3 depending on
components. The test suite comprises more than 600 unit tests which
are run automatically during several steps of the development.

Unit test results are collected and verified manually before perform-
ing the product verification. Being able to run these tests and obtain
repeatable test results allows Blue Ortho to manage the proliferation
of user options (about 30 different screens and 60 options), and trans-
lations (English, French, Spanish, German, Italian, and later Japanese,
Korean, etc.). However, the limit of testing is well understood by
Blue Ortho that takes test results as no more than “an evidence that
the software performed well at least once”. Consequently, they put
a lot of efforts in software design to improve its quality, like stati-
cally tracking the many coordinate systems of geometrical primitives
(anatomical axis and planes, physical instrument points, etc.) using
dedicated types.

2.4 states and traces

2.4.1 Hierarchical Finite State Machine

A notable example of Blue Ortho emphasis on design resulted in
putting the responsibility to adapt TKA workflow to the surgeon’s pro-
file into a hierarchical finite state machine which models this work-
flow and drives the whole user interface (from physical tools to graph-
ical widgets). This state machine is dynamically built according to
the surgeon’s profile. The instantiated state machine is logged at the
beginning of a TKA execution. Figure 2.6 shows a short extract of a
possible instantiation of the state machine, with parent states in blue
and child states in white. In the following, whenever we talk about
the “state” of TKA, we refer to the current state of the instantiated
finite state machine.

2.4.2 Execution Traces

To monitor how TKA devices are used on the market, Blue Ortho
equipped them with a mechanism to record execution traces, which
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Figure 2.6: Short extract of a possible instantiation of the TKA state machine

are produced for each surgery. This mechanism was initially intro-
duced to store sufficient information to understand the course of a
surgery and possibly to identify failures. A trace reflects both the
workflow of TKA software and of the surgery itself through a se-
quence of events. The nature of these events is very diverse and
includes communication with the sensors, interactions with the sur-
geon, progress through the steps of the surgery, or complex compu-
tation results.

TKA traces are not particularly long: they are composed of about 3000

events on average. However, they are quite rich in data. Most of the
events carry additional values, ranging from atomic values such as
strings or numbers, to compound data such as 3D points or matrices.
For instance, whenever the system acquires a cloud of points desig-
nated by the surgeon through the pointing device, it produces a sin-
gle event containing that whole set of points (about 400). Figure 2.7
shows an excerpt of such an execution trace recorded by TKA during
a surgery, with interesting information highlighted. We can see that
each event is time-stamped and that the aforementioned state ma-
chine transitions are traced. A particular attention was paid to trace
user input and sensors events because Blue Ortho wanted to be able
to understand how the product would be used in the market. For
instance, the last line contains the coordinates of the first point of a
point cloud being accumulated.

Execution traces are also complemented with technical data such as
screenshots of the graphical user interface taken at each step of the
surgery, or the three-dimensional scene constructed from anatomic ac-
quisitions. However, the traces contain little information about the in-
ternal values of the program (variables) and its control flow (method
calls). Also, raw data acquired by the sensors is completely absent.
One of the objectives of the MODMED project is to provide the means
to easily trace such information in future products, or major revisions
of TKA.
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MSG 2015.11.11-02:18:01.145 | OPEN

MSG 2015.11.11-02:18:01.145 | Version : 1.15.3

...

MSG 2015.11.11-02:18:01.395 | [EventHandler::performStateEntry] Entering state : mainCasp

MSG 2015.11.11-02:18:01.395 | [EventHandler::performStateEntry] Entering state : mainCasp.

Welcome

...

MSG 2015.11.11-02:18:02.659 | [EventHandler::performStateExit] Exiting state : mainCasp.

Welcome

MSG 2015.11.11-02:18:02.846 | [EventHandler::performStateEntry] Entering state : mainCasp.

Enter Patient Info

MSG 2015.11.11-02:18:11.207 | [BlueApp] Click on Btn Left at pos = (475,95)

...

MSG 2015.11.11-02:18:37.462 | [MainBlueWidget] Screen Btn Next clicked

...

MSG 2015.11.11-02:19:02.410 | [Profile::loadFromXML] file 'C:/.../Dr. XXX - ALL CUTS w ACB.

bprofile' loaded successfully

...

MSG 2015.11.11-02:19:07.340 | [FoxDriver::connect] Device 166ec0dd01 connected

...

MSG 2015.11.11-02:19:43.859 | Marker Detected : 16aa1a9401, P001002

...

MSG 2015.11.11-02:20:37.913 | [EventHandler::performStateExit] Exiting state : mainCasp.

CalibrationCheck.Wait

MSG 2015.11.11-02:20:37.913 | [EventHandler::performStateEntry] Entering state : mainCasp.

CalibrationCheck.Accum

MSG 2015.11.11-02:20:37.929 | [ 0] 0.0041657031046522519 64.562875356938733

11.860463388262414

Figure 2.7: Excerpt of an execution trace recorded during a surgery with TKA

Blue Ortho collects the traces of all surgeries conducted with TKA.
The product is being used worldwide for several years and more than
10 000 surgery traces have been collected. Currently, those traces are
analyzed manually, but their increasingly large number is making
that task less and less reliable.

2.5 post-market surveillance

Once a medical device is certified for some market and actually used,
Blue Ortho considers that analyzing the device usage in real surgeries
is critical to ensure patient safety. For instance, they presented us a
few studies on TKA that were done thanks to the collected traces, but
also examples of studies that could not be completed by lack of tools
or methods.

2.5.1 Misuse Surveillance

As a general usability principle, Blue Ortho chooses to only block the
surgeon when the action would undoubtedly have dire consequences
for the patient. Consequently, it is important to study how the TKA

is used in the market to detect misuses. This allows warning users
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about potential problems and advising them on how to avoid these
problems in next surgeries. On the other hand, it may denote usability
problems that should be tackled by Blue Ortho. In any case, Blue Or-
tho feels this is a very relevant activity to improve TKA safety and
effectiveness.

A typical example is to verify that TKA is used within intended operat-
ing temperature range because it affects the camera accuracy. TKA soft-
ware checks this prerequisite environment condition and the surgeon
is warned about possible accuracy problems, but he is left responsible
for using it or waiting for camera warm-up. The same requirement
is checked on surgery reports that the surgeon can consult on a dedi-
cated website. This is a successful example of using traces to educate
users without taking on research and development resources. Unfor-
tunately, this is an exception and most basic misuses are not detected
resulting in user frustration, and involvement of rare and expensive
research and development resources to diagnose trivial problems. For
instance, although Blue Ortho stresses the fact that the camera must
be placed next to the opposed leg of the one being operated, the
company had to deal with situations where this requirement was not
respected.

Blue Ortho also studied whether it was possible to detect the use of a
leg holder based on knee and hip center distances. A leg holder is a
tool to immobilize the thigh of the operated leg. Its use is incompati-
ble with TKA which requires performing ample movements. Another
study was made on 1000 traces to detect situations where some track-
ers are not properly fixed onto the bones. The problem with these
studies is that it is difficult to establish a threshold on hip center ges-
ture amplitude or point clouds metrics, etc. and Blue Ortho feels like
they lack tools to perform more studies and implement more checks
on surgery traces.

2.5.2 Usage Studies

Finally, an important outcome of surgery reports is to give users and
manufacturers a feedback on TKA usage. On one hand, surgeons are
given access to some anatomical metrics about their surgeries (before
and after). On the other hand, the manufacturer can analyze which
components are actually used to optimise the set of manufactured in-
struments. Research and development teams get information on the
deployment of new software and hardware versions, and they can
study how this affects surgeries time. For instance, Blue Ortho de-
signed a second version of cutting guides for which they observed
improvement in the time to position them.
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2.6 the need for automated trace analysis

2.6.1 Why Trace Analysis

During its life cycle, a medical device is tested and analyzed in several
contexts: development, qualification, manufacturing and exploitation.

1 . the development context It corresponds to all activities that
will create or modify the software or the system. They corre-
spond to the initial development, but also to corrections during
the maintenance phase and evolutions of the system. In the de-
velopment context, traces will be produced during tests. They
can be used to evaluate the correctness of the system by ensur-
ing that software requirements are always satisfied.

2 . the qualification context It comes after development ac-
tivities. It is aimed at demonstrating the correctness of the sys-
tem and validating assumptions on its environment. The qual-
ification phase also involves “acceptance tests” typically per-
formed by surgeons on corpses using a successfully verified
medical device. During these acceptance tests, one can expect
that most of the requirements are satisfied as the system passed
the development stage; thus, the focus will be on checking that
the execution environment behaves as assumed, and that the
product is used as foreseen.

3 . the manufacturing context Since TKA is composed of soft-
ware and hardware, it involves a manufacturing phase where
the system is manufactured and tested. Here the tests check
the hardware for manufacturing defects. At this stage, the focus
is on checking that requirements are satisfied by every man-
ufactured device. While in the development and qualification
contexts failure could result from software defects, in the man-
ufacturing phase, the software should be correct and failures
only reveal hardware defects, or incorrect execution of the tests
by the tester.

4 . the exploitation context It corresponds to the operation of
a qualified system during a real surgery. The main activities
in this context are the already mentioned post-market surveil-
lance and usage studies. In this context, requirements should
obviously not fail. Checking this on traces of numerous surg-
eries brings additional evidence of the quality of the qualified
system. Similarly to the qualification context, the most relevant
checks in the exploitation context are to verify that assumptions
on the execution environment were realistic, and that the prod-
uct is used appropriately in real conditions. Checking the as-
sumptions on the traces of real surgeries helps to detect cases
where the environment of the system is not adequate. Detecting
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such traces may bring explanations on why something did not
proceed smoothly, or require for more robustness of the system
against the failure of these properties.

To summarize, Blue Ortho carries out three types of analyzes on TKA

executions throughout its life-cycle: requirement verification, assump-
tions validation, and usage studies.

Except for unit testing during the development context, the first two
are carried out completely manually. Obviously, this is tedious and
error-prone. Usage studies are partly automated: the simplest ones
are scripted and executed systematically on collected execution traces,
whereas more complex studies require developing ad-hoc programs.
Most, if not all, of those analyzes would benefit from being replaced
– or complemented – by a more reliable and automated trace verifica-
tion framework.

2.6.2 Limitations of the Current Approaches

Blue Ortho already automated some analyses on traces. They are cur-
rently using two different approaches:

1. Simple analyses are run against “surgery reports”, which are
hierarchically structured syntheses of TKA executions. Basically,
those analyses are encoded as shell scripts looking for patterns
in a report with XPath queries (i.e. XML queries). This approach
is limited to simple analyses because surgery reports contain
little information.

2. More complex analyses, such as usage studies, are run against
the unstructured “technical logs”. They are programs written
in Python or C++ that encode properties of interest weaved to-
gether with extraction of relevant parts from the logs. They are
not resilient to changes in the log format, and they are often
developed and used with a throwaway state of mind.

Besides their respective drawbacks, they are also inscrutable by engi-
neers or auditors not qualified with the in-house development tech-
niques.

The drawbacks of both approaches can be attributed to two factors:

1. The lack of structure in traces limits the set of tasks that can be
automated easily, and makes them not resilient to changes.

2. Analyses are encoded as ad-hoc imperative programs mixing to-
gether the logic behind the analysis and programming related
tasks. Although scripts ran against surgery reports are using
declarative XPath queries, they are still imperative programs.
Furthermore, XPath, which was not designed to extract infor-
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mation out of temporal sequences of events (traces), does not
exactly reflect what the analysis is about.

2.7 towards automated trace verification

The first issue with the current approach of Blue Ortho for trace anal-
ysis, namely the fact that traces are not structured, can obviously be
solved by using a structured tracing library. The second issue, i.e. hav-
ing to write ad-hoc programs for each analysis, can be tackled by us-
ing a language specialized to this task. The two following subsections
discuss those solution respectively.

2.7.1 A Structured Tracing Library

To produce structured traces, it is necessary to 1. decide on a structure
and a format to represent it, and 2. use tracing instructions provided
by a library supporting the chosen structure/representation. The part
of the MODMED project dedicated to these tasks was handled by Min-
MaxMedical, and is not detailed in this thesis. In short, they designed
a trace structure, several corresponding representation formats and a
C++ tracing library such that:

• Tracing is efficient;

• Trace points leverage a maximum of static information from the
program to automatically enrich events;

• The different representation formats are isomorphic; and

• The library provides the means to easily capture arbitrary data.

More details are available in the associated deliverable for the
MODMED project [20].

2.7.2 A Language for Trace Verification

Writing ad-hoc programs to verify traces is tedious and repetitive,
and consequently error prone. Resulting programs are also difficult
to read and maintain as the property of interest is encoded in an
operational form. On the contrary, a language dedicated to trace veri-
fication can offer abstraction from the underlying trace structure and
to focus solely on the property intent. It can also significantly increase
both readability and conciseness of specifications.

The design space for trace verification languages is vast and includes
a number of trade-offs. This thesis is dedicated to finding the right
one in the context of verification of modern medical devices. By “right
one”, I mean a language that would both fit its use-case, i.e. trace
verification in the context of modern medical devices, and be suitable
for industry adoption, especially for engineers without training in
formal methods.
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Finding this language requires to precisely understand which types
of properties are to be verified. Chapter 3 reports on the analysis of
properties of interest for TKA. Then, I compare several existing lan-
guages according to the results of the previous analysis in Chapter 4.
Finally, we propose a formal language better suited to our needs in
Chapter 6, and its associated toolset in Chapter 8.
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R E Q U I R E M E N T S A N A LY S I S F O R T K A

In this chapter, I present the methodology employed to identify prop-
erties of interest on TKA, and a comparative analysis of their most
important features.

3.1 studied requirements

The design documents of TKA were thoroughly analysed to iden-
tify the product requirements that could be verified, and 5 execu-
tion traces were studied to check whether the corresponding trace
properties could actually be verified. They were carefully selected by
Blue Ortho as illustrative of the “expected” workflow or unusual be-
haviors. Moreover, in order to target MODMED tools to goals that are
deemed important by users in the industry and facilitate their adop-
tion, Blue Ortho was asked to express whether the discussed proper-
ties were interesting from the industrial standpoint.

3.1.1 Inappropriate Sources of Requirements

user level requirements The requirements listed in the “Mar-
keting Specifications” and “Functional Specifications” are so general
that they were not deemed interesting for the MODMED project. Also,
the Validation activity performed by end users (surgeons) seemed too
focused on the intended use to present challenging cases not already
tested by the Verification activity. We will see below that both the Ver-
ification and Post-Market Surveillance are activities triggering user
level requirements that are more interesting for the MODMED project.

workflow requirements Blue Ortho invested a lot of efforts
to implement the desired surgery workflow as a hierarchical state
machine driving the whole Graphical User Interface (GUI). This state
machine was studied in detail as it looked like a good source for
trace properties and its size was unusually large for controlling a
GUI. Some properties were formalized and verified using prototypes,
but the result was usually showing problems with the formalization
rather than problems with the software. For instance, a property stat-
ing that “the user should spend at least 5 seconds in each state” has the
purpose of checking that the user does not miss important steps by
clicking too quickly. The property is however too broad because in
the traces, two types of states have to be considered: states exposed
to the user, often corresponding to clinical operations, and technical

21
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states performing internal computations that are not exposed to the
user. Many of those technical states are exited quickly by the system,
falsifying the above property.

Moreover, the state machine is dynamically changed by TKA soft-
ware to take into account user interactions like “camera reconnec-
tion” or “redo acquisitions” that are not in the normal workflow and
these changes are not totally traced in the current version (in spite of
Blue Ortho goal to trace all state machine changes). Finally, the tran-
sition conditions are only visible in the source code (making the state
machine appearing as non-deterministic when considered alone) and
duplicating them in properties represents a lot of manual work.

Blue Ortho’s conclusion was that using the state machine to derive
formal properties of traces would be a duplication of the effort al-
ready spent on design with a low probability of detecting real prob-
lems. MODMED partners were very sensitive to this appreciation since
a major challenge of the project is the adoption of its tools by the
industry.

On the other hand, Blue Ortho wanted to verify that:

1. general properties of the state machine implementation or spec-
ification (e.g., no other sinks than the end of the surgery), and

2. the state machine instantiated by TKA actually respects the sur-
geon’s profile and general rules like: “dynamically added work-
flows start and end in the same state of the normal workflow”.

gui requirements Ensuring the GUI displays accurate and timely
information to the surgeon is an important requirement. Unfortu-
nately, current traces are somewhat limited in this area. User actions
are traced but reactions of the GUI like audio feedback are not. A few
screenshots are taken at each workflow step but the timely updates of
GUI components are not (imagine the GUI freezes while the surgeon is
adjusting cutting guide screws and cuts bones with the illusion that
the guide is correctly positioned).

It would be important to be able to extract information from screen-
shots to automate the verification of some explicit or implicit require-
ments, such as the fact that text must be displayed correctly in all lan-
guages or that anatomical orientations of schemas are correct. How-
ever image processing was deemed out of scope of the project. In-
stead, it was decided to first tackle this problem by providing facilities
in the trace library to trace GUI behavior without the risk of delaying
GUI updates. Certainly, it cannot fully replace image analysis and will
not detect problems in system GUI components.

accuracy requirements During our discussions, we realized
that accuracy requirements like “The precision of the computed hip center
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is less than 1 mm” would not be verifiable on execution traces as the
absolute precision requirement requires ad-hoc test benches. What
can be verified using only information coming from the traces is a
weaker version of this requirement: “All computed hip centers are lo-
cated in a 1 mm sphere” which tells something on TKA (inconsistent
measurements probably indicate a misuse or a failure of TKA) but
nothing on the ground truth (the sphere may be located at the wrong
position).

real time requirements In the TKA study, we encountered few
requirements on the real (wall-clock) time, and they were usually soft
real-time requirements, in the sense that the time constraints may
occasionally be violated without harm to the patient. Only a few hard
real time requirements were found in “Technical Specifications”, such
as “The system detects the new tracker in less than 10 seconds”, while
other real time requirements remain elusive like “Each click leads to
an immediate change of GUI” or “The position of the pointer is displayed
in real time over the scheme of the bone”. The main reason for being
elusive is the necessity to distinguish such “usability” requirements
from critical performance requirements. In particular, drug agencies
may unduly interpret the fact that trackers should be detected in less
than 10 seconds as a critical performance requirement (whereas it is
not) and investigate: how it was measured, how the design helps to
fulfill it, etc.

unit tests Unit tests are a way to implement some aspects of
a more general requirement, so we wondered whether they would
represent a relevant source of requirements. However, Blue Ortho
felt like the software design patterns they employed combined with
unit tests are adequate to independently test software components
and did not feel the need for using new tools at the implementation
level (except tests coverage tools). In practice, Blue Ortho experienced
many more problems with integrated off-the-shelf hardware compo-
nents than homemade software components.

Nonetheless, it could be interesting to see if some unit tests can be
rewritten as properties since they may be easier to write with a ded-
icated language, and they could be verified in conditions that the
tester did not anticipate as problematic. This approach is not cur-
rently applicable to TKA because its execution traces focus on captur-
ing what happened in the environment and the values of intermedi-
ate variables usually checked by unit tests are not traced. Replaying
traces was examined as a way to use existing traces and Blue Or-
tho experimented it with a prototype. However, limitations quickly
appeared, such that the absence of raw input data preventing the
re-computation of some data. Thus, apart from a few examples, we
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did not further study test plans, described in the “Detailed Specifica-
tions”, nor unit test programs.

3.1.2 Relevant and Representative Requirements

technical level requirements The requirements described
in the “Technical Specifications” document were the most important
source for deriving properties of interest on TKA. As a result, a list of
43 requirements in 11 “functions” described in the “Technical Specifi-
cations” was determined relevant based on the interest expressed by
Blue Ortho and their adequacy to the challenges MODMED addresses.
The 21 remaining functions were not considered because they were
almost identical to the ones already considered. The high relevance
of this document content can be explained by two factors.

First, Blue Ortho was looking for better tools to support the verifica-
tion activity because:

1. it is still very labor-intensive,

2. it includes hardware components that are harder to test effec-
tively, and

3. its accuracy relies on the tester experience.

Indeed, performing all the test scenarios and interpreting the results
frequently require specific knowledge that is not, or cannot be fully
described in the “Technical Specifications”. For instance, the require-
ment that “The virtual keyboard allows to fill the form as expected” uses
the expression “as expected” instead of fully describing how a key-
board works. The verification activity is fully described in the “Tech-
nical Specifications”, hence the relevance of the document.

Second, the verification process is described through test scenarios to
be performed by the tester. They are usually composed of a sequence
of actions together with an expected result. This type of scenario can
be precisely formalized as a temporal property, and automatically
checked on execution traces.

usage studies and post-market surveillance Another
source for finding properties was the interviews with Blue Ortho en-
gineers. They explained their process and findings when confronted
to bizarre situations reported by surgeons, as well as several studies
they conducted in order to improve the product. They often ended
up writing ad-hoc programs looking for patterns in traces, from
which we extracted properties. Although they are not requirements
and they do not have to be satisfied by all execution traces, it was
important to account for those properties in the study. Tracking the
aforementioned issues is a considerable time expense for Blue Ortho,
which could benefit from tools supporting this activity.
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3.2 list of representative properties

Out of all the properties I gathered as relevant, I extracted a shorter
list of 15 properties that were deemed representative, based on the
temporal relationships featured between events, the type of event
data, and the operations performed on event data. tka properties are
now listed in arbitrary order.

Property 1. The trace contains a step “redo acquisitions”.

The “redo acquisition” step allows the surgeon to correct his previ-
ous acquisition. It is not part of the standard procedure flow and,
therefore, interesting to detect.

Property 2. The temperature of the camera stays within a given interval.

If used in proper conditions, the camera temperature should not de-
viate from the range where its precision is guaranteed.

Property 3. The distance between pairs of hip centers is less than d.

This property asserts that the algorithm computing the hip center is
stable, i.e. gives similar results for consecutive acquisitions.

Property 4. The distance between the hip center and the knee center is
greater than d.

A violation of this property could reveal an abnormal positioning of
the patient or the sensors.

Property 5. If the medial malleolus is farther from the camera than the
lateral one, a warning is issued.

A violation of this property may reveal that the 3D camera was in-
stalled on the wrong side of the patient.

Property 6. The user never skips a screen.

The surgeon is expected to spend sufficient time to appreciate the
information showed on the display before going to the next screen.

Property 7. The acquisition of a point succeeds if and only if the probe is
stable.

If the surgeon moves the probe tip during an acquisition, it should
not be accepted.

Property 8. The protocol “redo acquisitions” only proposes already per-
formed acquisitions.

The system should not offer the user to redo acquisitions that were
never performed.

Property 9. Detecting a new tracker produces a dialog asking for replace-
ment confirmation.
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Property 10. The state TrackersConnection is unreachable until the camera
is connected.

The system should not reach a state dependent on the camera until
the camera is connected.

Property 11. A replaced tracker is not used until it is registered again.

Property 12. The action “previous” cancels the current point cloud acqui-
sition.

Acquiring a cloud of points takes a few seconds and can be cancelled.
In this case, the current acquisition should not succeed.

Property 13. All the necessary trackers are seen before entering the state
TrackersVisibCheck.

To proceed, the system requires a set of trackers depending on the
profile in use. All these trackers should be seen at least once before
entering the state TrackersVisibCheck.

Property 14. On the tracker connection screen, a tracker is shown if and
only if it is necessary.

Only required trackers are shown to the user.

Property 15. In the state TrackersConnection, not detecting a single tracker
for 2 minutes produces an error message.

3.3 types of properties and their use

Trace properties are very versatile in the analysis of medical device
executions. They can be used to encode the requirements of a system,
but also to detect specific behaviors of the system. In this section,
we propose a classification for trace properties for medical devices
according to three categories: required, assumed and usage properties.

required properties Required properties must be ensured by
the system, and more precisely by its software. tka properties cor-
respond to requirements on the software. For instance, one of the
requirements of the TKA software states that it should check the sta-
bility of the probe before validating the acquisition of a point. It can
be restated as a required property: “The acquisition of a point succeeds
if and only if the probe is stable”.

Checking these properties on the traces should always succeed, oth-
erwise it would reveal a failure of the software. Ideally, these prop-
erties should be formally proven. This is why we refer to these as
required properties. In the medical device industry, a more pragmatic
approach is to provide verified traces as evidences that they are ful-
filled by the product, and not full proofs.



3.3 types of properties and their use 27

assumed properties Assumed properties should be ensured by
the environment of a system. They appear as assumptions on the
behavior of this environment. If the environment fails to fulfill these
properties, the behavior of the system may be affected. In the context
of TKA, the property “The temperature of the camera stays within a given
interval” is an example of assumed property. If the temperature is
outside this range, the precision of the camera may be affected.

Violations of assumed properties by the environment may or may
not be detectable by the software. When the environment does not
behave as expected, or is suspected not to, the desired response from
the software is not obvious. In such a situation, TKA is designed to
not stop assisting the surgery so that the surgeon remains in control,
but it repetitively displays modal warnings.

Checking these properties on traces is expected to succeed because
the surgeon and his team are expected to use the system in the pre-
scribed conditions. If one of these properties is not satisfied, it may be
an explanation for difficulties arising during the surgery and it does
not necessarily reveal a defect of the system. tka assumptions on the
behavior of the environment will be referred to as assumed properties.

Note that properties can be both required and assumed. This happens
for properties whose satisfaction depends on the environment and
the software implementation. For instance, consider the TKA property
“The distance between pairs of hip centers is less than d”. It can result from
the use of a leg holder, which violates assumptions on the environ-
ment, or from a wrong calculation which reveals a software failure.
Since the trace does not record that a leg holder was used, a violation
of this property leaves two possible causes.

usage properties Some medical devices such as TKA may offer
different workflows, depending on the precise nature of the inter-
vention and on the surgeon’s choices. Properties can be checked to
understand how the system was used.

For example, this is the case of the property “The trace contains a step
‘redo acquisitions’”. The “redo acquisition” step is triggered by the sur-
geon and may reveal that it is difficult to have all acquisitions right at
the first attempt, or that the surgeon is not trained enough to use the
system. Checking these properties helps understand the way a sys-
tem is used, but does not reveal a particular failure of the system or
its environment. It can be exploited to identify potential evolutions of
the system (e.g. efforts should be done to facilitate acquisitions). This
is why we refer to such properties as usage properties.

Statistics can be computed on the number of traces satisfying a
given usage property. At longer term, “quantitative usage properties”
might be considered, reporting quantities instead of Boolean values
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property 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Required 3 3 3 3 3 3 3 3 3 3 3

Assumed 3 3 3 3

Usage 3 3

No. of event types 1 1 1 2 3 2 2 2 2 2 3 3 4 2 4

Parametric 3 3 3 3 3 3 3 3 3 3 3 3

Temporal 3 3 3 3 3 3 3 3 3

Restricted scope 3 3 3 3 3 3

Geometric predicate 3 3 3 3

GUI predicate 3

Physical time 3 3

Table 3.1: Classification of the 15 selected properties

like a number of occurrences of an event or the duration of a step or
the distance between anatomic points.

The upper part of Table 3.1 synthesizes the classification of the 15

selected properties according to the three aforementioned categories
(required, assumed and usage properties). Required properties is the
most populated class, which is representative of the TKA properties
we gathered.

3.4 analysis

From the selected set of the 15 representative properties, we identi-
fied several important characteristics based on their relevance to the
MODMED project and/or their frequency of occurrence. The character-
istics that were deemed important are detailed in the following list:

• The number of different event types involved. This often corre-
lates with the complexity of the property.

• Whether the property is parametric, i.e. if it constrains the data
carried by certain events, possibly relatively between them.

• Whether the property is temporal, i.e. if it constrains the order of
two or more occurrences of events.

• Whether the property applies to restricted scope, or interval, of
the trace; this interval is delimited by given event occurrences.

• Whether the property relies on geometric computations on data
extracted from event parameters.

• Whether the property uses predicates on the GUI (e.g., a given
button should be disabled).
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• Whether the property involves physical-time.

The lower part of Table 3.1 synthesizes the classification of the 15

properties presented in the previous section. In the following, I will
detail this classification for a couple of properties.

Let us consider Property 3, stating that the distance between pairs of
hip centers is inferior to a given threshold. It involves several events
of a single type, reflecting the acquisition of a new hip center and that
are parametrized with the acquired point. tka event parameters must
satisfy a geometric constraint. A violation of this property could in-
dicate that the patient was not installed as expected (e.g. the surgeon
should not use a “leg holder” which locks the patient’s leg) or, if the
patient was correctly installed, that the algorithm computing the hip
center is not stable.

Property 12 is a required property stating that the action “previous”
cancels the ongoing points cloud acquisition. In other words, trigger-
ing the action “previous” during an acquisition prevents this acqui-
sition from succeeding. This property involves three different event
types, reflecting the action “previous”, the beginning of an acquisi-
tion, and the success of an acquisition. No event parameter is needed,
which makes the property non-parametric. However, it is temporal
since the occurrence of the “acquisition success” event is constrained
by other event occurrences.

The results of this classification are in accordance with our expecta-
tions: the properties are very diverse and rely heavily on data parame-
ters. On the contrary, physical time is rarely involved in the identified
properties despite our expectations. tka properties will guide our de-
sign of a trace property language adapted to the context of medical
devices.
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R U N T I M E V E R I F I C AT I O N

Runtime verification is a lightweight, yet rigorous, formal method
that analyzes a single execution of a system. It can be used to ensure
the reliability, safety, robustness and security of a system. Although
runtime verification can be applied to any system whose behavior can
be observed, we only consider software systems and their execution
environment in this thesis.

Runtime verification is sometimes also referred to as monitoring, al-
though the latter only suggests some form of observation over a pe-
riod of time, whereas the former implies a notion of correctness with
respect to some specification. Indeed, the essence of runtime verifica-
tion is to check the correctness of the runtime behavior of a system.

Runtime verification can be applied before deployment of the system,
for instance as part of the testing process, or after deployment of the
system. The latter constitute its most unique distinguishing feature
compared to other verification techniques: a system can be analyzed
while operating in its production environment, where unexpected sit-
uations may occur.

In this chapter, we describe the three steps that compose the spine
of runtime verification. First, we consider how to specify the valid
behaviors of a system in Section 4.1. Next, Section 4.2 presents the
different strategies to make a system observable. Finally, we describe
some popular techniques and setups to verify that the system execu-
tions conform to its specification in Section 4.3.

4.1 specification of the system behavior

Generally, the term behavior is used to describe how a system changes
or acts over time. Recall that we include both the software and its
execution environment in the system. Therefore, the behavior can de-
scribe changes in the internal state of the software, the actions it per-
forms, which may or may not affect the environment, and changes in
the environment. For instance, Property 2 in Section 3.2 describes the
temperature of the camera of the TKA system.

Of course, it is only useful to specify behaviors that can be observed.
In this section we focus on the nature of those observations, whereas
their practical realization is the topic of the next section. As many
other works in the field of runtime verification applied to software
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systems, we choose to observe the actions or state changes made by
a system through discrete events. An alternate approach is to observe
the system through a collection of signals, which are functions from
time points to a value domain. This view is particularly useful when
dealing with continuous time [54] and well suited to runtime verifi-
cation targeted at hardware systems [46, 47], but less so for software
systems, which are inherently discrete. The sequence of events ob-
served during a single execution of a system, and therefore the sys-
tem behavior for this particular execution, is called an execution trace,
or simply a trace [64].

Generally, individual events carry any kind of information about the
system behavior. They can be as simple as a name for something that
happened. For instance, CameraConnected could be observed right
after the camera is connected. Most recently, emphasis within the re-
search community has been on so-called parametric events [1, 6, 24,
27, 38]. Such events carry data values of interest as parameters. For
instance, the event Temperature(t), which has a single parameter t,
could indicate the observation of a temperature sensor with a value
of t. We will come back to the different ways to model event param-
eters in the next chapter. Regardless of the chosen model, the set of
observable events, called alphabet, directly constrains the system be-
haviors that can be specified.

The desired behavior of a system is described with properties or speci-
fications. In the field of runtime verification, it is common to differen-
tiate the two:

• A property informally describes the desired behavior of a system.
This behavior is described according to the observations we can
make about the system, i.e. which traces are valid, and which
ones are not. Abstractly, a property can be seen as the subset of
execution traces satisfying the property out of all the possible
traces. As we usually describe properties in natural language,
they are often ambiguous.

• A specification is a formal encoding of a property in a given
specification language. If the later is well-defined, any ambiguity
shall be resolved during the specification process. The design
space for specification languages is quite large and is presented
in more details in the next chapter.

We will later refer to properties and specifications describing the be-
havior of a system as temporal properties and temporal specification, re-
spectively.

Let us illustrate the difference between properties and specifications
with an example. Consider a system which can perform some kind of
action, reflected through the observation of an event a. This is the only
observable event. In other terms, the alphabet is the singleton {a}.



4.2 software instrumentation 33

Thus, an execution trace simply is a sequence of a, possibly empty.
Then an example of property for this system could be “the system only
performs an odd number of actions”. It informally describes a subset of
valid execution traces, namely the ones of odd length. We can give a
formal specification for this property with the regular expression

a(aa)∗

whose language is the set of traces with an odd number of a.

4.2 software instrumentation

As already mentioned, it is only useful to specify behaviors that can
be observed. We now present some common strategies to actually
observe a system execution.

The mechanism used to extract traces of events from a software dur-
ing its execution is called instrumentation. Software instrumentation
consists in adding extra code into a software component so that
it produces a trace when executed. It is a well-established method
employed in many applications, including runtime verification, and
most heavily in software profiling. The nature of the traces and the
types of analyses performed on them depends on the application.
For instance, software profiling consists in gathering precise metrics
about the execution of a software component in a system, such
as its efficiency or memory consumption. In runtime verification,
we mainly want to trace what the system is doing in order to
verify correctness properties (although it is also possible to verify
non-functional properties such as a certain level of availability).

Software instrumentation can be performed at two levels. In source
code instrumentation, extra instructions are added to the software
source files [13, 69]. The other approach is to perform instrumen-
tation at the binary level [10, 51, 58]. Any type of executable code
can be targeted, such as native machine code or bytecode. Although
other combinations are possible, the classical approach is to instru-
ment source code statically, i.e. at compile time, and to instrument
binaries dynamically, i.e. at execution time.

Source code instrumentation is the preferred level in runtime verifi-
cation. Indeed, it is easier to capture and to reason about the logic
of a program at that level. Source code can be instrumented manu-
ally or automatically. The manual process of adding instructions that
produce a trace reflecting the behavior of a program is a common
practice in the software industry, known as logging. Popular logging
frameworks include Log4j1 for Java and Pantheios2 for C++. This pro-
cess is performed on an ad-hoc basis, according to the local criticality

1 https://logging.apache.org/log4j

2 http://www.pantheios.org/

https://logging.apache.org/log4j
http://www.pantheios.org/
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perceived by the developer. The resulting trace is likely to contain
highly relevant information, but its partiality prevents observing cer-
tain behaviors. On the contrary, automatic source code instrumenta-
tion is a systematic approach. A common technique is to use aspect
oriented programming frameworks to automatically insert logging in-
structions. Such frameworks provide a mechanism to statically en-
hance a program with additional behaviors, without modifying the
original source code. AspectJ [49] and AspectC++ [73] are two pop-
ular implementations for Java and C++, respectively. There also are
implementations specialized to certain development and runtime en-
vironments, such as Android [30]. In runtime verification, aspect ori-
ented programming is typically used to insert logging instructions at
source code locations of interest, such as function calls. The set of lo-
cations that must be instrumented may be given manually, or derived
automatically from a specification.

It is worth mentioning that code instrumentation introduces a com-
putational and memory overhead, which may interfere with a system
and perturb its behavior [34]. As a consequence, some defects may
also disappear, and the verification of timing related properties may
become unreliable. Controlling the instrumentation overhead is gen-
erally tackled with sampling-based techniques, but they introduce
uncertainty in the monitoring result [14, 34, 37, 40].

4.3 verifying executions

Runtime verification allows checking the conformance of an execu-
tion against a specification. The oracle performing this check is called
a monitor. When enough information of a system’s execution has been
observed, a monitor may decide whether the specification is satisfied
or violated by the execution. This decision is called a verdict.

In a runtime verification setup, monitors are considered part of the
trusted computing base; therefore, they must be correct, i.e. for any
execution, a monitor produces a verdict in accordance to the seman-
tics of the specification language. For this reason, monitors are usu-
ally generated by automated synthesis procedures that take a syntac-
tic representation of the property as input. Of course, this offsets the
correctness issue of monitors to the synthesis procedure. However,
if the procedure is correct, then all the generated monitors are also
correct.

An important characteristic for a monitor is its operating mode: we
distinguish online and offline modes. In online mode, the monitor runs
concurrently to the monitored system and observes its execution step
by step. In this case, the finite trace that is observed can be viewed as
a prefix of the possibly infinite behavior of the system. In offline mode,
we only consider terminated executions of a system, whose traces are
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stored and processed as a whole by the monitor. While online analysis
opens up the possibility to mitigate the violation of a specification
when detected [32], offline analysis is much less intrusive.

Besides their ability to react to violations, online monitors are essen-
tial for systems running indefinitely. Indeed, offline monitors require
a finite execution. It is worth mentioning that not all properties are
interesting to check on infinite executions: there exist properties for
which an online monitor could never yield a verdict. This occurs
when any verdict decision taken by the monitor could be contradicted
by a possible continuation of the current execution. For a monitor
to remain impartial in such situations, i.e. never produce a verdict
that could be contradicted in the future, the only solution is to never
reach a verdict, effectively making the monitor useless. For instance,
the property “whenever a happens, b happens in the future” is not worth
monitoring. A property for which online runtime verification can pro-
duce impartial verdicts is said monitorable. The commonly used defi-
nition of monitorability (i.e. whether a property is monitorable) was
proposed by Pnueli and Zaks [62].

Runtime verification has been active research topic for more than 15

years. Challenges in the field span many dimensions [31], of which
we introduced a few in this chapter. One of the most important is
perhaps the choice of a specification formalism. The design space is
vast and this choice has direct implications on other dimensions, such
as the performance of the generated monitors. It also has indirect
implications. For instance, a formalism designed with end-users in
mind is more likely to be adopted than a formalism that completely
disregards usability. In the next chapter, we study some popular for-
malisms for temporal property specification.
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T E M P O R A L S P E C I F I C AT I O N L A N G U A G E S

The objective of this chapter is to study the suitability of some popu-
lar temporal specification languages with respect to the requirements
driven by the MODMED project, namely the specification of temporal
properties relying on structured data carried by events with a formal-
ism amenable to industry adoption.

5.1 overview

5.1.1 Pattern Systems

An important challenge for the MODMED project was to make tempo-
ral specification accessible. A successful technique to assist users with
temporal specification is to provide high-level temporal patterns with
a verbose syntax. Dwyer et al. proposed a major step in that direction
with a pattern system covering most of the temporal requirements of
a very large study [28]. Those temporal patterns are domain agnostic
and relatively easy to use. Within this system, each specification is
composed of a pattern and a scope.

Property Patterns

Occurrence

Absence Existence
(bounded)

Universality

Order

Precedence
(chain)

Response
(chain)

Figure 5.1: The 8 property patterns proposed by Dwyer et al.

patterns Patterns constrain the presence or absence of events, or
the order in which they may appear. The 8 patterns are listed as the
leaves of the hierarchy in Figure 5.1. Without surprises, the Absence
pattern forbids any occurrence of an event, the Existence pattern en-
forces at least one occurrence, and the Universality pattern requires
for an event to constantly occur. The bounded variant of the Exis-
tence pattern allows specifying bounds on occurrences count of an
event, such as “at least twice and at most five times”. The Precedence
pattern describes a relationship between a pair of events where the
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occurrence of the first is a necessary pre-condition for an occurrence
of the second. The Response pattern is the converse: an occurrence
of the first event must be followed by an occurrence of the second.
Finally, both order patterns have a “chain” variant used to express
order relationships between sequences of events.

After A unless B

Between A and B

After B

Before B

Globally

A B A A B A

Figure 5.2: Graphical representation of the 5 scopes proposed by Dwyer et
al.

scopes Patterns are paired with scopes, which describe time inter-
vals where a pattern must hold. They are delimited by event occur-
rences, as depicted by colored intervals in Figure 5.2 for each of the
5 scopes. Although their meaning should be clear from the figure, a
couple of points are worth mentioning:

• all intervals are left-closed and right-open, i.e. the event starting
the scope is included whereas the one ending it is not;

• the Before and After scopes always refer to the first occurrence
of the designated event;

• intervals in the Between/and scope are always terminated by
the first occurrence of the right-hand side event;

• the After/unless scope is usually referred to as the “weak”
variant of Between/and since the right-hand side event does
not have to occur, in which case the last interval is only
half-bounded, as illustrated in the figure. This distinction must
not be neglected during specification.

example The specification process for a given requirement consists
in identifying the events of interest, the temporal pattern and the
scope where it should hold. Let us consider an example. We want
to specify the following requirement: “after trying to open a connection,
a network error should produce an error message”. The temporal pattern
behind this requirement is a Response: the occurrence of a network
error should lead to the display of an error message. Moreover, this
response must only hold after trying to open a connection, which
corresponds to the After scope. Let us assume that trying to open a
connection, detecting a network error, and displaying an error mes-
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sage are reflected by the events OpenConnection, NetworkError, and
ErrorMessage, respectively. Then, we could write the property as

ErrorMessage responds to NetworkError after OpenConnection.

Dwyer et al. did not propose a formal syntax for their pattern system,
which is why we prefer not to call it a “specification language”. Ex-
amples of concrete syntax can be found in works that adopted this
system, such as the Bandera Specification Language [21]. Nonethe-
less, Dwyer et al. provided a formal semantics for patterns and scopes
based on their intuitive natural semantics. It was defined by giving
a translation of each possible pair of pattern and scope into several
logics.

other pattern systems Because the intuitive natural semantics
of patterns is quite subjective, their meaning may not be obvious
based on their names alone, especially regarding corner cases. For
instance, the Response pattern does not require for the left-hand side
event to occur, in which case the pattern is vacuously true. While this
definition may make sense to some, it may be surprising to others.
Smith et al. proposed to refine the pattern system of Dwyer et al.
with additional mandatory clauses in Propel [71]. Its guided inter-
face ensures that all subtleties are lifted during specification, such
as whether one should use the strong or weak variant of the Be-
tween/and pattern.

Other patterns systems and pattern-based languages have been pro-
posed, tailored to different needs. For instance, The Requirement
Specification Language is a pattern system with limited temporal re-
lations but a high emphasis on real-time [25], which is completely
absent in the work of Dwyer et al.

While being relatively easy to use, pattern systems have a severely
limited expressiveness due to the finite number of possible combi-
nations. The Salt language [9] addresses that issue with composable
patterns and common temporal operators behind a verbose syntax. It
features many constructs, ranging from timed temporal operators to
star-free regular expressions.

All of the aforementioned pattern systems and pattern-based lan-
guages were designed with finite-state verification in mind. As a con-
sequence, they do not support parametric events.

5.1.2 Linear Temporal Logics

Pnueli introduced the Linear Temporal Logic (LTL) in 1977 for the
purpose of formal verification of computer programs [61]. It has be-
come a reference for temporal property specification and it is the
most commonly used temporal logic in runtime verification. LTL can
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be described as propositional logic augmented with temporal opera-
tors allowing to specify what should, or should not, happen in the
future.

Given a set of atomic propositions AP, the set of LTL formulas over AP
is defined inductively as follows:

• true and false are LTL formulas;

• if p ∈ AP, then p is an LTL formula;

• if ϕ and ψ are LTL formulas, then ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ =⇒ ψ,
Xϕ, Gϕ, Fϕ and ϕUψ are LTL formulas.

The operators X, F, G and U are the temporal ones, while the others
are the same as in propositional logic. Informally, Xϕ means that ϕ

should hold in the next state, Fϕ that ϕ should hold at some point in
the future, and Gϕ that ϕ should always hold, i.e. in the current state
and in the future. Finally, U stands for “until” and ϕUψ means that
ϕ should hold until ψ becomes true. For instance, the LTL formula

G(OpenConnection =⇒ (G NetworkError =⇒ F ErrorMessage))

encodes the property that after trying to open a connection, a network
error should produce an error message.

The original LTL was defined with model-checking in mind, and its
semantics is not suitable for runtime verification. The issue lies in the
fact that runtime verification is concerned with finite traces (or finite
prefixes of infinite executions). Bauer et al. offer a formal treatment
on adapting LTL for runtime verification, LTL f , as well as its timed
variant, TLTL f , and discuss different trade-offs and their implications
[7, 8]. The Counting Fluent Temporal Logic (CFLTL) is another inter-
esting adaptation of LTL to event-based traces [66]. It features a sim-
ple but powerful mean of counting event occurrences and comparing
them.

In event-based runtime verification, atomic propositions in LTL for-
mulas correspond to event names, and they are evaluated to true
whenever the given event occurs. While convenient, this view pre-
vents using event parameters, thus is not suited to parametric run-
time verification. To deal with parametric traces, many first order
temporal logics have been proposed, most of them also deriving from
LTL. Stolz introduced free variables and quantification in next-free
LTL with parametrized propositions [74]. FO-LTL+ [36] is another ap-
proach adding quantification to LTL. It targets data-rich XML traces
and events parameters may exhibit a hierarchical structure. Param-
eters can be accessed through quantifiers over a domain described
with XPath queries. In spite of the additional capabilities, FO-LTL+ re-
tains the simplicity and conciseness of LTL. However, the only way to
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access events is through quantification over their parameters. In con-
sequence, single-valued parameters must also be quantified, which
makes formulas harder to understand. Basin et al. proposed a se-
mantics and an algorithm for the Metric First Order Temporal Logic
(MFOTL) [6] and implemented it with the MONPOLY tool [16]. They
further extended MFOTL with SQL-like aggregation operators [5]. Ea-
gle [2] is a radically different and powerful temporal logic as it does
not derive from LTL, but still encompasses it. This very succinct logic
also features parametric events and data quantifiers.

5.1.3 Finite State Machines

Finite State Machines (FSMs) form another popular specification for-
malism in runtime verification. Transitions are labeled with event de-
scriptions and taken whenever a matching event is observed. Whereas
pattern systems and temporal logics are declarative, FSMs encode
specifications in an operational style.

FSMs are especially popular in the so-called parametric trace slicing
framework [18]. In this framework, events are composed of a name
and a tuple of parameters, and properties can be quantified over those
parameters, but only at the top level. In First-Order Logic, this restric-
tion would result in formulas having quantifiers only at very left of
the formula and spanning it entirely. A direct consequence is that the
entirety of a property can be instantiated for a particular valuation of
the quantified parameters, which can correspond to a particular FSM

for this valuation. For instance, FSMs constitute the core of the expres-
sive Quantified Event Automata [1] and its efficient implementation
MarQ [63]. Mufin [26] also uses parametric trace slicing and relies
exclusively on FSMs. It is faster but less expressive than MarQ.

5.1.4 Rule-Based Systems

The use of rule-based systems for runtime verification has also re-
ceived some interests. This model seems well suited for processing
data rich events, as exemplified by the RuleR system [4] or the more
efficient Logfire [38]. Rules take the form

condition1, . . . , conditionn =⇒ action,

where the conditions depend on a memory of facts and the action
can add or remove facts, or yield a verdict. Constantly managing a
database of facts through action rules makes rule-based system highly
operational.

5.1.5 Hybrid

Some formalisms or monitoring tools support several specification
styles.
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LogScope [3] is a solution proposed in a context similar to MODMED’s
one. It targets offline verification for data-rich traces. LogScope is
composed of a high-level pattern language that compiles down to
FSMs, which can also be used to encode more complex properties. The
high-level language is similar to a pattern system, with the differences
that it has a single scope (equivalent to the Before scope from Dwyer
et al.’s system) and versatile constructs to specify event sequences.
This kind of two-levels systems have the advantage of providing a
very simple high-level language. However, they also force the user to
learn two formalisms, including a low-level one, often with different
paradigms (e.g. declarative and operational for LogScope).

JavaMOP [48] also supports several formalisms, called “logics”. It
is another incarnation of parametric trace slicing, being famous
for making it efficient. Contrary to the two-level hierarchy found
in LogScope, logics in JavaMOP are not clearly ordered and
complement each other.

5.1.6 Stream Computation

All the solutions presented so far check properties on the execution
of a system by observing events or state changes of the system. Lola

[24] is a runtime monitor for synchronous systems which takes a
radically different approach: specifications are written as computa-
tions over the stream of values manipulated by a synchronous system.
This unique approach allows specifications to resemble synchronous
programs. Besides checking logical properties, Lola also supports
numeric queries over streams. It was specifically designed for syn-
chronous systems and adapting it for event traces is not obvious. For
this reason, we omit Lola in the rest of this chapter.

5.2 comparison and discussion

Comparing the expressiveness of various temporal specification for-
malisms is difficult. For instance, Reger and Rydeheard showed that
the relationship between First-Order Linear Temporal Logic for finite
traces and parametric trace slicing is nontrivial [65]. Instead of estab-
lishing a formal relation between the aforementioned formalisms, we
compare them against the key requirements derived by the analysis
of TKA (Chapter 3), as well as two additional criteria regarding usabil-
ity. Table 5.1 summarizes the comparison. In the following, we further
detail each characteristic chosen for comparison.

parametric events Supporting parametric events is a critical re-
quirement for the project. Although pattern systems and adaptations
of LTL for finite traces do not support parametric events, most tem-
poral specification formalisms designed for runtime verification do.



5.2 comparison and discussion 43

Ta
bl

e
5

.1
:C

om
pa

ri
so

n
of

se
ve

ra
lt

em
po

ra
ls

pe
ci

fic
at

io
n

la
ng

ua
ge

s

La
ng

ua
ge

Pa
ra

m
et

ri
c

C
om

p.
V

al
ue

s
Q

ua
nt

ifi
ca

ti
on

R
ef

.P
as

t
D

at
a

R
ea

l-
Ti

m
e

Pa
ra

di
gm

D
w

ye
r’

s
Pa

tt
er

ns
[2

8
]

7
n/

a
n/

a
n/

a
7

de
cl

ar
at

iv
e

Pr
op

el
[7

1
]

7
n/

a
n/

a
n/

a
7

de
cl

ar
at

iv
e

R
SL

[2
5
]

7
n/

a
n/

a
n/

a
3

de
cl

ar
at

iv
e

Sa
l
t

[9
]

7
n/

a
n/

a
n/

a
3

de
cl

ar
at

iv
e

LT
L

f
[7

]
7

n/
a

n/
a

n/
a

7
de

cl
ar

at
iv

e

TL
TL

f
[8

]
7

n/
a

n/
a

n/
a

3
de

cl
ar

at
iv

e

Ea
gl

e
[2

]
3

7
gl

ob
al

3
7

de
cl

ar
at

iv
e

St
ol

z’
s

Pa
ra

m
.P

ro
p.

[7
4
]

3
7

lo
ca

l
7

7
de

cl
ar

at
iv

e

FO
-L

TL
+

[3
6
]

3
3

lo
ca

l
7

7
de

cl
ar

at
iv

e

M
FO

TL
/M

O
N

PO
LY

[6
,1

6
]

3
7

gl
ob

al
3

3
de

cl
ar

at
iv

e

Ja
va

M
O

P
[4

8
]

3
7

gl
ob

al
3

7
m

ix
ed

Q
EA

/M
ar

Q
[1

,6
3
]

3
7

gl
ob

al
3

7
op

er
at

io
na

l

M
ufi

n
[2

6
]

3
7

gl
ob

al
3

7
op

er
at

io
na

l

R
u

l
e
r

[4
]

3
7

n/
a

3
7

op
er

at
io

na
l

Lo
gfi

re
[3

8
]

3
7

n/
a

3
7

op
er

at
io

na
l

Lo
g

Sc
o

p
e

[3
]

3
7

gl
ob

al
7

7
m

ix
ed

Pa
r

Tr
a

P
3

3
lo

ca
l

3
3

de
cl

ar
at

iv
e



44 temporal specification languages

compound values Parametric events may carry compound val-
ues such as lists and records. To the best of our knowledge, only a few
of the formalisms presented previously support further inspection of
compound values. This feature is mandatory in order to exploit traces
where event parameters can hold structured data such as records.

local vs . global quantification We can distinguish two
types of quantifications in formalisms for parametric monitoring.
In global quantification the domain value of a quantified variable is
defined as the values taken by this variable in a whole trace. On
the contrary, in local, the quantification domain of a variable may
only depend on the current state. Local quantification is mostly
useful in combination with support for compound values as it allows
quantifying over lists that are carried as event parameters. Only a
few formalisms use local quantification, while all approaches based
on parametric trace slicing use global quantification.

reference to past data It is well-known that adding past op-
erators to LTL does not increase its expressiveness [35]. However, this
result no longer holds when LTL is extended with quantifiers. To see
why, consider the following informal specification: "for each value x
in the parameter p1 of an event e1, there must be an occurrence of an
event e2 before e1 and with a parameter p2 equal to x". Because the
occurrences of the event e2 are constrained by the parameters of an-
other event that is yet to occur, this property cannot be captured in a
future-only LTL extended to first order. Monitoring such a property is
expensive and many specification formalisms do not include past op-
erators for efficiency and simplicity reasons. A possible approach – as
taken in QEA [1] – is to explicitly store the data for future use, e.g. the
set of values taken by the parameter p2. Another approach applicable
to temporal logics is simply to support past operators, while making
sure to handle the complexity increase properly, as demonstrated by
MFOTL [6] and its reference implementation MONPOLY [16].

language support for real-time Real-time support can be
classified according to three levels: unsupported, supported as regu-
lar data, supported at language-level. Although not a requirement
for the MODMED project where we gathered only a few real-time
properties, we argue that supporting time at language-level enables
clearer specifications, and more efficient implementation thanks to
the monotony of time. For instance, one can stop checking a bounded
safety property once the time bound has passed.

paradigm Specification formalisms may be classified according to
their paradigm: declarative or operational. Even if they both have
their strengths, as exemplified by Havelund and Reger [39], we argue
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that an operational style introduces additional complexity for the user.
For instance, in rule-based system each rule may impact the behavior
of the others by adding or removing shared facts, which requires
careful attention. This problem is similar to imperative code routines
where side-effects interplay is often critical. Moreover, properties are
often given in a declarative style (e.g., “the temperature remains within a
certain range”) and a declarative formalism often makes specifications
relatable to the properties they encode. It is also possible to mix both
styles, as chosen by some formalisms. They offer to encode properties
in different styles, usually featuring a declarative and an operational
one.

As we can see in Table 3.1, none of the studied formalisms support
event parameters with compound values (columns 1 and 2), local
quantification over those compound values (columns 3) and referenc-
ing past-data (column 4). For this reason, we developed a new lan-
guage: ParTraP. Its unique combination of characteristics is given at
the bottom of the table. The next chapter presents the language in
details.





6
T H E PA RT R A P L A N G U A G E

The ParTraP (Parametric Trace Property) language is a new property
specification language for finite parametric traces, designed to meet
the characteristics of the properties stated in Chapter 3. Although it
was mostly influenced by the specification patterns proposed by Dy-
wer et al. [28], it differs from them by being event-based, featuring
parametric events, allowing nested scopes and providing timed prop-
erties.

This chapter presents ParTraP in details, starting with its trace model
in Section 6.1. Then, Section 6.2 describes and illustrates all the fea-
tures of the language, as well their most useful combinations. Sec-
tion 6.3 contains many examples of idiomatic ParTraP properties,
corresponding to the selected properties from the TKA study. Finally,
Section 6.4 classifies the language according to the characteristics
used for comparing languages in Chapter 5.

6.1 trace model

ParTraP’s purpose is to verify trace properties. Therefore, it relies
on a trace model that we introduce first. In Section 4.1, we briefly
discussed how traces are usually modeled at an abstract level, i.e. as
sequences of possibly parametric events. We specialized this abstract
view with a particular trace model for ParTraP, which was designed
to be simple and flexible enough to support a large variety of data.
ParTraP traces are finite sequences of events such that:

1. Events have a name. Two events sharing the same name are said
to be of the same event type.

2. Events have a timestamp, and timestamps must be non-
decreasing.

3. Events are parametric, i.e. they may carry data values of interest,
called parameters.

4. Parameters are key/value pairs, where the key is the parameter
name and the value is the associated data.

5. Parameters values can be literals, sequences of values, or
records of key/value pairs themselves. Sequences and records
allow parameters to be hierarchically structured.

47
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In one sentence, ParTraP traces are sequences of events that are
named, timestamped and parametric, and parameters are records.
This model is later formalized in Section 7.3.1.

For illustration purposes, we write traces as a vertical list of events.
Each line, or event, takes the form

name @ timestamp parameters

where parameters are given in JavaScript Object Notation (JSON). For
conciseness, timestamps are omitted when irrelevant. For instance,
the following shows a simplified extract of a TKA trace:

...

RegisterTracker @ 5 { "type": "F", "id": 0 }

SearchTrackers @ 6 { "types": ["P", "F"] }

RegisterTracker @ 7 { "type": "P", "id": 1 }

StartAcquisitions @ 8 {}

MedialMalleolus @ 9 { "point": [0.5, 1.0, 0.8] },

...

ReplaceTracker @ 14 { "id": 1 },

RegisterTracker @ 15 { "id": 2, "type": "P" },

ActivateTracker @ 16 { "id": 2 },

...

LateralMalleolus @ 20 { "point": [0.6, 0.9, 0.9] }

...

The first event registers a tracker of “type” F (attached to the Femur),
whose “id” is 0. This event took place at time 5. The second event
declares that the current surgery needs trackers P and F. The third
event corresponds to the registration of the P tracker (P stands for
Pointer). The fourth event records the beginning of the acquisition
phase. During this phase, the coordinates of the medial and the lateral
malleolus are recorded (at times 9 and 20). Also, from 14 to 16, the
pointer is replaced by another pointer which is registered and then
activated.

6.2 language features

6.2.1 Event Descriptors

In order to write properties, it is necessary to be able to match specific
events. The expressions responsible for this are called event descriptors.
They can be simple or complex.

simple descriptors At the simplest, event descriptor can be a
single name, designating all the events with that particular name. For
instance, if Error is the name of the event produced upon errors, then
the property

absence_of Error
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forbids any Error event (the absence_of keyword is further detailed
later). Additionally, event descriptors allow suffixing the event name
with a variable name, such as the variable name e in the property

absence_of Error e

In that case, e will be bound to each event named Error. While it is
completely useless in this particular example, we will see later that
it becomes crucial when nesting properties. It also enables another
construct: when an event name is suffixed with a variable name, it
is possible to add a condition on the event with the where keyword,
such as in the following property:

absence_of Error e where e.cause == "EoF"

As each Error event will be bound to the variable e, we can access
the event through e in the condition and further constrain it. In this
example, the cause field must be set to "EoF" for an event to match
the description, effectively filtering out unwanted errors. Thus, this
property only forbids errors whose cause was "EoF". For instance, the
following trace satisfies the property as no event matches both the
name and the condition of the event descriptor:

Exception { "cause": "EoF" }

Error { "cause": "Out of memory" }

It is worth mentioning that, if a parameter name is used in an event
descriptor, then any event susceptible to match this descriptor must
carry this parameter. If this condition is violated, property evaluation
will fail. In the above example, this means that Error events must
have a “cause” parameter.

expression languages Conditions in the where clause can be ex-
pressed in two different languages. The first one, used in the previous
example, is a very simple expression language tailored for ParTraP.
It includes common literals, variables, record field accesses with the
dot operator, and basic boolean and arithmetic relations. The condi-
tion e.cause == "EoF" from the previous example property illustrates
all of them with

• the string literal "EoF",

• the variable "e",

• the dot operator to access the "clause" field of "e", and

• the boolean-valued equality relation.

Although very simple, this language allows expressing the most com-
mon constraints on events.

Whenever the simple expression language is too limited, one can re-
sort to Python simply by surrounding the condition with dollar signs.
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For instance, we could want to test if the cause starts with "EoF",
instead of being strictly equal to it:

absence_of Error e where $e.cause.startswith("EoF")$

The choice of Python was motivated by its simplicity and its ubiquity
in data processing. In particular, some TKA properties rely on three-
dimensional geometry, for which there is a mature Python ecosystem.

complex descriptors Event descriptors can also be more com-
plex. It is possible to designate an unordered collection of events with
the set construct:

set(E1 x1, ..., En xn) where c

This event set will be triggered after seeing all of the events E1...En

in any order, provided that they respect the condition c when E1...En

are bound to x1...xn, respectively.

6.2.2 Patterns

Patterns are the simplest kind of ParTraP property, and are present
in any property. They rule the occurrences of events in a trace. There
are two unary patterns:

occurrence_of n A

where n is an optional expression that must evaluate to a positive
integer, and its dual:

absence_of A

The occurrence_of pattern requires the occurrence of at least n events
matching the event descriptor A. If n is omitted, it defaults to 1. The
absence_of pattern simply forbids events matching the given event
descriptor from occurring. As A is an event descriptor, it may consist
of a single event name or it can be further constrained with a where

condition. Examples of pattern satisfaction for simple abstract traces
are given in Table 6.1.

〈A〉 〈B〉 〈A, A, C, B〉 〈B, A〉 〈A, B, A〉

absence_of A 7 3 7 7 7

occurrence_of A 3 7 3 3 3

occurrence_of 2 A 7 7 3 7 3

A followed_by B 7 3 3 7 7

B preceded_by A 3 7 3 7 3

A prevents B 3 3 7 3 7

Table 6.1: Examples of pattern satisfaction for various traces



6.2 language features 51

Following the pattern system proposed by Dwyer et al., ParTraP
includes the Response pattern with the infix keyword followed_by:

A followed_by B

This operator takes the same meaning as the original Response pat-
tern: it describes a relationship between a pair of event descriptors
where events matching the descriptor A must be followed by an event
matching the descriptor B, and not necessarily immediately. More-
over, events matching A are not required to occur. ParTraP also in-
cludes its converse, the Precedence pattern, with the infix keyword
preceded_by:

A preceded_by B

It also embodies the same definition as the original Precedence pat-
tern: occurrences of events matching the descriptor B are a necessary
pre-condition for the occurrence of an event matching the descrip-
tor A. Events matching B are not required to occur. Table 6.1 illus-
trates the difference between the Response and Precedence patterns.
Besides those two binary patterns proposed by Dwyer et al., ParTraP
includes a third binary pattern:

A prevents B

As the prevents keywords indicates, this property forbids the occur-
rence of events matching the descriptor B after the occurrence of an
event matching the descriptor A.

These patterns differentiate themselves from the original patterns of
Dwyer et al. with their support for parametric events. Indeed, the
event descriptor on the right-hand side may depend on the event
matched on the left-hand side, enabling the definition of relationships
between events according to their parameters. Let us illustrate this
particular feature with an example. Consider the property that any
user logging in a system must eventually log out. These actions are
observed with the events Login and Logout, which both contain a uid

parameter corresponding to the user’s unique identifier. This prop-
erty can be captured elegantly with the Response pattern combined
ParTraP’s support for event parameters:

Login in followed_by Logout out where out.uid == in.uid

For instance, the following trace containing the login and logout
events of several users satisfies the property:

Login { "uid": 0 }

Login { "uid": 1 }

Login { "uid": 0 }

Logout { "uid": 0 }

Logout { "uid": 1 }

Logout { "uid": 2 }
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Observe that user 2 is able to logout even though they never logged-
in, or that user 0 is able to login twice. The response pattern only
enforces disconnection of connected users and does not prevent those
two behaviors.

6.2.3 Scopes

The range of a trace where a ParTraP property should hold can be
restricted through scopes, which are delimited by events. In the ab-
sence of scope restrictions, properties must hold on the whole trace.
Scoped properties are also properties, which enables nesting several
scope restrictions. Scopes can be classified according to their arity, i.e.
the number of events they involve. The 6 unary scopes of ParTraP,
illustrated in Figure 6.1, are versatile combinators.

since A until B

between A and B

after each B

after last B

after first B

before each B

before last B

before first B

A B A A B A

Unary

Binary

Figure 6.1: Graphical representation of ParTraP scopes

Unary scopes restrict the range of a trace where a property should
hold to what comes after an event matching a given event descriptor
(after), or before an event matching a given event descriptor (before).
As several events may match an event descriptor, both directions must
be further refined with an occurrence specifier: first, last or each.
This effectively creates the 6 possibles combinations depicted in Fig-
ure 6.1. For instance, the ParTraP property

before first Login, absence_of NewMessage

captures the property that a system should not receive any message
until somebody is logged-in. The comma delimits the scope from the
inner property. More generally, commas are consistently used to wrap
a property under a specific context, forming a new property. The fol-
lowing trace satisfies the above property example:

Login { "uid": 0 }

Login { "uid": 0 }

NewMessage {}
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Login { "uid": 0 }

Similarly to binary patterns where both events may be related when
associating them to a variable name, if an event descriptor for scopes
is suffixed with a variable name, the delimiting event will be made
available under that name in the underlying property. This mecha-
nism makes the each variants of unary scopes especially versatile.
These variants ensure that a property is true after, or before, each
and every event occurrence matching the given event descriptor. For
instance, consider the previous example saying that a system should
not receive a message before a user is logged-in. If the system allows
multiple users at the same time, we must distinguish from who the
message was from, and whether this user is logged-in. The new prop-
erty can be expressed informally as “the system should not receive any
message from a user until that same user is connected”. Assuming that the
event NewMessage now also carries the user’s unique identifier, the
refined property can be specified with the following ParTraP expres-
sion:

before each Login in, absence_of NewMessage msg where msg.uid ==

in.uid

The following trace violates this new property whereas it satisfies the
old one:

Login { "uid": 0 }

NewMessage { "uid": 0 }

Login { "uid": 1 }

NewMessage { "uid": 0 }

NewMessage { "uid": 2 }

Login { "uid": 2 }

Indeed, while users 0 and 1 match the expected behavior, the sys-
tem received a message from user 2 before they logged-in, which the
property forbids. Note that although the each variant may lead to
evaluating the same underlying property on overlapping intervals,
such as pictured in Figure 6.1, the outcome may be different for each
interval as they can depend on the delimiting events. This is the case
in the previous example, where the invalid scope for user 2 is over-
lapping with the valid scopes for user 0 and 1. By delimiting the
range of a trace where a property should hold, and providing access
to the parameters of a delimiter event at the same time, scopes allow
to concisely express temporal relations directed by event parameters.

The each variants also happen to be useful combinators. For instance,
we can express that the property P should be true for all the segments
of a trace between an event A and an event B by nesting two scope
expressions:

after each A, before first B, P
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For convenience, this scope is included in ParTraP as between A and

B. Similarly to the original specification patterns of Dwyer et al., we
also included its weak variant: since A until B. This variant does not
require for the right-hand side event (B) to occur, in which case the
last interval is only half-bounded. This difference is illustrated in Fig-
ure 6.1.

As a consequence of being defined on top of nested scopes, the event
delimiting the end of a binary scope may depend on the one start-
ing it. To illustrate binary scopes, consider another example: “a user
should not log-in twice”. We can use a binary scope to ensure that, since
the moment a user logs in, and until the moment they log out, they
should not be able to log-in a second time:

since Login in1 until Logout out where out.uid == in1.uid,

absence_of Login in2 where in2.uid == in1.uid

It exploits the fact that the ending event (Logout) may depend on the
starting one (Login) to pair connections and disconnections from a
same user. The following trace example contains the events regarding
two users:

Login { "uid": 1 }

Login { "uid": 0 }

NewMessage { "uid": 0 }

Logout { "uid": 0 }

Login { "uid": 1 }

NewMessage { "uid": 1 }

Login { "uid": 0 }

Logout { "uid": 0 }

User 0 logs in several times, but only after disconnecting, which
matches the expected behavior. On the contrary, user 1 was able to
log-in twice and causes the property to be violated. This trace is a
good example for also illustrating the difference between the two
binary scopes. Had we used the between/and scope, the violation
would not have been detected. Indeed, the latter only enforces its un-
derlying property on scopes that delimited by both a starting and an
ending events. In this case, user 1 never logs out and no between/and
scope would have existed.

Finally, two design decisions are worth mentioning:

• All scopes are open on both sides, i.e., delimiter events are not
included in the interval they define. The symmetry makes the
after and before scopes consistent.

• If the event delimiting a scope never occurs, the scope does not
exist and the whole property is vacuously true. This view is
similar to universally quantified formulas in first-order logic,
which are always true when the quantification domain is empty.
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6.2.4 Timed Variants

Unary scopes and binary patterns may be additionally constrained
by a duration expressed in common time units (h, s, etc.). This mech-
anism relies on the fact that events are timestamped.

Unary scopes can be prefixed with the within keyword and a dura-
tion expression, such as in the following abstract property:

within 2ms before each A, absence_of B

The inner property only has to hold for the given duration starting
immediately at the delimiter event for the after scope, or ending
exactly at the delimiter event in the before case. In the previous ex-
ample, the event B should not occur during the two milliseconds pre-
ceding any occurrence of an event A. The following trace violates the
property because the second event A occurs within two milliseconds
of the second event B:

A @ 2.018 {}

B @ 2.025 {}

A @ 2.028 {}

B @ 2.029 {}

B @ 2.033 {}

Binary patterns may also be suffixed with within and a duration
expression. For instance, the response pattern becomes bounded in
time:

A followed_by B within 2s

6.2.5 Quantifiers

The trace format allows compound values in event parameters. In
particular, they can be lists of values. ParTraP allows exploiting them
with quantified properties.

The universal quantifier takes the following form:

forall x in L, P

where x is an identifier and L is a list. It is defined as in first-order
logic, that is the property P must be satisfied for each possible value
of x taken from the list L. The existential quantifier exists is also
defined as usual.

Since quantified properties are themselves properties, they can be ar-
bitrarily nested. In particular, it is convenient to use a quantifier inside
a scope property: if a parameter of the event delimiting the scope is a
list, it can be used as the quantification domain. For instance, assume
that we have a system that can be asked to list all the users who ever
logged-in. Then we can verify that those users actually logged-in in
the past:
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before each UserList users,

forall uid in users.uids,

occurrence_of Login in where in.uid == uid

The following trace example containing two user lists satisfies the
property:

Login { "uid": 0 }

Login { "uid": 1 }

Login { "uid": 3 }

UserList { "uids": [3, 0] }

Login { "uid": 2 }

UserList { "uids": [2, 0, 3] }

Note that this property does not verify that the user list is exhaustive,
which would be a different property. In particular, user 1 was not
accounted for.

6.2.6 Event Selection

The only way to extract the parameters of an event so far is to bind
the event in a scope. However, the associated restriction of the trace
range might not be desired. ParTraP has the dedicated “given” ex-
pression for this purpose. It takes the same syntactic form as scopes,
i.e. suffixed with an occurrence specifier (first, last or each) and an
event descriptor. It wraps another property that will be evaluated in
an environment extended with the selected event. In the each case,
the property must be true for all events matching the event descrip-
tor. Like scopes, a property constructed with given will be true if no
event matches the descriptor.

This construct was actually added to the language because of real
need in the TKA case study. The property that conducted its inception
best demonstrates its usage. It can be stated as “All the necessary track-
ers are registered before entering the state TrackersVisibCheck”, where the
necessary trackers are given by the SearchTrackers event. The partic-
ularity was that trackers can be registered either before or after that
the search for them begins. The “given” expression is used to extract
the list of necessary trackers, without constraining their registration
to the past or the future:

before each EnterState e where e.state == "TrackersVisibCheck",

given last SearchTrackers st,

forall ty in st.types,

occurrence_of RegisterTracker rt where rt.type == ty

The following shows a simplified extract of a TKA trace satisfying this
property:

RegisterTracker { "type": "F", "id": 0 }

SearchTrackers { "types": ["P", "F"] }

RegisterTracker { "type": "P", "id": 1 }

SearchTrackers { "types": ["P", "F", "T"] }
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RegisterTracker { "type": "T", "id": 2 }

EnterState { "state": "TrackersVisibCheck" }

6.2.7 Logical Operators

Properties can be logically connected with the usual logical operators:
not, or, and, implies, and equiv. Note that events bound to variables
in one side of one of those binary operators is not be available in the
other side. For instance, in the property

(after first A x, P) or (absence_of B b where c)

the variable x will not be accessible in the condition c. This allows
preserving the usual properties of logical operators, such as commu-
tativity of the disjunction. Moreover, the negation operator not has
the same precedence as scopes and quantifiers, while binary logical
operators have a lower precedence than any other construct in Par-
TraP. Thus, the parentheses in the previous example are not required,
but kept for clarity.

6.3 specification examples : tka properties

The following list of examples illustrates the idiomatic expression of
the selected TKA properties (Chapter 3) with ParTraP. Each property
is restated for convenience, and then followed by its ParTraP expres-
sion.

Property 1. The trace contains a step “redo acquisitions”.

Operational steps are encoded as state transitions in TKA software,
and redoing the acquisitions has a corresponding state that can be
looked for:

occurrence_of EnterState e where e.state == "RedoAcquisitions"

Property 2. The temperature of the camera stays within a given interval.

Assuming that the interval is [l, u[, we can make sure the temperature
never goes out of those bounds:

absence_of Temp t where not (l <= t.t1 and t.t1 < u)

Property 3. The distance between pairs of hip centers is less than d.

Each successful acquisition of a hip center produces a HipCenter

event carrying the acquired position in its point parameter. Even
though this property is not temporal, we can encode it using a scope:

after each HipCenter h1,

absence_of HipCenter h2 where $dist(h1.point, h2.point) >= d$

where dist is an external Python function returning the euclidean
distance between two given points.
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Property 4. The distance between the hip center and the knee center is
greater than d.

absence_of set(HipCenter hc, KneeCenter kc)

where $dist(hc.point, kc.point) <= d$

where dist is the same function as in the previous property.

Property 5. If the medial malleolus is farther from the camera than the
lateral one, a warning is issued.

As hip and knee center events, malleoli events carry the acquired
position in their point parameter.

set(MedialMalleolus m, LateralMalleolus l)

where $norm(l.point) < norm(m.point)$

followed_by WarningMalleolusInverted

where norm is an external Python function returning the norm of a
vector.

Property 6. The user never skips a screen.

We arbitrarily define 200 milliseconds as the threshold below which
a screen is considered skip. The event ActionNext is triggered when-
ever the user asks to move to the next step and must not occur for
200 milliseconds after entering a new state:

EnterState prevents ActionNext within 200 ms

Property 7. The acquisition of a point succeeds if and only if the probe is
stable.

Whenever a new point cloud is acquired, the system produces an
event NewPointCloud carrying the set of points. This event must be
followed by a PointAcquired event before the next point cloud if it
was stable, and prevents point acquisition if it was not stable.

since NewPointCloud pc where $isStable(pc.cloud)$

until NewPointCloud,

occurrence_of PointAcquired

and

since NewPointCloud pc where $not isStable(pc.cloud)$

until NewPointCloud,

absence_of PointAcquired

where isStable is an external Python predicate that holds if the given
set of points is cohesive enough.

Property 8. The protocol “redo acquisitions” only proposes already per-
formed acquisitions.

When the step “redo acquisitions” is reached, the system produces
an event RedoOptions carrying the list of options offered to the user.
These options must correspond to steps that were visited in the past:
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before each RedoOptions r,

forall option in r.options,

occurrence_of EnterState e where e.state == option

Property 9. Detecting a new tracker produces a dialog asking for replace-
ment confirmation.

after each RegisterTracker rt,

TrackerDetected td where td.type == rt.type

followed_by DialogConfirmReplace dc where dc.type == rt.type

Property 10. The state TrackersConnection is unreachable until the camera
is connected.

EnterState e where e.state == "TrackersConnection"

preceded_by CameraConnected

Property 11. A replaced tracker is not used until it is registered again.

since Unregister unr until Register reg where reg.id == unr.id,

absence_of Activate act where act.id == unr.id

Property 12. The action “previous” cancels the current point cloud acqui-
sition.

A cancelled acquisition must never be followed by a success, at least
until a new acquisition is started:

since ActionPrevious until AcquisitionBegin,

absence_of AcquisitionSuccess

Property 13. All the necessary trackers are seen before entering the state
TrackersVisibCheck.

This property and its encoding were discussed in Section 6.2.6.

before each EnterState e where e.state == "TrackersVisibCheck",

given last SearchTrackers st,

forall ty in st.types,

occurrence_of TrackerDetected td where td.ty == ty

Property 14. On the tracker connection screen, a tracker is shown if and
only if it is necessary.

A possible way to formalize this property is to ensure that the list of
trackers shown is always the one that was declared in the previous
event SearchTrackers:

since SearchTrackers st1 until SearchTrackers,

absence_of TrackersConnectionList stc

where stc.types != st1.types

Property 15. In the state TrackersConnection, not detecting a single tracker
for 2 minutes produces an error message.
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Unfortunately, ParTraP’s timed operators are not useful in the for-
malization of this particular physical time requirement. Nonetheless,
one can resort to comparing timestamps as data parameters:

since EnterState enter where enter.state == "TrackersConnection"

until ExitState exit where exit.state == enter.state, (

(absence_of TrackerDetected implies ErrorNoTrackerDetected)

and

TrackerDetected td where td.time > enter.time + 120

preceded_by ErrorNoTrackerDetected

)

The since/until scope captures the fact that the property only ap-
plies to the state TrackersConnection. In this scope, the property cov-
ers two scenarios: either no trackers are detected, in which case an
error message must occur, or a tracker is detected later than 2 min-
utes after entering the state TrackersConnection, in which case an
error message must have occurred by the past.

6.4 characteristics

In Chapter 5, we compared several specification formalisms on 6 crite-
ria, and showed where ParTraP fits in this comparison at the bottom
of Table 5.1. We now come back to ParTraP’s classification for each
of the 6 criteria:

parametric Parameters values of an event can be inspected and
used in computations or relations thanks to “where” conditions,
which are used everywhere an event is described in a property.
In particular, those conditions allow relating different events ac-
cording to their parameters.

compound values ParTraP’s trace model does not restrict to the
nature of parameters to atomic values. The dot operator in sim-
ple expressions allows accessing fields of records, recursively if
necessary. The extracted value can be used in simple relations,
or as quantification domain if it is a list. Besides simple expres-
sions, one can also use Python to access structured parameters.

quantification The quantification domain of the forall and
exists operators only depends on the current environment
where they are evaluated. This choice allows using parameters
values as quantification domains. Most often, the quantification
domain is a parameter from an event matched earlier in the
property. Quantification in ParTraP is limited to the current
state of the evaluation, and therefore said to be local.

reference to past data Because ParTraP operates on whole
trace intervals there is no notion of “current” instant. In
consequence, there is no notion of past or future. Unless there
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are explicitly sliced out with a scope, events and their data are
always accessible from anywhere.

real-time We have seen that ParTraP features the operator
within, allowing to express real-time durations with common
time units (e.g., h, s). It limits the duration of a scope or add
time constraints to binary operators.

paradigm ParTraP is completely declarative. Properties describe
what should hold, and not how to ensure that it does. In par-
ticular, the user does not manage a state, which is typical of
the operational style. Although properties are evaluated in an
environment, which could be assimilated to a state, this state
is always updated implicitly according to the property formula-
tion.

This unique combination of features makes ParTraP a novel ap-
proach on trace property specification, especially suited to traces
containing data-rich and structured events.

The next chapter defines ParTraP’s syntax and semantics formally.





7
F O R M A L D E F I N I T I O N O F PA RT R A P

In this chapter, we formalize both the syntax and semantics of Par-
TraP. This is especially important as certain expressions resemble En-
glish sentences, which would leave room for personal interpretation
if not properly formalized.

7.1 expression language

Some elements of the language such as the where clause rely on pred-
icate expressions. Since those expressions are orthogonal to the core
definition of ParTraP, we will first introduce them in this dedicated
section.

It is useful to be able to define simple to moderately complex expres-
sions in properties, while delegating more complex expressions to an
external language. As already mentioned, we chose Python for this
role.

Let Expr be the set of expressions that can be derived from the
rule 〈expr〉 from the grammar in Figure 7.1, written in Extended
Backus–Naur Form (EBNF) [68]. To formalize expression evaluation,

〈expr〉 ::= 〈literal〉
| 〈unop〉 〈expr〉
| 〈expr〉 〈binop〉 〈expr〉
| ‘(’ 〈expr〉 ‘)’
| 〈ident〉 (variable lookup)
| 〈expr〉 ‘.’ 〈ident〉 (record field access)
| 〈expr〉 ‘[’ 〈expr〉 ‘]’ (sequence indexing)
| ‘$’ (any character but ‘$’)* ‘$’ (Python expression)

〈unop〉 ::= ‘not’ | ‘-’

〈binop〉 ::= ‘<’ | ‘<=’ | ‘==’ | ‘>’ | ‘>=’ | ‘!=’ | ‘&&’ | ‘||’ | ‘+’ | ‘-’
| ‘*’ | ‘/’ | ‘%’

〈ident〉 ::= set of alphanumeric identifiers

〈literal〉 ::= usual set of booleans, integers, floating-points and
string literals

Figure 7.1: Syntax of expressions

63
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we will use the judgement form η ` e ↓ v, read as “in the envi-
ronment η, expression e reduces to value v”. Evaluation of basic
expressions (literals, unary expressions and binary expressions) is
defined as usual and not detailed here. The interesting rules are the
following:

η(x) = v
η ` x ↓ v E-Lookup

η ` e ↓ r r(p) = v
η ` e.p ↓ v E-FieldAccess

η ` e1 ↓ s η ` e2 ↓ i si = v
η ` e1[e2] ↓ v

E-Indexing

η ` $ PythonExpr $ ↓ v E-PythonCall

The rule E-Lookup resolves variables names to their values in the
current environment, E-FieldAccess accesses the value associated a
key in a record, and E-Indexing addresses the element at a given
index in a sequence. The last rule, E-PythonCall, invokes Python
on an expression and treats it as a black box returning any value.

7.2 syntax

The syntax of ParTraP is defined by the grammar in Figure 7.2. This
is an abstract grammar as it does not capture the precedence between
the operators manipulating properties, nor their associativity. For in-
stance, the string “not P1 and P2” could be parsed as “not (P1 and

P2)” or “(not P1) and P2”. Any grammar allowing the derivation
of more than one parse tree for a same input string is called an am-
biguous grammar. While ambiguous, this abstract view is useful to
understand the syntax of ParTraP as it contains all the language con-
structions.

Table 7.1: Precedence of ParTraP operators on properties

Precedence Operators

5 not, given, quantifiers and scopes

4 and

3 or

2 implies

1 equiv
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〈prop〉 ::= 〈pattern〉
| 〈scope〉 ‘,’ 〈prop〉
| (‘forall’ | ‘exists‘) <ident> ‘in’ 〈expr〉 ‘,’ 〈prop〉
| ‘given’ 〈occ〉 〈event〉 ‘,’ 〈prop〉
| ‘(’ 〈prop〉 ‘)’
| ‘not’ 〈prop〉
| 〈prop〉 (‘and’ | ‘or’ | ‘equiv’ | ‘implies’) 〈prop〉

〈scope〉 ::= [‘within’ 〈duration〉] (‘after’ | ‘before’) 〈occ〉 〈event〉
| ‘between’ 〈event〉 ‘and’ 〈event〉
| ‘since’ 〈event〉 ‘until’ 〈event〉

〈occ〉 ::= ‘each’ | ‘first’ | ‘last’

〈pattern〉 ::= ‘absence_of’ 〈event〉
| ‘occurrence_of’ [〈expr〉] 〈event〉
| 〈event〉 ‘followed_by’ 〈event〉 [‘within’ 〈duration〉]
| 〈event〉 ‘preceded_by’ 〈event〉 [‘within’ 〈duration〉]
| 〈event〉 ‘prevents’ 〈event〉 [‘within’ 〈duration〉]

〈event〉 ::= 〈ident〉 [〈ident〉 [‘where’ 〈expr〉]]
| ‘set’ ‘(’ 〈ident〉 [〈ident〉] (‘,’ 〈ident〉 [〈ident〉])* ‘)’ [‘where’ 〈expr〉]

〈duration〉 ::= 〈expr〉 (‘ms’ | ‘s’ | ‘min’ | ‘h’ | ‘d’)

Figure 7.2: Syntax of ParTraP

Instead of showing the non-ambiguous, yet inscrutable concrete syn-
tax, we disambiguate the abstract grammar by specifying operators
precedence and associativity. The precedence level of the property
operators are given in Table 7.1. A higher precedence number cor-
responds to a higher precedence level. The logical operators follow
a commonly used precedence [59]. The given construct, the scopes
(both unary or binary) and the quantifiers can be seen as unary pre-
fix operators on properties. Together with the not operator, they are
all given the same and highest precedence level. Thus, unary opera-
tors only apply to the property directly following it. Following those
rules, the example string “not P1 and P2” is equivalent to “(not P1)

and P2” in ParTraP. Properties can be grouped explicitly under the
same unary operator with parentheses. Finally, all binary operators
are left associative, even the implication, which is usually right asso-
ciative. Precedence and associativity rules keeps the language simple
and coherent.
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7.3 semantics

This section formalizes the semantics of ParTraP. It is defined in
terms of inference rules over traces instead of translating it into an
existing formalism because there is no well-established formalism for
parametric specifications.

For pedagogical reasons, we describe the semantics of all ParTraP
constructs except event sets. This construct adds a layer of complex-
ity but does not change the global shape of the semantic rules. The
simpler and shorter version presented here is close to the complete
rules, which can be found in the language reference [12]. The addi-
tional complexity mainly comes from the two following points:

1. Contrary to single events, event sets last in time; scopes must
be updated accordingly.

2. The first and last event sets matching a set description must
be defined carefully.

7.3.1 Preliminary Definitions

We use X → Y and X ⇁ Y to denote the set of total and partial func-
tions from X to Y, respectively. We write finite maps (partial functions
over a finite domain) as [x0 7→ v0, . . . , xi 7→ vi] and the empty map as
[ ]. We note m[y 7→ v] the map which is the same as m except that the
mapping for y is updated to refer to v:

m[y 7→ v](x) =

v if x = y

m(x) otherwise.

If S is a set, S∗ is the set of finite sequences of elements of S.

Equipped with these notations, we may now formalize traces content
and format. The set of values is the smallest set Val such that:

1. literals (booleans, integers, strings and floating-point numbers)
are values;

2. if v1, . . . , vn are values, then the sequence (vk)
n
k=1 is a value;

3. if v1, . . . , vn are values and f1, . . . , fn are names, then the map,
or record, [ f1 7→ v1, . . . , fi 7→ vi] is a value.

An environment is a map from variable names to values:

Env = Var ⇁ Val,

where Var is the set of variable names.

An event is characterized by a name, an occurrence time and a set of
named parameters. Formally an event is defined as a triplet:

Event = Σ×R× (P ⇁ Val),
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where Σ and P are finite sets of event names and parameter names,
respectively. Note that this definition permits events to have the same
name and yet different parameters. This provides more flexibility
with the input traces and allows, for instance, to have optional pa-
rameters. For convenience, we define the three following projections
on an event e = 〈σ, t, p〉: name(e) = σ, time(e) = t and param(e) = p.

Finally, a trace is a sequence of events (ei)
n
i=1 with non-decreasing

occurrence times. We can formally define the set of possible traces as
follows:

Trace = { (ei)
n
i=1 ∈ Event∗ | ∀i ∈ [1 . . n− 1], time(ei) ≤ time(ei+1) }.

In the following, traces are also denoted as τ when the indices are
irrelevant.

7.3.2 Events Extraction and Time Slicing

Finding events that satisfy some constraints expressed in ParTraP
properties is a basic necessity to define the semantics of the language.
We first introduce a dedicated function that handles that matter. The
semantic rules of ParTraP are built upon that function and focus on
the temporal aspect.

The function M computes the events of a trace that match an event
description with a name and a condition on the event, and respect an
occurrence specifier, i.e. an element of {first, last, each}. More pre-
cisely, given a trace (ei)

m
i=1, M((ei)

m
i=1, σ, x, c, η, o) is the set of indices

i of the trace such that:

• ei has the name σ,

• the condition c evaluates to true in the environment η extended
with x associated to ei, and

• ei respects the occurrence specifier o.

This set can be computed in two steps: finding Mdesc, the set of all the
indices that match the event description, and then selecting the ones
that respect the occurrence specifier. The definition of the function M
is based on that idea:

M((ei)
n
i=1, σ, x, c, η, o)

=



Mdesc if o = each

{min Mdesc} if o = first and Mdesc 6= ∅

{max Mdesc} if o = last and Mdesc 6= ∅

∅ otherwise

where

Mdesc = {j ∈ [1 . . n] | name(ej) = σ∧ η[x 7→ param(ej)] ` c ↓ true}.
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Mdesc is the result of the first step, i.e. it is the set of indices that
match the event description given by the name σ and the condition c.
The subset of Mdesc that is actually returned is computed according
to the occurrence specifier o. For instance, if o = first, only the
minimal index in Mdesc is returned, which indeed corresponds to the
first event of the trace that matches the description.

We also need the ability to slice a trace according to a time limit. If
(ei)

m
i=1 is a trace and l is a real, the function

upto((ei)
m
i=1, l) = (ei)

max({ j∈ [1..m] | time(ej)< l } ∪ {0})
i=1

slices the trace (ei)
m
i=1 from its beginning and up to the time limit l.

The union with the singleton {0} in the upper bound ensures that an
empty sequence is returned if there are no events occurring before
the time limit. The symmetrical operation, i.e. slicing a trace from a
time point up to its ending, is performed by the following function:

since((ei)
m
i=1, l) = (ei)

m
i=min({ j∈ [1..m] | time(ej)≥ l } ∪ {0}).

7.3.3 Semantic Rules

The semantics of the original pattern system proposed by Dwyer et
al. was given through translation rules manually defined for each pair
of pattern and scope. Because of the number of combinations, there
are numerous rules and they have been shown to be inconsistent by
Taha et al. [75]. Since ParTraP scopes can be arbitrarily nested, the
number of combinations is infinite and defining an exhaustive set of
rules is impossible. Instead, property satisfaction is defined through
recursive rules derived from their informal meaning, and where each
rule only handles a single construct.

Properties are evaluated over finite traces and in a specific environ-
ment. The satisfaction relation between a trace τ, an environment η,
and a property p is the smallest relation τ �η p satisfying the fol-
lowing 9 inference rules. The satisfaction relation for disjunction and
negation is given by the rules Disj and Neg, respectively:

τ �η P1 ∨ τ �η P2

τ �η P1 or P2
Disj

¬(τ �η P)
τ �η not P Neg

They are straightforward and require no further explanation. Univer-
sal quantification is covered by the Forall rule:

η ` expr ↓ L ∀v ∈ L, τ �η[x 7→v] P
τ �η forall x in expr, P Forall

This rule handles universally quantified properties by first evaluating
the expression that represents the quantification domain, and then
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evaluating the subsequent property for all values in that domain. Sat-
isfaction of event occurrence is given by the rule Occ:

η ` ne ↓ n |M(τ, σ, x, c, η, each)| ≥ n
τ �η occurrence_of ne σ x where c Occ

It asserts the occurrence of a particular event description by measur-
ing the size of the set returned by the M function, i.e. counting the
number of events that match this description in the current trace, and
checking that it is greater or equal to the computed value of ne. The
rule for the after is more interesting:

∀j ∈ M(τ, σ, x, c, η, o), (τi)i>j �η[x 7→param(τj)] P

τ �η after o σ x where c, P Aft

It relies on the results of the M function to slice the trace after the end
of each event matching the description and to update the evaluation
environment for the underlying property. The timed variant of the
after scope is covered by the AftT rule, which generalizes the Aft

rule with an additional time bound:

η ` δe ↓ δ ∀j ∈ M(τ, σ, x, c, η, o), upto((τi)i>j, time(τj) + δ) �η[x 7→param(τj)] P

τ �η within δe after o σ x where c, P AftT

It is similar to its predecessor with the addition that it evaluates a
duration expression and slices the trace so that it lasts at most for
this duration. Rules for the before scope and its timed variant are
symmetrical to the ones for the after scope:

∀j ∈ M(τ, σ, x, c, η, o), (τi)i<j �η[x 7→param(τj)] P

τ �η before o σ x where c, P Bef

η ` δe ↓ δ ∀j ∈ M(τ, σ, x, c, η, o), since((τi)i<j, time(τj)− δ) �η[x 7→param(τj)] P

τ �η within δe before o σ x where c, P BefT

The last rule handles the given expression:

∀j ∈ M(τ, σ, x, c, η, o), τ �η[x 7→param(τj)] P

τ �η given o σ x where c, P Given

It is a simplified variant of the Aft rule that does not slice the trace.
Finally, we say that a trace τ satisfies a property P when τ �[ ] P.

7.3.4 Derived Constructs

The previous rules allow defining the additional logical expressions
with the usual identities:
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• P1 and P2 = not (not P1 or not P2)

• P1 implies P2 = not P1 or P2

• P1 equiv P2 = (P1 implies P2) and (P2 implies P1)

• exists x in e, P = not forall x in e, not P

and the additional temporal expressions:

• absence_of E = not occurrence_of E

• A followed_by B within δ =

within δ after each A, occurrence_of B

• A preceded_by B within δ =

within δ before each A, occurrence_of B

• A prevents B within δ =

within δ after each A, absence_of B

• between A and B, P = after each A, before first B, P

• since A until B, P = (between A and B, P) and (

(occurrence_of B and after last B, after each A, P)
or (absence_of B and after each A, P)

)

With the exception of the last one, those definitions are straightfor-
ward. The last one, since A until B, P is more complicated as it
requires P to be true in-between A and B, but also after each A occur-
ring after the very last B. Each of those A marks the beginning of a
right-opened interval where P should hold, matching the idea that B
does not have to occur for the scope to exist. If B does not occur at all
in the trace, P must simply be true after each A.

Finally, in order for properties to match the semantic rules that use a
fully qualified form, optional values are filled as follows:

• events that are not explicitly associated to a variable name are
bound to the empty variable name, and

• omitted where conditions on events default to true.

For instance, in the expression

occurrence_of A

the event A is not associated to a variable name, nor to a “where” con-
dition. The Occ rule requires both, and thus the previous expression
conceptually defaults to

occurrence_of A "" where true

Note that the empty variable name "" is invalid in ParTraP’s syntax,
and is used here for illustration.
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An important goal of the MODMED project was to deliver tools to ac-
company the proposed specification language. This was crucial for
the language to be adopted. These tools rely on a simple trace format
(Section 8.1) that is a concrete encoding for the abstract trace model
used to define ParTraP in the previous chapters. There are two pub-
licly available implementations of ParTraP using this trace format:
an interpreter that I wrote to experiment with the language and its
possible implementations (Section 8.2), and an IDE (Section 8.3). I con-
tributed to the design and development of the latter, but I was not the
main developer.

8.1 trace format

The trace format was designed to be as simple as possible, so that
the tools developed for the MODMED project can also be easy to use
in other contexts. Because of simplicity and ubiquity, we chose to en-
code traces as JSON files [23] that contain a single array of events. Each
entry in the array corresponds to an event occurrence and must be a
JSON record, with only a single mandatory key "name" to which is as-
sociated the event name as a string. If one or several timed operators
are used in a property, then events must also be timestamped with
a JSON number associated to the "time" key. Obviously, timestamps
must be non-decreasing. Besides the two aforementioned reserved
keys, any other couple key/value in the record is be treated as an
event parameter, named according to the key and whose value can
be any JSON object. Figure 8.1 shows the JSON encoding of the exam-
ple trace introduced in Section 6.1.

Blue Ortho traces use an ad-hoc format with little to no structure. In
consequence, exploiting events and their data is inconvenient. Thus,
we wrote a simple formatter responsible for extracting events of in-
terest and their parameters, and producing a traces complying with
our format. In the future, Blue Ortho plans to use structured trac-
ing library developed by MinMaxMedical for the project, which was
mentioned in Chapter 2. It support several representation formats,
one of them being JSON. It is similar and compatible with the format
described above.
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[

...

{ "time": 5, "name": "RegisterTracker", "type": "F", "id": 0 },

{ "time": 6, "name": "SearchTrackers", "types": ["P", "F"] },

{ "time": 7, "name": "RegisterTracker", "type": "P", "id": 1 },

{ "time": 8, "name": "StartAcquisitions" },

{ "time": 9, "name": "MedialMalleolus", "point": [0.5, 1.0, 0.8] },

...

{ "time": 14, "name": "ReplaceTracker", "id": 1 },

{ "time": 15, "name": "RegisterTracker", "id": 2, "type": "P" },

{ "time": 16, "name": "ActivateTracker", "id": 2 },

...

{ "time": 20, "name": "LateralMalleolus", "point": [0.6, 0.9, 0.9] }

...

]

Figure 8.1: Example of JSON trace

8.2 command-line interpreter

As soon as a first proposal for ParTraP was drafted, I imple-
mented a Command-Line Interpreter for it. Its interface is a simple
read–eval–print loop which parses a property, evaluates it on the
traces given as a program arguments and indicates which traces
satisfy the property and which do not. In the latter case, a simple yet
comprehensive explanation message is also printed. The interpreter
is implemented in Haskell because of its efficiency for implementing
languages, mostly thanks to its parser combinator libraries [41].
Most of the language is supported, with the exception of Python
expressions. There are several libraries for evaluating Python expres-
sion from Haskell, but they all seem unmaintained and out of date.
Because this implementation was not meant to be used by end-users
anyway, we preferred to skip this feature that is mainly targeted for
real-world usage, and focus on ParTraP itself.

As all the other tools developed by MODMED partners, the Command-
Line Interpreter source code is available online1 under the GNU
Lesser General Public License (LGPL). The repository contains the
program sources, a comprehensive test suite and usage instructions.

Having an early implementation helped in many stages of the lan-
guage development:

1. First of all, it allowed us to detect unforeseen issues with the
language syntax and its semantics, which were both revised in
consequence. For instance, property nesting relies on the fact
that inner properties can only access events bounded in outer
properties, and some language constructs broke this rule.

1 https://gricad-gitlab.univ-grenoble-alpes.fr/modmed/partrap

https://gricad-gitlab.univ-grenoble-alpes.fr/modmed/partrap
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2. Due to its focus on simplicity, the interpreter was also used to
try out several possible implementations for property satisfac-
tion. The next subsection details them and our choices.

3. It allowed us to experiment with the selected representative
properties (Chapter 3) on real surgery traces, and work with
Blue Ortho engineers to diagnose issues they had at the time.
Those experiments helped to validate the language fitness. Sec-
tion 8.2.2 presents some of them.

4. Finally, the Command-Line Interpreter also became a reference
implementation of ParTraP, which was useful in the develop-
ment of the ParTraP IDE, presented later in this chapter.

8.2.1 Implementation Strategies

Since we are performing only offline verification in the MODMED

project, we consider complete execution traces and not a prefix of
them as in online monitoring. Having access to a full trace allows
exploring it back and forth and not just sequentially. A direct
consequence is that it is possible to interpret properties naively, in
the sense that an interpreter may follow their syntactic structure. For
instance, to check the property

before first A, P

the interpreter may simply process the input trace forward, looking
for an event A, and then process the trace until A again to check for P.
Although this approach is very simple, it suffers from a major source
of inefficiency: it may require going through a trace interval several
times (possibly many times), such as the interval before A in the pre-
vious example.

Of course, even if we have access to the full trace, we could process it
sequentially as commonly done for online runtime verification. This
requires to rewrite properties into some form of automata that will
accept or not a trace. This transformation is highly non-trivial, es-
pecially when the language supports past and future operators, and
parametric events. Besides the significant increase in complexity of
the implementation, this approach also suffers from two important
sources of inefficiency. First, it must memorize all the information
that might be needed in the future, as the trace can only be accessed
sequentially. Second, it must assume that any encountered event com-
plying with the current state of the evaluation may become relevant
in the future, and will possibly violate the property. Many of these
events are actually later filtered out and monitoring for them was
a waste. In fact, it was even shown that parametric online runtime
verification is NP-complete [19].
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To summarize, the offline strategy has a straightforward implemen-
tation but it might process the same trace interval over and over,
while the online strategy has a complex implementation and must
perform a lot of bookkeeping but it only goes through a trace once
and supports non-finite traces. Because both approaches can be ineffi-
cient, and because the traces studied in the MODMED project are small
(about 3000 events on average), implementation complexity was the
decisive factor. That is why the interpreter uses the offline approach.
It also turned out that error reporting is much more precise with the
offline strategy, mostly because it follows the structure of the prop-
erty, whereas the property is completely rewritten in the case of the
online strategy.

8.2.2 Experiments

We used the ParTraP interpreter to verify 8 properties out of the 15

representative ones over a corpus of 100 surgery traces provided by
Blue Ortho. Those properties encode requirements for TKA, hypothe-
ses made on the device usage or usage queries. The other 7 proper-
ties were left out as the necessary information was not present in TKA

traces. No errors were found in TKA software, but we discovered ab-
normal events and suspicious behaviors in the usage of the system.
For instance, the periodically reported temperature of the 3D camera
occasionally reaches the extreme value of −273

◦C. It is the result of a
failure when querying the temperature sensor. Although not critical,
this defect illustrates an issue between the software and its execution
environment.

By using a temporal usage query, we also noticed that for 11 % of
the traces in the corpus, the user performs an action within less than
100 ms after a new screen is displayed. Even experienced users could
miss information in such a short delay. Blue Ortho was already aware
of the problem but its frequency was still a surprise for them. As an
experiment with ParTraP, we scheduled a meeting with a Blue Ortho
engineer and used the Command-Line Interpreter to diagnose this
issue. After several refinements of a property encoding the behavior
of interest, and filtering out irrelevant traces, the issue was attributed
to a defect in the pointer device or a poor handling of that same
device. This defect is not critical because the surgeon may always
go back to the missed screen. Although the language itself appeared
appropriate for solving the task at hand, its usability was impaired
by the rudimentary Command-Line Interpreter.

8.3 user environment

The ParTraP IDE is a toolset designed to edit and execute the Par-
TraP language directly on a set of trace files. It was developed to
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make the installation and use of ParTraP as simple as possible. It in-
cludes a syntax-directed editor and generates detailed reports on the
satisfaction of a set of properties by a set of traces, with explanations
on the error causes in case of violation. On the ParTraP website2,
you may find a companion video demonstrating the tool, links to ref-
erence documents describing the syntax and semantics of ParTraP,
and instructions on how to download the ParTraP IDE. The compan-
ion video illustrates the main constructs of the language and shows
how the tool helps to edit properties, generates Java monitors, evalu-
ates properties and explains the result of their evaluation.

ParTraP IDE relies on the Eclipse IDE and the Xtext language work-
bench [29]. Xtext provides a complete infrastructure for implement-
ing languages, including a parser, a lexer, a typechecker and a com-
piler generator. Figure 8.2 shows the ParTraP IDE architecture. Part A
represents how Xtext generates the toolset, while Part B depicts the
process of using the tool.

Python 
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User

CompilerPartrap Editor

partrap‐util.jar
json.jar
jep.jar

Python‐utils

Property
model

file library
Functional 
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External
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Figure 8.2: Architecture of the ParTraP toolset

8.3.1 Tool Generation

Part A of Figure 8.2 depicts the process responsible for generating
ParTraP IDE. The ParTraP language grammar is defined with Xtext’s
default grammar language, a dialect of EBNF. After being parsed, a
set of language models is generated (Abstract Syntax Tree, Java code
and class diagram). These Xtext artifacts are used to configure the
language editor and to generate a compiler that transforms each Par-
TraP property to a Java monitor. When a large set of properties is con-
sidered, ParTraP IDE allows to compute the whole set of properties

2 http://vasco.imag.fr/tools/partrap/

http://vasco.imag.fr/tools/partrap/
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at the same time. It is less time consuming than executing separate
Java classes for each property.

8.3.2 Integrated Development Environment

Figure 8.3: Screen capture of the environment

The architecture of the user-facing part of the IDE is depicted in Part B
of Figure 8.2.

the partrap editor The editor helps users to write syntactically
correct properties. The configured editor provides syntax coloring ac-
cording to concepts (name, keyword, python script,..) as shown in Fig-
ure 8.3 under the editor window. Python expressions are delimited by
dollars signs (‘$’) as featured by property VAlidTemp2 in former fig-
ure. Moreover, some validation constraints are enforced by the editor
in order to forbid undesired language expressions like double use
of property names or recursivity when referencing properties. Sav-
ing the file automatically calls the ParTraP compiler and produces
the set of Java classes under package src-gen (see project explorer in
Figure 8.3).

execution and results . Execution takes two forms: running in-
dividual java classes or evaluating all properties simultaneously. The
user provides a set of traces to be evaluated. Executing the property
produces a set of results files. Short logs only display the result (true
or false) and an explanation for false cases. Detailed logs give in-
formation on calculated scopes, patterns and expressions results. A
summary of valid and invalid traces is provided for each property.

The first property in the editor shown in Figure 8.3, named
VAlidTemp1, encodes the requirement that the temperature should
not go below 45

◦C after the camera is connected. After evaluation
on an artificial trace, the console at the bottom reports that one event
having a temperature value of 41.44 violates this property.
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Table 8.1: Evaluation times for different properties (in seconds)

Property Native expr. Python expr.

1 0.307 2.988

2 0.326 2.378

3 n/a 1.736

6 17.605 51.639

10 0.674 2.170

13 1.517 4.969

python expressions Property VAlidTemp2 is an alternate expres-
sion of the same property whose where clause is expressed in Python
and uses the Python math module. As it is important for our envi-
sioned users to define complex calculations in property expressions,
ParTraP properties support the integration of Python expressions
using declared Python libraries. As a consequence, the designed IDE
allows the import of Python modules and the execution of Python
scripts. This is made possible by the use of JEP (Java Embedded
Python)3 which is a Python package generating a jar file ‘jep.jar’
added in the Java build path to exchange data and scripts between
the JVM and the Python Interpreter.

performance Although we traded performance off against ex-
pressiveness of the language, we carried out several experiments to
check that the generated monitors featured sufficient performance in
the context of our industrial partner, who typically collects and ana-
lyzes several dozens of traces every day. Therefore, we collected 100

traces from our partner. After extracting events of interest, the traces These traces are not
publicly available for
confidentiality
reasons.

range from 304 to 1163 events, with an average of 530 events. We eval-
uated 6 properties from the ones listed in Chapter 3. These properties
typically combine a scope with a temporal pattern. For each property,
we constructed a variant whose where clause is expressed in Python
(except property 3 which already has its assertion written in Python).
We conducted the experiments on a Microsoft Windows 10 machine
with an Intel Core i7-6600U CPU @ 2.60GHz, and 16 GB of RAM. Each
experiment was performed 50 times and the average execution times
are reported in table 8.1.

Column 2 reports the time in milliseconds to evaluate the property
on 100 traces. The 100 traces are covered in about a second for all
properties but property 6. The significantly longer execution time for
property 6 can be attributed to the fact that it exploit the EnterState

event, which has the highest number of occurrence in the corpus.

3 https://github.com/ninia/jep

https://github.com/ninia/jep
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Moreover, the IDE implementation does not leverage the monotony
of time for further optimization yet. Column 3 reports on the same
properties but with their where clause expressed in Python. As ex-
pected, their evaluation is 4 to 10 times slower due to the extra cost
of interaction between the java monitor and the Python interpreter.

These experiments show that ParTraP monitors perform well
enough on traces provided by our partner. Most results are com-
puted in just a few seconds over a 100-traces corpus, even if they
involve Python assertions. Although not competitive with some of
modern runtime verification approaches, these performances match
the needs of our industrial use case where several dozens of traces
should be processed every day.

In summary, ParTraP IDE assists the process of writing properties
thanks to its syntax-directed editor. It compiles properties into mon-
itors that can be executed on a corpus of traces with reasonable per-
formances, and provides both synthetic and detailed reports. More-
over, the inter-operability with Python enriches ParTraP with a full
fledged programming language. However, it does not help to write
“correct” properties, which is especially delicate for temporal proper-
ties. For this purpose, we designed a coverage measurement tool for
ParTraP properties.
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ParTraP emphasizes readability of properties by featuring the intu-
itive patterns of Dwyer et al. [28], and by adopting a user-friendly
syntax. However, correctly specifying properties remains a delicate
task and special cases might be missed. In particular, it is easy to over-
look vacuous truth: a conditional statement with a false antecedent.
For instance, the propositional formula P⇒ Q is vacuously true when
P is false. In ParTraP, vacuous truth may be induced by the absence
of given events. Consider a property of the form

after first A, occurrence_of B

If this property is always satisfied when evaluated on a trace corpus,
one may be led to believe that the temporal relation between A and
B is respected. However, one should remember that after first is
weak, i.e. it will be satisfied if A does not occur, regardless of B. In
that case, the whole property will be vacuously true. Vacuous truth
may induce a false sense of confidence in a system. For this reason,
it was important to provide coverage information for users to detect
those cases.

Measuring coverage highlights which “parts” of a property led to
the satisfaction of the property. For instance, when evaluating the
previous example property on a satisfying trace, knowing whether
occurrence_of B is used reveals which scenario is encountered.
Indeed, only the vacuous case can be satisfied without using
occurrence_of B. The definition of a “part” of property depends on
the approach to coverage measurement.

Coverage measurement for a declarative language such as ParTraP is
not as well-established as for executable code. We considered several
techniques:

• Compile properties into automata and measure their branch/s-
tate coverage. Castillos et al. studied this idea for measuring
coverage of temporal properties based on Dwyer’s patterns [17].

• Compile properties to an executable language for which mature
code coverage tools exist, such as Java.

• Decompose properties into sub-properties, revealing the differ-
ent ways to satisfy the initial property. This approach was ex-
plored for LTL by Li et al. [53].
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We dismissed the first two options, based on property compilation,
because relating coverage information about the compiled form to
the initial property can be very difficult, and may lead to approximate
results. On the other hand, property decomposition does not require
this step as the formalism remains the same. As a consequence, the
decomposed form can be directly shown to users so that they discover
the possible sub-cases, and they can directly analyze the coverage
results. For this reason, we chose the third approach.

In this chapter we first detail this decomposition technique, then de-
scribe a formal Term Rewriting System (TRS) performing this decom-
position, and finally illustrate it with several examples.

9.1 measuring coverage by case disjunction

Many ParTraP properties can be satisfied by several scenarios. The
previously mentioned case of

after first A, occurrence_of B

is such an example: either A does not occur, or it does and it is
followed by B. The number of possible scenarios can become much
larger than 2 when properties are nested.

In order to measure coverage of a property, we propose to decompose
it into sub-properties corresponding to different scenarios, exhibiting
the various ways to satisfy the property. More precisely, we want to
transform a property P into a disjunction of sub-properties of the
form

P1 or P2 or . . . or Pn

such that both forms are equivalent, and that each property from P1 to
Pn specifies a particular scenario. In the remaining of this chapter, we
will say that a ParTraP property of the above form is in Disjunctive
Normal Form (DNF). Note that this form differs from the well-known
DNF of propositional logic in several ways:

1. sub-properties do not have to be disjoint,

2. sub-properties may still contain disjunctions, and

3. ParTraP’s DNF is not canonical.

A coverage criterion emerges naturally for properties in DNF: we
can count the number of traces in a given set that satisfy each sub-
property. We say that a sub-property was covered by a trace set if its
counter is positive.

The conversion of arbitrary ParTraP properties into DNF can be
achieved by
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• splitting certain operators, or pairs of operator, into two proper-
ties based on the occurrence or absence of an event referenced
in them, and

• pulling disjunctions outward in order to exhibit a disjunction of
sub-properties at the top level.

This strategy is encoded in a TRS.

9.2 term rewriting system

In this section we define a TRS for converting ParTraP formulas into
DNF. We follow the conventions for TRSs and denote rewrite rules
as P → P′, meaning that a term matching P is be rewritten into P′.
Rules may match a whole formula or any sub-term in it, in which
case only the sub-term is rewritten. Note that our TRS preserves the
semantics of properties. A sufficient condition for that is to make sure
that each individual rewrite rule is semantics preserving. In other
words, properties must only be rewritten into equivalent ones. We
say that two properties P and P′ are equivalent, written P ≡ P′, if
and only if they are satisfied by the same traces:

∀P, P′((P ≡ P′) ⇐⇒ ∀τ, η(τ �η P ⇐⇒ τ �η P′)).

Provided with this notation for equivalence, we can formalize the
requirement that rewrite rules are semantic preserving:

∀P, P′((P→ P′) =⇒ (P ≡ P′)). (9.1)

9.2.1 Core Operators

It is usually a good idea to keep the number of rewriting rules small
in a TRS so that it can be verified more easily. This can be achieved
by minimizing the number of language operators that are used in
rewriting rules. We call them core operators. They are individually
“terminals”, in the sense that they can only be rewritten when paired
together. Properties using non-core operators are rewritten into equiv-
alent ones using only core operators. The set of operators used to de-
fine the semantics of ParTraP in Section 7.3.3 is an obvious candidate
for the core operators. However, a better set can be designed for the
purpose of this particular TRS whose goal is to exhibit a disjunction
of scenarios. In particular, this set includes new operators.

Remember that scopes in ParTraP are weak, i.e. in case where the
event delimiting a scope does not occur, the whole scope is consid-
ered to be satisfied. The “given” operator follows the same logic. In
order to distinguish the absence and the occurrence of the delimiting
event, we introduce strong variants for after, before and given:

• after1 occ A, P = occurrence_of A and after occ A, P



82 coverage measurement for partrap

• before1 occ A, P = occurrence_of A and before occ A, P

• given1 occ A, P = occurrence_of A and given occ A, P

These variants are suffixed with a “1” to emphasize that the delimit-
ing event must occur at least once. The two scenarios covered by the
after scope can now be made explicit with a simple disjunction:

after occ A, P ≡ absence_of A or after1 occ A, P.

The proof of this equivalence is rather direct after expanding the defi-
nition of after1. Similar equivalences also hold for before and given

with their respective strong variants.

With these strong variants, we can now give the full set of core op-
erators for our TRS: or, not, occurrence_of, exists, after1, before1
and given1. All the other constructs in ParTraP can be expressed in
terms of those.

9.2.2 Rewrite Rules

definition expansion As mentioned already, the TRS should ex-
pand all the language operators that are not core operators. The fol-
lowing rules simply rewrite them according to their definitions.

• P1 and P2 → not (not P1 or not P2)

• P1 implies P2 → not P1 or P2

• P1 equiv P2 → (P1 implies P2) and (P2 implies P1)

• forall x in e, P → not exists x in e, not P

• absence_of E → not occurrence_of E

• A followed_by B → after each A, occurrence_of B

• A preceded_by B → before each A, occurrence_of B

• A prevents B → after each A, absence_of B

• between A and B, P → after each A, before first B, P

• since A until B, P → (between A and B, P) and (

after1 last B, after each A, P
or (absence_of B and after each A, P)
)

Note that the right-hand side of some rules contains non-core opera-
tors. They will be eliminated by subsequent rewrites.

case distinction for weak operators We already discussed
how weak scope operators can be satisfied by two kinds of scenarios.
The following rules decompose them to exhibit these scenarios:
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• after occ A, P → absence_of A or after1 occ A, P

• before occ A, P → absence_of A or before1 occ A, P

• given occ A, P → absence_of A or given1 occ A, P

Weak scope operators were the last remaining non-core operators,
which are now eliminated as well.

distributivity over disjunction Distributing certain opera-
tors over disjunctions is useful to exhibit a disjunctive form at the
top-level of a formula. Conceptually, disjunctions are pulled outward
and other operators are pushed inward. In ParTraP, two types of op-
erators distribute over disjunctions: existential quantifiers, as in first-
order logic, and more interestingly, the first and last variants of
strong scopes. The distributivity of the existential quantifier results
directly from the fact that ParTraP follows first-order logic for its
non-temporal operators. The distributivity of strong scopes is justi-
fied by the fact that its first and last variants are akin to an existen-
tial quantifier, with the additional restriction on trace range. Indeed,
such scope requires at least one event of a given type to occur (“there
exists”), and that a given property holds for that particular event oc-
currence (“such that”). Note that this property does not hold for the
each variant.

These properties on distributivity are used to rewrite existential quan-
tifiers:

• exists x in e, (P1 or P2)→
(exists x in e, P1) or (exists x in e, P2)

as well as strong scopes:

• after1 first A, (P1 or P2)→
(after1 first A, P1) or (after1 first A, P2)

• after1 last A, (P1 or P2)→
(after1 last A, P1) or (after1 last A, P2)

The rules for before1 and given1 are similar and omitted here.

negation of strong scopes The negation of a strong scope op-
erator with the first and last variants is the last expression type that
can be decomposed into a disjunction of two scenarios. Intuitively, a
property of the form

after1 first A, P

can be violated by two scenarios: either A does not occur, or A does
occur but P is not satisfied after this occurrence. This reasoning holds
for the 6 possible combinations of after1, before1 or given1 together
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with first or last. This decomposition is encoded by the following
rewrite rules:

• not after1 first A, P →
absence_of A or after1 first A, not P

• not after1 last A, P →
absence_of A or after1 last A, not P

Once again, rules for before1 and given1 are similar and omitted.

negation elimination Finally, many negations may appear in a
formula during rewriting. In particular, double negations can prevent
certain of the previous rules from firing. As in classical logic, they can
be simply eliminated:

• not not P → P

9.2.3 Implementation

This TRS is implemented in the publicly available Command-Line In-
terpreter for ParTraP1. It relies heavily on the pattern-matching fea-
ture of Haskell to encode the rewriting rules. A step function tries
to match the top-level structure of a property and to rewrite them ac-
cordingly. The fact that sub-terms may also be rewritten is handled by
applying the step function recursively if no rewrite were possible at
the top-level. To fully rewrite a property, the step function is applied
repeatedly until it can no longer rewrite anything. In other words, we
compute a fixed point for the step function. Once a property is fully
rewritten, its top-level disjunctions are broken down to produce a list
of sub-properties. The coverage level of each of these sub-properties
is computed by evaluating them separately over a trace set and count-
ing the number of times they are satisfied.

9.3 coverage examples : tka properties

We now illustrate the usage of coverage measurement based on DNF

decomposition on several examples extracted from the TKA case study
presented in Chapter 2. Evaluation was performed on a sample of 100

surgery traces.

Example 1: Misspelled Identifier

In many formal languages, spelling mistakes in identifiers are de-
tected by static checks. Unfortunately it is not the case with ParTraP.
Since event type identifiers are not declared before being used in a
property, misspelled identifiers cannot be detected statically. Let us

1 https://gricad-gitlab.univ-grenoble-alpes.fr/modmed/partrap

https://gricad-gitlab.univ-grenoble-alpes.fr/modmed/partrap
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consider a first example of requirement and its formalization as a
trace property.

TKA relies on a set of uniquely identified trackers that can be localized
thanks to the stereoscopic camera. The software governs their activa-
tion remotely. Each of them should only be activated if they have
been properly detected in the past. This can be captured through the
following ParTraP property:

before each EnableTracker enable, occurrence_of

TrackerDetected detect where detect.id == enable.id

This property is satisfied by all the traces of the corpus. There are
two ways for a trace to satisfy the property: either the trace does not
feature any EnableTracker event and the property is vacuously true,
or this event is preceded by a corresponding TrackerDetected event.
Rewritten in DNF, the property forms a disjunction composed of two
sub-properties:

(a) absence_of EnableTracker enable

(b) before1 each EnableTracker enable, occurrence_of

TrackerDetected detect where detect.id == enable.id

Sub-property (a) captures the potential absence of EnableTracker

whereas (b) uses the stricter version before1 that requires at least
one occurrence of this event. In this example, (b) is covered by 100

traces of our sample.

If EnableTracker was mistakenly written as TrackerEnabled, the new
property would still be satisfied. This may lead to a false sense of con-
fidence in the system. Evaluating the coverage of each sub-property
would immediately reveal the mistake since only (a) would be cov-
ered.

Example 2: Heterogeneous Trace Corpus

When performing a surgery with the assistance of the TKA system,
one critical step to a successful completion consists in acquiring the
position of the hip center of the patient. This complex operation may
be repeated by a surgeon until he is satisfied with the results. Thus
some surgery traces contain several HipCenter events carrying the
position of the point for each acquisition. For technicals reasons, there
should not be any pair of hip center computations with resulting
points that are too spread apart (here we arbitrarily chose 1.0 cm):

after each HipCenter h1, absence_of HipCenter h2 where dist(

h1.point, h2.point) >= 1.0

The property is rewritten in DNF as the disjunction of the following
two sub-properties, which distinguish the case where at least one
event HipCenter occurs from the case where it does not:
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(a) absence_of HipCenter

(b) after1 each HipCenter h1, absence_of HipCenter h2 where

1.0 <= dist(h1.point, h2.point)

All the traces of the corpus but one satisfy the original property. The
only exception results from a misuse of the system by the surgeon.
Coverage evaluation shows that (a) is covered by 6 traces while (b)
is covered by 93 traces. The number of traces satisfying sub-property
(a) is surprisingly high given the fact that hip center acquisition is
critical to the completion of the surgery. Closer inspection of the 6

problematic traces revealed that they were actually traces generated
by another product of Blue Ortho (dealing with shoulder surgery).
It is only through coverage measurement that we noticed that the
provided trace corpus was heterogeneous.

Example 3: Complex Temporal Property

As a last example, consider Property 12 and its ParTraP expression
given in Section 6.3:

since ActionPrevious until AcquisitionBegin,

absence_of AcquisitionSuccess

Although this property looks simple, the since/until scope actually
captures many possible scenarios. Indeed, this property is rewritten
in DNF as the disjunction of 8 sub-properties. For conciseness,
we give this list with ActionPrevious, AcquisitionBegin, and
AcquisitionSuccess shortened as AP, AB, and AS, respectively:

(a) absence_of AP and absence_of AB

(b) absence_of AP and absence_of AB and after1 each AP,

absence_of AS

(c) absence_of AP and after1 last AB, absence_of AP

(d) absence_of AP and after1 last AB, after1 each AP,

absence_of AS

(e) after1 each AP, (absence_of AB or before1 first AB,

absence_of AS) and after1 last AB, absence_of AP

(f) after1 each AP, (absence_of AB or before1 first AB,

absence_of AS) and after1 last AB, after1 each AP,

absence_of AS

(g) after1 each AP, (absence_of AB or before1 first AB,

absence_of AS) and absence_of AB and absence_of AP

(h) after1 each AP, (absence_of AB or before1 first AB,

absence_of AS) and absence_of AB and after1 each AP,

absence_of AS
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Sub-property (c) is covered by 30 traces, (e) by 45 traces, and (f) by
25 traces. Together they account for the 100 traces of the corpus. The
remaining cases are not covered. This coverage information for TKA

is not particularly interesting to discuss. Instead, we will focus on the
decomposition itself.

Inspecting the different sub-properties reveals two limitations of us-
ing a TRS to perform DNF decomposition. First, it is unable to simplify
some sub-properties, which impairs their readability. This can be ob-
served in sub-property (c), where absence_of AP inside the scope is
redundant with the same constraint at the top-level. Second, and
most importantly, the TRS sometimes introduces unsatisfiable sub-
properties. Those undesirable additions might confuse users. In the
previous decomposition, sub-properties (b), (d) and (g) are all unsat-
isfiable due to a contradiction on the absence and occurrence of the
event ActionPrevious. Note that the decomposition remains correct
since introducing unsatisfiable propositions in a disjunction does not
change its semantics. Both limitations are due to the fact that the TRS

operates at a purely syntactic level.

(a)

(c)
AB AB

(e)
AP AB AP AB

(f)
AP AB AP AB AP

(g)
AP AP

Figure 9.1: Graphical representation of the 5 valid scenarios in Property 12

Looking past those limitations, one can observe that the decom-
posed form exhibits 5 different scenarios, described by the 5

satisfiable sub-properties. There are graphically represented with
timelines in Figure 9.1. Colored intervals represent ranges where
AcquisitionSuccess must not occur. While our TRS was only dif-
ferentiating vacuity from non-vacuity in the examples of the two
previous sections, the present decomposition with various scenarios
shows that this approach also supports richer temporal properties.

9.4 further decomposition

Despite its limitations (some properties could be simplified and oth-
ers are unsatisfiable), coverage measurement based on DNF decompo-
sition does lead to better insights on properties and the trace sets they
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are evaluated on. This decomposition technique attempts to exhibit a
disjunctive form of the property by distinguishing between the pres-
ence or absence of some event in the trace. However, the presence of
an event may correspond to one or more occurrences of this event.
It is interesting to further decompose the property according to the
number of occurrences of the events. This brings a finer decomposi-
tion by favoring the occurrence of more disjuncts in the property.

Consider a property of the form

after each A, P1 or P2.

It can be decomposed according to the number of event occurrences
matching the event descriptor A. In particular, when considering the
cases with 0, 1, 2 or more occurrences, we obtain a disjunction com-
posed of the following sub-properties:

(a) absence_of A

(b) occurrence_of {1,1} A and (after first A, P1 or P2)

(c) occurrence_of {2,2} A and (after first A, P1 or P2)

and (after last A, P1 or P2)

(d) occurrence_of {3,} A and (after each A, P1 or P2)

The notation {a,b} is the same as the one used in POSIX regular
expressions. It indicates that an event must occur at least a times and
at most b times. As in regular expressions, it is possible to specify
only one of the two bounds. The above disjunction can be further
rewritten to exhibit several cases at the top level:

(a) absence_of A

(b) occurrence_of {1,1} A and (after first A, P1)

(c) occurrence_of {1,1} A and (after first A, P2)

(d) occurrence_of {2,2} A and (after first A, P1) and

(after last A, P1)

(e) occurrence_of {2,2} A and (after first A, P1) and

(after last A, P2)

(f) occurrence_of {2,2} A and (after first A, P2) and

(after last A, P1)

(g) occurrence_of {2,2} A and (after first A, P2) and

(after last A, P2)

(h) occurrence_of {3,} A and (after each A, P1 or P2)

To illustrate the usefulness of this decomposition, let us consider a
final example from the case study. In TKA, the types parameter of the
SearchTracker event lists the required types of trackers to perform



9.4 further decomposition 89

the surgery. Each of these trackers types should be detected at least
once before starting the acquisitions. An attempt to formalize this
requirement could result in the following ParTraP property:

after each SearchTrackers st,

before first StartAcquisition,

forall ty in st.types,

occurrence_of TrackerDetected td where td.type == ty

As mentioned earlier, in the before first E clause we can distin-
guish the cases whether E occurs or not. Thus we can rewrite the
previous property as

after each SearchTrackers st, (absence_of StartAcquisition

or before1 first StartAcquisition, P), where

P = forall ty in st.types,

occurrence_of TrackerDetected td where td.type == ty.

It is now precisely of the form after each A, P1 or P2 and can be
decomposed in the same manner. For space reasons, we only present
some of the sub-properties (the others can be derived easily):

(b) occurrence_of {1,1} SearchTrackers and (after first

SearchTrackers st, absence_of StartAcquisition)

(c) occurrence_of {1,1} SearchTrackers and (after first

SearchTrackers st, before1 first StartAcquisition, P)

(f) occurrence_of {2,2} SearchTrackers and (after first

SearchTrackers st, before1 first StartAcquisition, P)
and (after last SearchTrackers st, absence_of

StartAcquisition)

Sub-property (c) encodes the nominal case: a single set of trackers
is looked for and found at once before starting any acquisition. Cov-
ered by 55 traces, it is also the most common case in our sample.
Both (b) and (f), each covered by 2 traces, look more suspicious. In-
deed, sub-property (b) says that the acquisition phase never started
after looking for a set of trackers. A closer inspection reveals that the
two traces satisfying this case were actually generated by the shoul-
der product, mentionned in the previous section, and use a different
name for event StartAcquisition. Sub-property (d), not given here,
is similar and also exhibits traces from the shoulder surgery. Finally,
sub-property (f) says that an event StartAcquisition is found once
but is missing after the second search for new trackers. The two traces
satisfying this surprising case revealed that we overlooked a special
case when writing the property: in a recent version of the TKA prod-
uct, event StartAcquisition takes a different name if we reconnect
the trackers in mid-surgery. This example shows that a fine decompo-
sition of the property helps to better understand the variety of traces.
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conclusion In spite of the encouraging results, this second de-
composition level was only partially formalized and partially imple-
mented due to time constraints. On the contrary, the first level of
decomposition based on the absence of occurrence of given events is
fully implemented. We used this implementation to analyze the cov-
erage of several TKA properties. Those experiments confirmed that
coverage measurement based on DNF decomposition helps to better
understand temporal properties, the results of their evaluation on a
corpus of traces, and to identify faulty or incomplete properties. They
also highlighted the main limitation the approach based on TRS: due
to its purely syntactic nature, the TRS is not able to simplify some
properties. Thus, it produces longer sub-properties than necessary,
and sometimes introduces sub-properties that are not satisfiable.
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C O N C L U S I O N A N D P E R S P E C T I V E S

10.1 summary

This PhD research was conducted as part of the MODMED project, a
public research project gathering a laboratory and two companies.
Blue Ortho manufactures medical devices which provide guidance
during complex surgeries, such as total knee arthroplasty, and Min-
MaxMedical develops software components for those devices. In this
PhD thesis, I tackled the main goal of the MODMED project: devel-
oping a specification language for verifying temporal properties on
data-rich execution traces, and most importantly, tailored for indus-
trial usage.

First of all, we conducted a thorough study of TKA, the main product
commercialized by Blue Ortho. This surgery assistant for total knee
arthroplasty appears as representative of the new generation of medi-
cal devices, and has been used worldwide for several years. Based on
several interviews with Blue Ortho, the specification documents for
TKA, and multiple execution traces recorded during real surgeries, we
extracted a list of properties that are representative of the properties
that manufacturers would verify on execution traces. Those proper-
ties were temporal for the most part, relied heavily on data carried by
events in execution traces, and required exploiting data with complex
structure. Comparing many existing formalisms for temporal prop-
erty specification with respect to those characteristics revealed that
none of them was suitable. Thus, we set out to design a solution that
would meet those criteria while being accessible to engineers with no
training in formal methods.

Our solution is called ParTraP. It is a specification language for para-
metric execution traces that is designed to be simple to use by soft-
ware engineers thanks to a declarative style and a user-friendly syn-
tax. It allows formalizing properties involving temporal constraints
and data values concisely, while remaining readable. ParTraP was in-
spired by specification patterns and extends them with nested scopes,
real-time and first-order quantification. Besides its user-friendly syn-
tax, the language relies on simplicity to remain accessible: it requires
understanding only a few concepts, which can be applied to most
of the language constructs. In particular, all properties can be freely
nested, and all event descriptors can be associated to a name and con-
strained. The combination of these two simple mechanisms allows

91
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writing a variety of temporal properties, including properties that re-
lates several event occurrences according to their parameters.

To be ready for real-world use, ParTraP comes with an IDE with bi-
nary releases and sources available under the GNU Lesser General
Public License (LGPL). It packages a syntax-directed editor, assisting
the process of writing properties, a compiler, and an execution envi-
ronment providing both synthetic and detailed reports. Moreover, the
inter-operability with Python enriches ParTraP with a full fledged
programming language. While execution performance is modest and
not competitive with state-of-art runtime verification techniques, ex-
periments showed that ParTraP monitors perform well enough on
traces provided by Blue Ortho.

Finally, despite our best efforts to make ParTraP simple to use, writ-
ing temporal specification remains a delicate task. Some properties
that may seem easy to understand can divert the reader from careful
consideration of special cases. We proposed to combine the decom-
position of a property in disjunctive normal form with coverage in-
formation. We identified two levels of decomposition. The first one
splits a property into a disjunction of sub-properties according to the
presence or absence of key events in temporal relations (scope). It
allows distinguishing vacuously true situations from the main con-
straint. The second level of decomposition goes further by splitting
the property according to the number of occurrences of those same
key events, and provides a finer grain understanding of the property.
The term rewriting system we devised and implemented is able to
execute the first level of decomposition. Unfortunately, it also intro-
duces tautologies or contradictions in the decomposed form. While
the result remain correct, those undesirable additions might confuse
users. Nonetheless, we showed its usefulness through several exam-
ples extracted the TKA study: it helps to better understand temporal
properties and the results of their evaluation on a corpus of traces,
and to identify faulty or incomplete properties.

10.2 future research directions

Based on the current state of ParTraP, we describe five research di-
rections that would consolidate the language and its tool set.

Usability Study

Although we believe that ParTraP makes parametric property speci-
fication approachable by engineers unqualified with formal methods,
we did not conduct a full study to back-up this claim. As of this day,
we only gathered anecdotal evidence of ParTraP suitability to its
task: the language was demonstrated to several engineers from Min-
MaxMedical and Blue Ortho who validated its design. Furthermore,
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ParTraP was used successfully by a dozen of people, ranging from
graduate students to full-time researchers, to perform trace analysis
and verification on TKA traces as well as traces from other projects.
Nonetheless, conducting a usability study of ParTraP with a moni-
tored hands-on session remains a future work.

Application to Other Contexts

ParTraP’s design was driven by logs and requirements from the med-
ical field. Yet, it is not specific to that particular field. The generation
and gathering of execution traces is already a standard practice in
many industries, but their systematic and automatic exploitation is
not generalized. ParTraP is transposable to most of them, and would
be particularly useful for traces with complex structured data. Our
research group is currently working on a case study in the field of
home automation, where traces include parametric information from
sensors, and actions performed by the inhabitants and by the control
system. At longer term, we have contacts with another medical de-
vice manufacturer that we met through our industrial partners. The
growing complexity of their execution traces is becoming a concern,
which ParTraP could alleviate.

Better Property Decomposition

There has been little research on coverage measurement for declara-
tive languages compared to procedural languages. We showed how
decomposing ParTraP properties in Disjunctive Normal Form can
provide useful coverage information, helping to understand both
properties and traces on which they are evaluated. However, only
the first level of decomposition, based on absence or occurrence of
certain events, was formalized and implemented. For certain types
of properties, this decomposition is insufficient and does not provide
insightful results. The second decomposition level relying on the
number of occurrences of certain events is promising in this situation,
and worth pursuing. Furthermore, the major limitation of this
approach (i.e. the production of tautologies and contradictions) is
due to the syntactic nature of the term rewriting system. Overcoming
this limitation would greatly improve the reliability of property
decomposition, and is an interesting research perspective.

Example and Counter-Example Generation

Generating examples and counter-examples for properties, i.e. satis-
fying and violating traces, would further help users to understand
the properties they write, and to assess their correctness. To comple-
ment ParTraP’s tool set, the development of such a tool was started
recently by our research group. The current prototype relies on the
modern Satisfiability Modulo Theories (SMT) solver Z3 [57], which is
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able to provide a model for a formula. In this case, the model is the
trace example, while the formula is the encoding of a property. How-
ever, a single model, or trace, is produced. As a consequence, the
examples produced by the current prototype only demonstrate one
of the many possible scenarios encoded in a temporal property. We
believe this limitation could be tackled by combining our DNF decom-
position technique, which exhibits the different temporal scenarios
behind a property, with the current SMT based solution.

Perfomance Improvements

Finally, current ParTraP implementations (Command-Line Inter-
preter and compiled monitors) only have modest performance, and
it is probably possible to improve them. In the context of MODMED,
we studied complex and rich, but relatively small execution traces.
Therefore, our focus has been on the language design and its
tooling, and less on the efficiency of its implementation. While
we validated the ability of our implementations to process longer
traces synthetically generated, we are not sure that these traces are
representative of the ones that can be found in other contexts. Since
the current compiler in ParTraP IDE does not perform any form of
optimization, we expect that producing optimized monitors would
lead to substantial performance improvements.
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