I. Ivanov, T. Crépin, M. Jamin, and R. W. Ruigrok, Structure of the dimerization domain of the rabies virus phosphoprotein, J Virol, vol.84, pp.3707-3710, 2010.

R. W. Ruigrok, T. Crépin, D. J. Hart, and S. Cusack, Towards an atomic resolution understanding of the influenza virus replication machinery, Curr Opin Struct Biol, vol.20, pp.104-113, 2010.

R. W. Ruigrok and T. Crépin, Commentary: Nucleoproteins of Negative Strand RNA Viruses; RNA Binding, Oligomerisation and Binding to Polymerase Co-Factor, Viruses, vol.2, pp.27-32, 2010.

D. Cassio and J. Waller, Eur. J. Biochem, vol.20, pp.283-300, 1971.

Y. Mechulam, E. Schmitt, L. Maveyraud, C. Zelwer, O. Nureki et al., J. Mol. Biol, vol.294, pp.1287-97, 1999.

I. Sugiura, O. Nureki, Y. Ugaji-yoshikawa, S. Kuwabara, A. Shimada et al., Struct. Fold. Des, vol.8, pp.197-208, 2000.

C. Hountondji, P. Dessen, and S. Blanquet, Biochimie, vol.68, pp.1071-1078, 1986.

G. Eriani, M. Delarue, O. Poch, J. Gangloff, and D. Moras, Nature, vol.347, pp.203-206, 1990.

S. Cusack, M. Härtlein, and R. Leberman, Nucleic Acids Res, vol.19, pp.3489-3498, 1991.

A. J. Morales, M. A. Swairjo, and P. Schimmel, EMBO J, vol.18, pp.3475-83, 1999.

J. P. Muller, S. Bron, G. Venema, and J. M. Van-dijl, Microbiology, vol.146, pp.77-88, 2000.

G. Simos, A. Segref, F. Fasiolo, K. Hellmuth, A. Shevchenko et al., EMBO J, vol.15, pp.5437-5485, 1996.

J. Kao, J. Ryan, G. Brett, J. Chen, H. Shen et al., , 1992.

, Biol. Chem, vol.267, pp.20239-20286

V. Shalak, M. Kaminska, R. Mitnacht-kraus, P. Vandenabeele, M. Clauss et al., J. Biol. Chem, vol.276, pp.23769-76, 2001.

M. A. Swairjo, A. J. Morales, C. C. Wang, A. R. Ortiz, and P. Schimmel, EMBO J, vol.19, pp.6287-98, 2000.

S. Kawaguchi, J. Müller, D. Linde, S. Kuramitsu, T. Shibata et al., EMBO J, vol.20, pp.562-569, 2001.

Y. Kim, J. Shin, R. Li, C. Cheong, K. Kim et al., J. Biol. Chem, vol.275, pp.27062-27070, 2000.

L. Renault, P. Kerjan, S. Pasqualato, J. Menetrey, J. C. Robinson et al., EMBO J, vol.20, pp.570-578, 2001.

S. Quevillon, F. Agou, J. C. Robinson, and M. Mirande, J. Biol. Chem, vol.272, pp.32573-32582, 1997.

J. Shine and L. Dalgarno, Proc. Natl. Acad. Sci. U.S.A, vol.71, pp.1342-1346, 1974.

O. Lecompte, R. Ripp, V. Puzos-barbe, S. Duprat, R. Heilig et al., Genome Res, vol.11, pp.981-93, 2001.

M. Tompa, Proc. Int. Conf. Intell Syst. Mol. Biol, pp.262-71, 1999.

A. G. Murzin, EMBO J, vol.12, pp.861-868, 1993.

F. Lawrence, S. Blanquet, M. Poiret, M. Robert-gero, and J. P. Waller, Eur. J. Biochem, vol.36, pp.234-277, 1973.

S. Blanquet, G. Petrissant, and J. P. Waller, Eur. J. Biochem, vol.36, pp.227-260, 1973.

S. Blanquet, M. Iwatsubo, and J. P. Waller, Eur. J. Biochem, vol.36, pp.213-239, 1973.

A. J. Gale, J. P. Shi, and P. Schimmel, Biochemistry, vol.35, pp.608-623, 1996.

S. Blanquet and P. Dessen, J. Mol. Biol, vol.103, pp.765-84, 1976.

P. Dessen, S. Blanquet, G. Zaccai, J. , and B. , J. Mol. Biol, vol.126, pp.293-313, 1978.

T. Nomanbhoy, A. J. Morales, A. T. Abraham, C. S. Vortler, R. Giege et al., Nat. Struct. Biol, vol.8, pp.344-352, 2001.

T. Kalogerakos, P. Dessen, G. Fayat, and S. Blanquet, Biochemistry, vol.19, pp.3712-3735, 1980.

G. Simos, A. Sauer, F. Fasiolo, and E. C. Hurt, Mol. Cell, vol.1, pp.235-277, 1998.

M. Frugier, L. Moulinier, and R. Giege, EMBO J, vol.19, pp.2371-80, 2000.

K. Shiba, T. Stello, H. Motegi, T. Noda, K. Musier-forsyth et al., J. Biol. Chem, vol.272, pp.22809-22825, 1997.

T. Stello, M. Hong, and K. Musier-forsyth, Nucleic Acids Res, vol.27, pp.4823-4832, 1999.

M. Francin, M. Kaminska, P. Kerjan, and M. Mirande, J. Biol. Chem, vol.277, pp.1762-1771, 2002.

M. Kaminska, M. Deniziak, P. Kerjan, J. Barciszewski, and M. Mirande, EMBO J, vol.19, pp.6908-6925, 2000.

M. Kaminska, V. Shalak, and M. Mirande, Biochemistry, vol.40, pp.14309-14316, 2001.

F. Dardel, M. Panvert, and G. Fayat, Mol. Gen. Genet, vol.223, pp.121-154, 1990.

P. Mellot, Y. Mechulam, D. Le-corre, S. Blanquet, and G. Fayat, J. Mol. Biol, vol.208, pp.429-472, 1989.

D. Fourmy, T. Meinnel, Y. Mechulam, and S. Blanquet, J. Mol. Biol, vol.231, pp.1068-77, 1993.

, Acta Cristallogr, vol.50, pp.760-763, 1994.

J. Navaza, Acta Cryst, vol.50, pp.157-163, 1994.

T. A. Jones, J. Y. Zou, S. W. Cowan, and M. Kjeldgaard, Acta Crystallogr, vol.47, pp.110-119, 1991.

A. T. Brunger, P. D. Adams, G. M. Clore, W. L. Delano, P. Gros et al., Acta Crystallogr, vol.54, pp.905-926, 1998.

S. Blanquet, G. Fayat, J. P. Waller, and M. Iwatsubo, Eur. J. Biochem, vol.24, pp.461-470, 1972.

T. Meinnel and S. Blanquet, J. Biol. Chem, vol.270, pp.15908-15914, 1995.

F. Dardel, Comput. Applic. Biosci, vol.10, pp.273-275, 1994.

S. V. Evans, J. Mol. Graphics, vol.11, pp.134-138, 1993.

, Dimerization of MetRS Biochemistry, vol.41, issue.43, p.13011, 2002.

G. Eriani, M. Delarue, O. Poch, J. Gangloff, and D. Moras, Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs, Nature, vol.347, pp.203-206, 1990.

S. Cusack, M. Hartlein, and R. Leberman, , 1991.

, Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases, Nucl. Acids Res, vol.19, pp.3489-3498

T. Webster, H. Tsai, M. Kula, G. A. Mackie, and P. Schimmel, Specific sequence homology and three-dimensional structure of an aminoacyl transfer RNA synthetase, Science, vol.226, pp.1315-1317, 1984.

C. Hountondji, F. Lederer, P. Dessen, and S. Blanquet, Escherichia coli tyrosyl-and methionyl-tRNA synthetases display sequence similarity at the binding site for the 3 0 -end of tRNA, Biochemistry, vol.25, pp.16-21, 1986.

S. Cusack, C. Berthet-colominas, M. Hartlein, N. Nassar, and R. Leberman, A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å, Nature, vol.347, pp.249-255, 1990.

M. Ruff, S. Krishnaswamy, M. Boeglin, A. Poterszman, A. Mitschler et al., Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp), Science, vol.252, pp.1682-1689, 1991.

A. R. Fersht and M. M. Kaethner, Enzyme hyperspecificity. Rejection of threonine by the valyltRNA synthetase by misacylation and hydrolytic editing, Biochemistry, vol.15, pp.3342-3346, 1976.

L. Lin, S. P. Hale, and P. Schimmel, Aminoacylation error correction, Nature, vol.384, pp.33-34, 1996.

O. Nureki, D. G. Vassylyev, M. Tateno, A. Shimada, T. Nakama et al., Enzyme structure with two catalytic sites for double-sieve selection of substrate, Science, vol.280, pp.578-582, 1998.

L. F. Silvian, J. Wang, and T. A. Steitz, Insights into editing from an Ile-tRNA synthetase structure with tRNA Ile and mupirocin, Science, vol.285, pp.1074-1077, 1999.

S. Cusack, A. Yaremchuk, and M. Tukalo, The 2 Å crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue, 2000.

, EMBO J, vol.19, pp.2351-2361

S. Fukai, O. Nureki, S. Sekine, A. Shimada, J. Tao et al., Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase, Cell, vol.103, pp.793-803, 2000.

J. Cavarelli, B. Delagoutte, G. Eriani, J. Gangloff, and D. Moras, L-arginine recognition by yeast arginyl-tRNA synthetase, EMBO J, vol.17, pp.5438-5448, 1998.

B. Delagoutte, D. Moras, and J. Cavarelli, tRNA Aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding, 2000.

, EMBO J, vol.19, pp.5599-5610

K. J. Newberry, Y. M. Hou, and J. J. Perona, Structural origins of amino acid selection without editing by cysteinyl-tRNA synthetase, EMBO J, vol.21, pp.2778-2787, 2002.

L. Serre, G. Verdon, T. Choinowski, N. Hervouet, J. L. Risler et al., How methionyltRNA synthetase creates its amino acid recognition pocket upon L-methionine binding, J. Mol. Biol, vol.306, pp.863-876, 2001.

A. R. Fersht and C. Dingwall, An editing mechanism for the methionyl-tRNA synthetase in the selection of amino acids in protein synthesis, Biochemistry, vol.18, pp.1250-1256, 1979.

H. Jakubowski and A. R. Fersht, Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases, Nucl. Acids Res, vol.9, pp.3105-3117, 1981.

H. Duewel, E. Daub, V. Robinson, and J. F. Honek, Incorporation of trifluoromethionine into a phage lysozyme: implications and a new marker for, p.19, 1997.

F. Nmr, Biochemistry, vol.36, pp.3404-3416

M. D. Vaughan, P. B. Sampson, and J. F. Honek, Methionine in and out of proteins: targets for drug design, Curr. Med. Chem, vol.9, pp.385-409, 2002.

K. Kiick, J. Van-hest, and D. Tirrell, Expanding the scope of protein biosynthesis by altering the methionyl-tRNA synthetase activity of bacterial expression host, Angew. Chem. Int. Ed, vol.39, pp.2148-2152, 2000.

K. L. Kiick, R. Weberskirch, and D. A. Tirrell, Identification of an expanded set of translationally active methionine analogues in Escherichia coli, FEBS Letters, vol.502, pp.25-30, 2001.

Y. Mechulam, E. Schmitt, L. Maveyraud, C. Zelwer, O. Nureki et al., Crystal structure of Escherichia coli methionyl-tRNA synthetase highlights species-specific features, J. Mol. Biol, vol.294, pp.1287-1297, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00841066

J. Lee, S. U. Kang, S. Y. Kim, S. E. Kim, Y. J. Job et al., Vanilloid and isovanilloid analogues as inhibitors of methionyl-tRNA and isoleucyltRNA synthetases, Bioorg. Med. Chem. Letters, vol.11, pp.965-968, 2001.

J. Lee, S. U. Kang, M. K. Kang, M. W. Chun, Y. J. Jo et al., Methionyl adenylate analogues as inhibitors of methionyl-tRNA synthetase, Bioorg. Med. Chem. Letters, vol.9, pp.1365-1370, 1999.

J. Lee, S. U. Kang, S. Y. Kim, S. E. Kim, M. K. Kang et al., Ester and hydroxamate analogues of methionyl and isoleucyl adenylates as References Ahel, I, J. Biol. Chem, vol.277, pp.34743-34748, 2001.

I. Ahel, D. Korencic, M. Ibba, and D. Soll, Trans-editing of mischarged tRNAs, Proc. Natl. Acad. Sci. USA, vol.100, pp.15422-15427, 2003.

A. Ambrogelly, I. Ahel, C. Polycarpo, S. Bunjun-srihari, B. Krett et al., Methanocaldococcus jannaschii prolyl-tRNA synthetase charges tRNA(Pro) with cysteine, J. Biol. Chem, vol.277, pp.34749-34754, 2002.

S. An and K. Musier-forsyth, Trans-editing of Cys-tRNAPro by Haemophilus influenzae YbaK protein, J. Biol. Chem, vol.279, pp.42359-42362, 2004.

S. An and K. Musier-forsyth, Cys-tRNAPro editing by Haemophilus influenzae YbaK via a novel synthetase YbaK tRNA ternary complex, J. Biol. Chem, vol.280, pp.34465-34472, 2005.

K. Beebe, L. Ribas-de-pouplana, and P. Schimmel, Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability, EMBO J, vol.22, pp.668-675, 2003.

P. J. Beuning and K. Musier-forsyth, Hydrolytic editing by a class II aminoacyl-tRNA synthetase, Proc. Natl. Acad. Sci. USA, vol.97, pp.8916-8920, 2000.

P. J. Beuning and K. Musier-forsyth, Species-specific differences in amino acid editing by class II prolyl-tRNA synthetase, J. Biol. Chem, vol.276, pp.30779-30785, 2001.

A. T. Brunger, P. D. Adams, G. M. Clore, W. L. Delano, P. Gros et al., Crystallography & NMR system: a new software suite for macromolecular structure determination, Acta Crystallogr. D Biol. Crystallogr, vol.54, pp.905-921, 1998.

S. Cusack, Eleven down and nine to go, Nat. Struct. Biol, vol.2, pp.824-831, 1995.

S. Cusack, C. Berthet-colominas, M. Hartlein, N. Nassar, and R. Leberman, A second class of synthetase structure revealed by Structure of Bacterial Prolyl-tRNA Synthetases, 1990.

V. A. Karkhanis, A. P. Mascarenhas, and S. A. Martinis, Amino acid toxicities of Escherichia coli that are prevented by leucyl-tRNA synthetase amino acid editing, J. Bacteriol, vol.189, pp.8765-8768, 2007.

T. L. Lincecum, Structural and mechanistic basis of pre-and posttransfer editing by leucyl-tRNA synthetase, Mol. Cell, vol.11, pp.951-963, 2003.

M. Tukalo, A. Yaremchuk, R. Fukunaga, S. Yokoyama, and S. Cusack, The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transferediting conformation, Nat. Struct. Mol. Biol, vol.12, pp.923-930, 2005.

Y. Hagiwara, M. J. Field, O. Nureki, and M. Tateno, Editing mechanism of aminoacyltRNA synthetases operates by a hybrid ribozyme/protein catalyst, J. Am. Chem. Soc, vol.132, pp.2751-2758, 2010.

F. L. Rock, An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site, Science, vol.316, pp.1759-1761, 2007.

E. Seiradake, Crystal structures of the human and fungal cytosolic leucyl-tRNA synthetase editing domains: A structural basis for the rational design of antifungal benzoxaboroles, J. Mol. Biol, vol.390, pp.196-207, 2009.

Y. K. Zhang, Synthesis and structure-activity relationships of novel benzoxaboroles as a new class of antimalarial agents, Bioorg. Med. Chem. Lett, vol.21, pp.644-651, 2011.

D. Ding, Design, synthesis, and structure-activity relationship of Trypanosoma brucei leucyl-tRNA synthetase inhibitors as antitrypanosomal agents, J. Med. Chem, vol.54, pp.1276-1287, 2011.

S. Fukai, Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNAVal and valyl-tRNA synthetase, Cell, vol.103, pp.793-803, 2000.

L. F. Silvian, J. Wang, and T. A. Steitz, Insights into editing from an ile-tRNA synthetase structure with tRNAIle and mupirocin, Science, vol.285, pp.1074-1077, 1999.

R. Fukunaga and S. Yokoyama, Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition, Nat. Struct. Mol. Biol, vol.12, pp.915-922, 2005.

S. Cusack, A. Yaremchuk, and M. Tukalo, The 2 crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue, EMBO J, vol.19, pp.2351-2361, 2000.

R. Fukunaga and S. Yokoyama, Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation, J. Mol. Biol, vol.346, pp.57-71, 2005.

J. J. Perona, M. A. Rould, and T. A. Steitz, Structural basis for transfer RNA aminoacylation by Escherichia coli glutaminyl-tRNA synthetase, Biochemistry, vol.32, pp.8758-8771, 1993.

V. L. Rath, L. F. Silvian, B. Beijer, B. S. Sproat, and T. A. Steitz, How glutaminyl-tRNA synthetase selects glutamine, Structure, vol.6, pp.439-449, 1998.

T. L. Bullock, N. Uter, T. A. Nissan, and J. J. Perona, Amino acid discrimination by a class I aminoacyl-tRNA synthetase specified by negative determinants, J. Mol. Biol, vol.328, pp.395-408, 2003.

S. Sekine, ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding, EMBO J, vol.22, pp.676-688, 2003.

S. Sekine, Structural bases of transfer RNA-dependent amino acid recognition and activation by glutamyl-tRNA synthetase, Structure, vol.14, pp.1791-1799, 2006.

A. Yaremchuk, I. Kriklivyi, M. Tukalo, and S. Cusack, Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition, EMBO J, vol.21, pp.3829-3840, 2002.

T. Kobayashi, Structural basis for orthogonal tRNA specificities of tyrosyltRNA synthetases for genetic code expansion, Nat. Struct. Biol, vol.10, pp.425-432, 2003.

X. L. Yang, Two conformations of a crystalline human tRNA synthetasetRNA complex: implications for protein synthesis, EMBO J, vol.25, pp.2919-2929, 2006.

N. Shen, Catalytic mechanism of the tryptophan activation reaction revealed by crystal structures of human tryptophanyl-tRNA synthetase in different enzymatic states, Nucleic Acids Res, vol.36, pp.1288-1299, 2008.

S. Hauenstein, C. M. Zhang, Y. M. Hou, and J. J. Perona, Shape-selective RNA recognition by cysteinyl-tRNA synthetase, Nat. Struct. Mol. Biol, vol.11, pp.1134-1141, 2004.

M. Konno, Modeling of tRNA-assisted mechanism of Arg activation based on a structure of Arg-tRNA synthetase, tRNA, and an ATP analog (ANP), FEBS J, vol.276, pp.4763-4779, 2009.

B. Delagoutte, D. Moras, and J. Cavarelli, tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding, EMBO J, vol.19, pp.5599-5610, 2000.

G. Tocchini-valentini, M. E. Saks, and J. Abelson, tRNA leucine identity and recognition sets, J. Mol. Biol, vol.298, pp.779-793, 2000.

D. C. Larkin, A. M. Williams, S. A. Martinis, and G. E. Fox, Identification of essential domains for Escherichia coli tRNALeu aminoacylation and amino acid editing using minimalist RNA molecules, Nucleic Acids Res, vol.30, pp.2103-2113, 2002.

T. Crepin, Use of analogues of methionine and methionyl adenylate to sample conformational changes during catalysis in Escherichia coli methionyl-tRNA synthetase, J. Mol. Biol, vol.332, pp.59-72, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00770917

T. Li, N. Guo, X. Xia, E. D. Wang, and Y. L. Wang, The peptide bond between E292-A293 of Escherichia coli leucyl-tRNA synthetase is essential for its activity, Biochemistry, vol.38, pp.13063-13069, 1999.

X. Du and E. D. Wang, E292 is important for the aminoacylation activity of Escherichia coli leucyl-tRNA synthetase, J. Protein Chem, vol.22, pp.71-76, 2003.

S. W. Lue and S. O. Kelley, An aminoacyl-tRNA synthetase with a defunct editing site, Biochemistry, vol.44, pp.3010-3016, 2005.

T. Kobayashi, Structural snapshots of the KMSKS loop rearrangement for amino acid activation by bacterial tyrosyl-tRNA synthetase, J. Mol. Biol, vol.346, pp.105-117, 2005.

M. T. Vu and S. A. Martinis, A unique insert of leucyl-tRNA synthetase is required for aminoacylation and not amino acid editing, Biochemistry, vol.46, pp.5170-5176, 2007.

J. S. Reader, Major biocontrol of plant tumors targets tRNA synthetase, Science, vol.309, p.1533, 2005.

L. Li, Naturally occurring aminoacyl-tRNA synthetases editing-domain mutations that cause mistranslation in Mycoplasma parasites, Proc. Natl. Acad. Sci. USA, vol.108, pp.9378-9383, 2011.

N. T. Uter and J. J. Perona, Active-site assembly in glutaminyl-tRNA synthetase by tRNA-mediated induced fit, Biochemistry, vol.45, pp.6858-6865, 2006.

K. M. Weimer, B. L. Shane, M. Brunetto, S. Bhattacharyya, and S. Hati, Evolutionary basis for the coupled-domain motions in Thermus thermophilus leucyl-tRNA synthetase, J. Biol. Chem, vol.284, pp.10088-10099, 2009.

J. M. Han, Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway, Cell, vol.149, pp.410-424, 2012.

G. Bonfils, Leucyl-tRNA synthetase controls TORC1 via the EGO complex, Mol. Cell, vol.46, pp.105-110, 2012.

S. J. Plotch, M. Bouloy, I. Ulmanen, and R. M. Krug, A unique cap(m 7 RNA transcription, Cell, vol.23, pp.847-858, 1981.

M. L. Li, P. Rao, and R. M. Krug, The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits, EMBO J, vol.20, pp.2078-2086, 2001.

P. Fechter, Two aromatic residues in the PB2 subunit of influenza A RNA polymerase are crucial for cap binding, J. Biol. Chem, vol.278, pp.20381-20388, 2003.

D. Guilligay, The structural basis for cap binding by influenza virus polymerase subunit PB2, Nature Struct. Mol. Biol, vol.15, pp.500-506, 2008.

L. Shi, D. F. Summers, Q. Peng, and J. M. Galarz, Influenza A virus RNA polymerase subunit PB2 is the endonuclease which cleaves host cell mRNA and functions only as the trimeric enzyme, Virology, vol.208, pp.38-47, 1995.

L. Doan, B. Handa, N. A. Roberts, and K. Klumpp, Metal ion catalysis of RNA cleavage by the influenza virus endonuclease, Biochemistry, vol.38, pp.5612-5619, 1999.

K. Klumpp, L. Doan, N. A. Roberts, and B. Handa, RNA and DNA hydrolysis are catalyzed by the influenza virus endonuclease, J. Biol. Chem, vol.275, pp.6181-6188, 2000.

J. Tomassini, Inhibition of cap

, GpppXm)-dependent endonuclease of influenza virus by 4-substituted 2,4-dioxobutanoic acid compounds, Antimicrob. Agents Chemother, vol.38, pp.2827-2837, 1994.

K. Hara, F. I. Schmidt, M. Crow, and G. G. Brownlee, Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding, J. Virol, vol.80, pp.7789-7798, 2006.

J. C. Hastings, H. Selnick, B. Wolanski, and J. E. Tomassini, Anti-influenza virus activities of 4-substituted 2,4-dioxobutanoic acid inhibitors, Antimicrob. Agents Chemother, vol.40, pp.1304-1307, 1996.

J. E. Tomassini, A novel antiviral agent which inhibits the endonuclease of influenza viruses, Antimicrob. Agents Chemother, vol.40, pp.1189-1193, 1996.

K. E. Parkes, Use of a pharmacophore model to discover a new class of influenza endonuclease inhibitors, J. Med. Chem, vol.46, pp.1153-1164, 2003.

E. Fodor, A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs, J. Virol, vol.76, pp.8989-9001, 2002.

M. T. Lee, Definition of the minimal viral components required for the initiation of unprimed RNA synthesis by influenza virus RNA polymerase, Nucleic Acids Res, vol.30, pp.429-438, 2002.

A. Honda, K. Mizumoto, and A. Ishihama, Minimum molecular architectures for transcription and replication of the influenza virus, Proc. Natl Acad. Sci. USA, vol.99, pp.13166-13171, 2002.

X. He, Crystal structure of the polymerase PA C -PB1 N complex from an avian influenza H5N1 virus, Nature, vol.454, pp.1123-1126, 2008.

E. Obayashi, The structural basis for an essential subunit interaction in influenza virus RNA polymerase, Nature, vol.454, pp.1127-1131, 2008.

T. Nishino, K. Komori, D. Tsuchiya, Y. Ishino, and K. Morikawa, Crystal structure of the archaeal Holliday junction resolvase Hjc and implications for DNA recognition, Structure, vol.9, pp.197-204, 2001.

N. C. Horton and J. J. Perona, DNA cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites, Biochemistry, vol.43, pp.6841-6857, 2004.

L. Knizewski, L. N. Kinch, N. V. Grishin, L. Rychlewski, and K. Ginalski, Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches, BMC Struct. Biol, vol.7, p.40, 2007.

L. S. Beese and T. A. Steitz, Structural basis for the 39-59 exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism, EMBO J, vol.10, pp.25-33, 1991.

H. Viadiu and A. K. Aggarwal, The role of metals in catalysis by the restriction endonuclease BamHI, Nature Struct. Biol, vol.5, pp.910-916, 1998.

F. Tarendeau, Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit, PLoS Pathog, vol.4, p.1000136, 2008.

M. Hagen, T. D. Chung, J. A. Butcher, and M. Krystal, Recombinant influenza virus polymerase: requirement of both 59 and 39 viral ends for endonuclease activity, J. Virol, vol.68, pp.1509-1515, 1994.

P. Rao, W. Yuan, and R. M. Krug, Crucial role of CA cleavage sites in the capsnatching mechanism for initiating viral mRNA synthesis, EMBO J, vol.22, pp.1188-1198, 2003.

G. Gabriel, The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host, Proc. Natl Acad. Sci. USA, vol.102, pp.18590-18595, 2005.

R. Salomon, The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04, J. Exp. Med, vol.203, pp.689-697, 2006.

U. B. Ericsson, B. M. Hallberg, G. T. Detitta, N. Dekker, and P. Nordlund, Thermofluor-based high-throughput stability optimization of proteins for structural studies, Anal. Biochem, vol.357, pp.289-298, 2006.

T. Saito, D. M. Owen, F. Jiang, J. Marcotrigiano, and M. Gale, Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA, Nature, vol.454, pp.523-527, 2008.

F. Baudin, C. Bach, S. Cusack, and R. W. Ruigrok, Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent, EMBO J, vol.13, pp.3158-3165, 1994.

E. Area, J. Martin-benito, P. Gastaminza, E. Torreira, J. M. Valpuesta et al., 3D structure of the influenza virus polymerase complex: localization of subunit domains, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.308-313, 2004.

M. C. Bewley and J. M. Flanagan, Arginase, Handbook of metalproteins, pp.952-962, 2001.

M. W. Brazier, P. Davies, E. Player, F. Marken, J. H. Viles et al., Manganese binding to the prion protein, J. Biol. Chem, vol.283, pp.12831-12839, 2008.

C. Cianci, L. Tiley, and M. Krystal, Differential activation of the influenza virus polymerase via template RNA binding, J. Virol, vol.69, pp.3995-3999, 1995.

R. Coloma, J. M. Valpuesta, R. Arranz, J. L. Carrascosa, J. Ortin et al., The structure of a biologically active influenza virus ribonucleoprotein complex, PLoS Pathog, vol.5, p.1000491, 2009.

A. Dias, D. Bouvier, T. Crepin, A. A. Mccarthy, D. J. Hart et al., The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit, Nature, vol.458, pp.914-918, 2009.

L. Doan, B. Handa, N. A. Roberts, and K. Klumpp, Metal ion catalysis of RNA cleavage by the influenza virus endonuclease, Biochemistry, vol.38, pp.5612-5619, 1999.

C. M. Dupureur, Roles of metal ions in nucleases, Curr. Opin. Chem. Biol, vol.12, pp.250-255, 2008.

U. B. Ericsson, B. M. Hallberg, G. T. Detitta, N. Dekker, and P. Nordlund, Thermofluor-based high-throughput stability optimization of proteins for structural studies, Anal. Biochem, vol.357, pp.289-298, 2006.

D. Guilligay, F. Tarendeau, P. Resa-infante, R. Coloma, T. Crepin et al., The structural basis for cap binding by influenza virus polymerase subunit PB2, Nat. Struct. Mol. Biol, vol.15, pp.500-506, 2008.

J. M. Guss and H. C. Freeman, Aminopeptidase, Handbook of metalproteins, pp.973-980, 2001.

M. Hagen, T. D. Chung, J. A. Butcher, and M. Krystal, Recombinant influenza virus polymerase: requirement of both 5? and 3? viral ends for endonuclease activity, J. Virol, vol.68, pp.1509-1515, 1994.

K. Hara, F. I. Schmidt, M. Crow, and G. G. Brownlee, Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding, J. Virol, vol.80, pp.7789-7798, 2006.

S. Hare, S. S. Gupta, E. Valkov, A. Engelman, and P. Cherepanov, Retroviral intasome assembly and inhibition of DNA strand transfer, Nature, vol.464, pp.232-236, 2010.

X. He, J. Zhou, M. Bartlam, R. Zhang, J. Ma et al., Crystal structure of the polymerase PA(C)-PB1(N) complex from an avian influenza H5N1 virus, Nature, vol.454, pp.1123-1126, 2008.

N. C. Horton and J. J. Perona, DNA cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites, Biochemistry, vol.43, pp.6841-6857, 2004.

P. Imhof, S. Fischer, and J. C. Smith, Catalytic mechanism of DNA backbone cleavage by the restriction enzyme EcoRV: a quantum mechanical/molecular mechanical analysis, Biochemistry, vol.48, pp.9061-9075, 2009.

K. Klumpp, R. W. Ruigrok, and F. Baudin, Roles of the influenza virus polymerase and nucleoprotein in forming a functional RNP structure, 1997.

, EMBO J, vol.16, pp.1248-1257

T. Kuzuhara, D. Kise, H. Yoshida, T. Horita, Y. Murazaki et al., Structural basis of the influenza A virus RNA polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 residue, J. Biol. Chem, vol.284, pp.6855-6860, 2009.

B. Lai, Y. Li, A. Cao, and L. Lai, Metal ion binding and enzymatic mechanism of Methanococcus jannaschii RNase HII, Biochemistry, vol.42, pp.785-791, 2003.

S. Leavitt and E. Freire, Direct measurement of protein binding energetics by isothermal titration calorimetry, Curr. Opin. Struct. Biol, vol.11, pp.560-566, 2001.

M. T. Lee, K. Klumpp, P. Digard, and L. Tiley, Activation of influenza virus RNA polymerase by the 5? and 3? terminal duplex of genomic RNA, Nucleic Acids Res, vol.31, pp.1624-1632, 2003.

M. L. Li, P. Rao, and R. M. Krug, The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits, EMBO J, vol.20, pp.2078-2086, 2001.

E. Obayashi, H. Yoshida, F. Kawai, N. Shibayama, A. Kawaguchi et al., The structural basis for an essential subunit interaction in influenza virus RNA polymerase, Nature, vol.454, pp.1127-1131, 2008.

J. Ortega, J. Martin-benito, T. Zurcher, J. M. Valpuesta, J. L. Carrascosa et al., Ultrastructural and functional analyses of recombinant influenza virus ribonucleoproteins suggest dimerization of nucleoprotein during virus amplification, J. Virol, vol.74, pp.156-163, 2000.

V. Pingoud, W. Wende, P. Friedhoff, M. Reuter, J. Alves et al., On the divalent metal ion dependence of DNA cleavage by restriction endonucleases of the EcoRI family, J. Mol. Biol, vol.393, pp.140-160, 2009.

S. J. Plotch, M. Bouloy, I. Ulmanen, and R. M. Krug, A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription, Cell, vol.23, pp.847-858, 1981.

L. L. Poon, D. C. Pritlove, E. Fodor, and G. G. Brownlee, Direct evidence that the poly(A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template, J. Virol, vol.73, pp.3473-3476, 1999.

J. S. Robertson, M. Schubert, and R. A. Lazzarini, Polyadenylation sites for influenza virus mRNA, J. Virol, vol.38, pp.157-163, 1981.

W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera et al., Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects, J. Comput. Chem, vol.23, pp.128-137, 2002.

T. Saito, D. M. Owen, F. Jiang, J. Marcotrigiano, and M. Gale, Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA, Nature, vol.454, pp.523-527, 2008.

F. Tarendeau, T. Crepin, D. Guilligay, R. W. Ruigrok, S. Cusack et al., Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit, PLoS Pathog, vol.4, p.1000136, 2008.

L. S. Tiley, M. Hagen, J. T. Matthews, and M. Krystal, Sequencespecific binding of the influenza virus RNA polymerase to sequences located at the 5? ends of the viral RNAs, J. Virol, vol.68, pp.5108-5116, 1994.

J. Tomassini, H. Selnick, M. E. Davies, M. E. Armstrong, J. Baldwin et al., Inhibition of cap (m7GpppXm)-dependent endonuclease of influenza virus by 4-substituted 2,4-dioxobutanoic acid compounds, Antimicrob. Agents Chemother, vol.38, pp.2827-2837, 1994.

E. Torreira, G. Schoehn, Y. Fernandez, N. Jorba, R. W. Ruigrok et al., ANALYSIS OF ENDONUCLEASE DOMAIN OF INFLUENZA VIRUS 9103 recombinant influenza virus polymerase heterotrimer, Nucleic Acids Res, vol.84, pp.3774-3783, 2007.

A. Wehenkel, M. Bellinzoni, F. Schaeffer, A. Villarino, and P. M. Alzari, Structural and binding studies of the three-metal center in two mycobacterial PPM Ser/Thr protein phosphatases, J. Mol. Biol, vol.374, pp.890-898, 2007.

P. Yuan, M. Bartlam, Z. Lou, S. Chen, J. Zhou et al., Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site, Nature, vol.458, pp.909-913, 2009.

C. Zhao, Z. Lou, Y. Guo, M. Ma, Y. Chen et al., Nucleoside monophosphate complex structures of the endonuclease domain from the influenza virus polymerase PA subunit reveal the substrate binding site inside the catalytic center, J. Virol, vol.83, pp.9024-9030, 2009.

A. J. Crépin and . Virol,

F. Baudin, C. Bach, S. Cusack, and R. W. Ruigrok, Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent, Embo J, vol.13, pp.3158-3165, 1994.

F. Iseni, F. Baudin, D. Blondel, and R. W. Ruigrok, Structure of the RNA inside the vesicular stomatitis virus nucleocapsid, Rna, vol.6, pp.270-281, 2000.

H. Arnheiter, N. L. Davis, G. Wertz, M. Schubert, and R. A. Lazzarini, Role of the nucleocapsid protein in regulating vesicular stomatitis virus RNA synthesis, Cell, vol.41, pp.259-267, 1985.

A. Honda, K. Ueda, K. Nagata, and A. Ishihama, RNA polymerase of influenza virus: role of NP in RNA chain elongation, J Biochem, vol.104, pp.1021-1026, 1988.

, Monomeric Nucleoprotein of Influenza A Virus PLOS Pathogens | www, vol.9, 2013.

R. W. Ruigrok, T. Crepin, and D. Kolakofsky, Nucleoproteins and nucleocapsids of negative-strand RNA viruses, Curr Opin Microbiol, vol.14, pp.504-510, 2011.

P. S. Masters and A. K. Banerjee, Complex formation with vesicular stomatitis virus phosphoprotein NS prevents binding of nucleocapsid protein N to nonspecific RNA, J Virol, vol.62, pp.2658-2664, 1988.

J. Curran, J. B. Marq, and D. Kolakofsky, An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication, J Virol, vol.69, pp.849-855, 1995.

M. Mavrakis, S. Mehouas, E. Real, F. Iseni, and D. Blondel, Rabies virus chaperone: identification of the phosphoprotein peptide that keeps nucleoprotein soluble and free from non-specific RNA, Virology, vol.349, pp.422-429, 2006.

C. Leyrat, F. Yabukarski, N. Tarbouriech, E. A. Ribeiro, J. Jensen et al., Structure of the vesicular stomatitis virus N(0)-P complex, PLoS Pathog, vol.7, p.1002248, 2011.

D. D. Raymond, M. E. Piper, S. R. Gerrard, and J. L. Smith, Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation, Proc Natl Acad Sci U S A, vol.107, pp.11769-11774, 2010.

F. Ferron, Z. Li, E. I. Danek, D. Luo, and Y. Wong, The hexamer structure of Rift Valley fever virus nucleoprotein suggests a mechanism for its assembly into ribonucleoprotein complexes, PLoS Pathog, vol.7, p.1002030, 2011.

D. D. Raymond, M. E. Piper, S. R. Gerrard, G. Skiniotis, and J. L. Smith, Phleboviruses encapsidate their genomes by sequestering RNA bases, Proc Natl Acad Sci U S A, vol.109, pp.19208-19213, 2012.

X. Qi, S. Lan, W. Wang, L. M. Schelde, and H. Dong, Cap binding and immune evasion revealed by Lassa nucleoprotein structure, Nature, vol.468, pp.779-783, 2010.

K. M. Hastie, C. R. Kimberlin, M. A. Zandonatti, I. J. Macrae, and E. O. Saphire, Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 39 to 59 exonuclease activity essential for immune suppression, Proc Natl Acad Sci U S A, vol.108, pp.2396-2401, 2011.

K. M. Hastie, T. Liu, S. Li, L. B. King, and N. Ngo, Crystal structure of the Lassa virus nucleoprotein-RNA complex reveals a gating mechanism for RNA binding, Proc Natl Acad Sci U S A, vol.108, pp.19365-19370, 2011.

Q. Ye, R. M. Krug, and Y. J. Tao, The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA, Nature, vol.444, pp.1078-1082, 2006.

A. K. Ng, H. Zhang, K. Tan, Z. Li, and J. H. Liu, Structure of the influenza virus A H5N1 nucleoprotein: implications for RNA binding, oligomerization, and vaccine design, Faseb J, vol.22, pp.3638-3647, 2008.

A. K. Ng, M. K. Lam, H. Zhang, J. Liu, and S. W. Au, Structural basis for RNA binding and homo-oligomer formation by influenza B virus nucleoprotein, J Virol, vol.86, pp.6758-6767, 2012.

R. W. Ruigrok and F. Baudin, Structure of influenza virus ribonucleoprotein particles. II. Purified RNA-free influenza virus ribonucleoprotein forms structures that are indistinguishable from the intact influenza virus ribonucleoprotein particles, J Gen Virol, vol.76, pp.1009-1014, 1995.

B. Tarus, O. Bakowiez, S. Chenavas, L. Duchemin, and L. F. Estrozi, Oligomerization paths of the nucleoprotein of influenza A virus, Biochimie, vol.94, pp.776-785, 2012.

Q. Ye, T. S. Guu, D. A. Mata, R. L. Kuo, and B. Smith, Biochemical and structural evidence in support of a coherent model for the formation of the double-helical influenza a virus ribonucleoprotein, MBio, vol.4, pp.467-00412, 2013.

D. Elton, E. Medcalf, K. Bishop, and P. Digard, Oligomerization of the influenza virus nucleoprotein: identification of positive and negative sequence elements, Virology, vol.260, pp.190-200, 1999.

W. H. Chan, A. K. Ng, N. C. Robb, M. K. Lam, and P. K. Chan, Functional analysis of the influenza virus H5N1 nucleoprotein tail loop reveals amino acids that are crucial for oligomerization and ribonucleoprotein activities, J Virol, vol.84, pp.7337-7345, 2010.

S. Boulo, H. Akarsu, V. Lotteau, C. W. Muller, and R. W. Ruigrok, Human importin alpha and RNA do not compete for binding to influenza A virus nucleoprotein, Virology, vol.409, pp.84-90, 2011.

R. Coloma, J. M. Valpuesta, R. Arranz, J. L. Carrascosa, and J. Ortin, The structure of a biologically active influenza virus ribonucleoprotein complex, PLoS Pathog, vol.5, p.1000491, 2009.

Y. F. Shen, Y. H. Chen, S. Y. Chu, M. I. Lin, and H. T. Hsu, E339?R416 salt bridge of nucleoprotein as a feasible target for influenza virus inhibitors, Proc Natl Acad Sci U S A, vol.108, pp.16515-16520, 2011.

T. Petri and N. J. Dimmock, Phosphorylation of influenza virus nucleoprotein in vivo, J Gen Virol, vol.57, pp.185-190, 1981.

O. Kistner, K. Muller, and C. Scholtissek, Differential phosphorylation of the nucleoprotein of influenza A viruses, J Gen Virol, vol.70, pp.2421-2431, 1989.

J. W. Almond and V. Felsenreich, Phosphorylation of the nucleoprotein of an avian influenza virus, J Gen Virol, vol.60, pp.295-305, 1982.

R. W. Compans, J. Content, and P. H. Duesberg, Structure of the ribonucleoprotein of influenza virus, J Virol, vol.10, pp.795-800, 1972.

J. Ortega, J. Martin-benito, T. Zurcher, J. M. Valpuesta, and J. L. Carrascosa, Ultrastructural and functional analyses of recombinant influenza virus ribonucleoproteins suggest dimerization of nucleoprotein during virus amplification, J Virol, vol.74, pp.156-163, 2000.

E. C. Hutchinson, E. M. Denham, B. Thomas, D. C. Trudgian, and S. S. Hester, Mapping the phosphoproteome of influenza a and B viruses by mass spectrometry, PLoS Pathog, vol.8, p.1002993, 2012.

R. Arranz, R. Coloma, F. J. Chichon, J. J. Conesa, and J. L. Carrascosa, The Structure of Native Influenza Virion Ribonucleoproteins, Science, vol.338, pp.1634-1637, 2012.

A. Moeller, R. N. Kirchdoerfer, C. S. Potter, B. Carragher, and I. A. Wilson, Organization of the Influenza Virus Replication Machinery, Science, vol.338, pp.1631-1634, 2012.

E. Fodor, D. C. Pritlove, and G. G. Brownlee, The influenza virus panhandle is involved in the initiation of transcription, J Virol, vol.68, pp.4092-4096, 1994.

L. S. Tiley, M. Hagen, J. T. Matthews, and M. Krystal, Sequence-specific binding of the influenza virus RNA polymerase to sequences located at the 59 ends of the viral RNAs, J Virol, vol.68, pp.5108-5116, 1994.

M. Hagen, T. D. Chung, J. A. Butcher, and M. Krystal, Recombinant influenza virus polymerase: requirement of both 59 and 39 viral ends for endonuclease activity, J Virol, vol.68, pp.1509-1515, 1994.

C. Cianci, L. Tiley, and M. Krystal, Differential activation of the influenza virus polymerase via template RNA binding, J Virol, vol.69, pp.3995-3999, 1995.

K. Klumpp, R. W. Ruigrok, and F. Baudin, Roles of the influenza virus polymerase and nucleoprotein in forming a functional RNP structure, Embo J, vol.16, pp.1248-1257, 1997.

N. Jorba, R. Coloma, and J. Ortin, Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication, PLoS Pathog, vol.5, p.1000462, 2009.

P. Resa-infante, N. Jorba, R. Coloma, and J. Ortin, The influenza virus RNA synthesis machine: advances in its structure and function, RNA Biol, vol.8, pp.207-215, 2011.

J. K. Marklund, Q. Ye, J. Dong, Y. J. Tao, and R. M. Krug, Sequence in the influenza A virus nucleoprotein required for viral polymerase binding and RNA synthesis, J Virol, vol.86, pp.7292-7297, 2012.

B. Tarus, C. Chevalier, C. A. Richard, B. Delmas, D. Primo et al., Molecular dynamics studies of the nucleoprotein of influenza A virus: role of the protein flexibility in RNA binding, PLoS One, vol.7, p.30038, 2012.

R. Y. Kao, D. Yang, L. S. Lau, W. H. Tsui, and L. Hu, Identification of influenza A nucleoprotein as an antiviral target, Nat Biotechnol, vol.28, pp.600-605, 2010.

C. Y. Su, T. J. Cheng, M. I. Lin, S. Y. Wang, and W. I. Huang, High-throughput identification of compounds targeting influenza RNA-dependent RNA polymerase activity, Proc Natl Acad Sci U S A, vol.107, pp.19151-19156, 2010.

S. W. Gerritz, C. Cianci, S. Kim, B. C. Pearce, and C. Deminie, Inhibition of influenza virus replication via small molecules that induce the formation of higher-order nucleoprotein oligomers, Proc Natl Acad Sci U S A, vol.108, pp.15366-15371, 2011.

W. Kabsch, Automatic Processing of Rotation Diffraction Data from Crystals of Initially Unknown Symmetry and Cell Constants, Journal of Applied Crystallography, vol.26, pp.795-800, 1993.

W. Kabsch, Integration, scaling, space-group assignment and postrefinement, Acta Crystallogr D Biol Crystallogr, vol.66, pp.133-144, 2010.

, The CCP4 suite: programs for protein crystallography, Collaborative Computational Project n, vol.50, pp.760-763, 1994.

W. L. Delano, The PyMOL Molecular Graphics System, 2002.

C. M. Mendel and D. B. Mendel, Non-specific' binding. The problem, and a solution, Biochem J, vol.228, pp.269-272, 1985.

W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, and A. Chiabrera, Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects, J Comput Chem, vol.23, pp.128-137, 2002.

P. Resa-infante, N. Jorba, R. Coloma, and J. Ortin, The influenza virus RNA synthesis machine: advances in its structure and function, RNA Biol, vol.8, pp.207-215, 2011.

E. Fodor, The RNA polymerase of influenza a virus: mechanisms of viral transcription and replication, Acta Virol, vol.57, pp.113-122, 2013.

I. Ulmanen, B. A. Broni, and R. M. Krug, Role of two of the influenza virus core P proteins in recognizing cap 1 structures

, GpppNm) on RNAs and in initiating viral RNA transcription, Proc. Natl Acad. Sci. USA, vol.78, pp.7355-7359, 1981.

D. Blass, E. Patzelt, and E. Kuechler, Identification of the cap binding protein of influenza virus, Nucleic Acids Res, vol.10, pp.4803-4812, 1982.

D. Guilligay, The structural basis for cap binding by influenza virus polymerase subunit PB2, Nature Struct. Mol. Biol, vol.15, pp.500-506, 2008.

A. Dias, The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit, Nature, vol.458, pp.914-918, 2009.

P. Yuan, Crystal structure of an avian influenza polymerase PA N reveals an endonuclease active site, Nature, vol.458, pp.909-913, 2009.

D. C. Pritlove, L. L. Poon, E. Fodor, J. Sharps, and G. G. Brownlee, Polyadenylation of influenza virus mRNA transcribed in vitro from model virion RNA templates: requirement for 59 conserved sequences, J. Virol, vol.72, pp.1280-1286, 1998.

M. E. Nemeroff, S. M. Barabino, Y. Li, W. Keller, and R. M. Krug, Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 39end formation of cellular pre-mRNAs, Mol. Cell, vol.1, pp.991-1000, 1998.

K. Bier, A. York, and E. Fodor, Cellular cap-binding proteins associate with influenza virus mRNAs, J. Gen. Virol, vol.92, pp.1627-1634, 2011.

N. Jorba, R. Coloma, and J. Ortin, Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication, PLoS Pathog, vol.5, p.1000462, 2009.

A. York, N. Hengrung, F. T. Vreede, J. T. Huiskonen, and E. Fodor, Isolation and characterization of the positive-sense replicative intermediate of a negative-strand RNA virus, Proc. Natl Acad. Sci. USA, vol.110, pp.4238-4245, 2013.

Y. Nie, I. Bellon-echeverria, S. Trowitzsch, C. Bieniossek, and I. Berger, Multiprotein complex production in insect cells by using polyproteins, Methods Mol. Biol, vol.1091, pp.131-141, 2014.

Y. S. Lee and B. L. Seong, Nucleotides in the panhandle structure of the influenza B virus virion RNA are involved in the specificity between influenza A and B viruses, J. Gen. Virol, vol.79, pp.673-681, 1998.

A. Pflug, D. Guilligay, S. Reich, and S. Cusack, Structure of influenza A polymerase bound to the viral RNA promoter, Nature

R. Flick, G. Neumann, E. Hoffmann, E. Neumeier, and G. Hobom, Promoter elements in the influenza vRNA terminal structure, RNA, vol.2, pp.1046-1057, 1996.

D. C. Pritlove, L. L. Poon, L. J. Devenish, M. B. Leahy, and G. G. Brownlee, A hairpin loop at the 59 end of influenza A virus virion RNA is required for synthesis of poly(A) 1 mRNA in vitro, J. Virol, vol.73, pp.2109-2114, 1999.

L. L. Newcomb, Interaction of the influenza a virus nucleocapsid protein with the viral RNA polymerase potentiates unprimed viral RNA replication, J. Virol, vol.83, pp.29-36, 2009.

A. Moeller, R. N. Kirchdoerfer, C. S. Potter, B. Carragher, and I. A. Wilson, Organization of the influenza virus replication machinery, Science, vol.338, pp.1631-1634, 2012.

S. J. Butcher, J. M. Grimes, E. V. Makeyev, D. H. Bamford, and D. I. Stuart, A mechanism for initiating RNA-dependent RNA polymerization, Nature, vol.410, pp.235-240, 2001.

J. Lescar and B. Canard, RNA-dependent RNA polymerases from flaviviruses and Picornaviridae, Curr. Opin. Struct. Biol, vol.19, pp.759-767, 2009.

P. Gong and O. B. Peersen, Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase, Proc. Natl Acad. Sci. USA, vol.107, pp.22505-22510, 2010.

T. Deng, F. T. Vreede, and G. G. Brownlee, Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication, J. Virol, vol.80, pp.2337-2348, 2006.

R. T. Mosley, Structure of hepatitis C virus polymerase in complex with primer-template RNA, J. Virol, vol.86, pp.6503-6511, 2012.

S. J. Plotch, M. Bouloy, I. Ulmanen, and R. M. Krug, A unique cap(m 7 RNA transcription, Cell, vol.23, pp.847-858, 1981.

J. Reguera, F. Weber, and S. Cusack, Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription, PLoS Pathog, vol.6, p.1001101, 2010.

D. Sikora, L. Rocheleau, E. G. Brown, and M. Pelchat, Deep sequencing reveals the eight facets of the influenza A/HongKong/1/1968 (H3N2) virus cap-snatching process, Sci. Rep, vol.4, p.6181, 2014.

K. Datta, A. Wolkerstorfer, O. H. Szolar, S. Cusack, and K. Klumpp, Characterization of PA-N terminal domain of Influenza A polymerase reveals sequence specific RNA cleavage, Nucleic Acids Res, vol.441, pp.349-353, 2013.

M. Hagen, L. Tiley, T. D. Chung, and M. Krystal, The role of template-primer interactions in cleavage and initiation by the influenza virus polymerase, J. Gen. Virol, vol.76, pp.603-611, 1995.

P. Rao, W. Yuan, and R. M. Krug, Crucial role of CA cleavage sites in the cap-snatching mechanism for initiating viral mRNA synthesis, EMBO J, vol.22, pp.1188-1198, 2003.

C. Geerts-dimitriadou, R. Goldbach, and R. Kormelink, Preferential use of RNA leader sequences during influenza A transcription initiation in vivo, Virology, vol.409, pp.27-32, 2011.

C. Geerts-dimitriadou, M. P. Zwart, R. Goldbach, and R. Kormelink, Base-pairing promotes leader selection to prime in vitro influenza genome transcription, Virology, vol.409, pp.17-26, 2011.

J. Braam, I. Ulmanen, and R. M. Krug, Molecular model of a eucaryotic transcription complex: functions and movements of influenza P proteins during capped RNA-primed transcription, Cell, vol.34, pp.609-618, 1983.

M. L. Li, P. Rao, and R. M. Krug, The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits, EMBO J, vol.20, pp.2078-2086, 2001.

A. Honda, K. Mizumoto, and A. Ishihama, Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase, Genes Cells, vol.4, pp.475-485, 1999.

S. R. Shih and R. M. Krug, Surprising function of the three influenza viral polymerase proteins: selective protection of viral mRNAs against the cap-snatching reaction catalyzed by the same polymerase proteins, Virology, vol.226, pp.430-435, 1996.

K. Lim, Biophysical characterization of sites of host adaptive mutation in the influenza A virus RNA polymerase PB2 RNA-binding domain, Int. J. Biochem. Cell Biol, vol.53, pp.237-245, 2014.

A. K. Ng, Influenza polymerase activity correlates with the strength of interaction between nucleoprotein and PB2 through the host-specific residue K/E627, PLoS ONE, vol.7, p.36415, 2012.

R. Coloma, The structure of a biologically active influenza virus ribonucleoprotein complex, PLoS Pathog, vol.5, p.1000491, 2009.

, Acta Crystallogr. D, vol.66, pp.133-144, 2010.

R. J. Read, Pushing the boundaries of molecular replacement with maximum likelihood, Acta Crystallogr. D, vol.57, pp.1373-1382, 2001.

G. Bricogne, C. Vonrhein, C. Flensburg, M. Schiltz, and W. Paciorek, Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0, Acta Crystallogr. D, vol.59, pp.2023-2030, 2003.

J. P. Abrahams and A. G. Leslie, Methods used in the structure determination of bovine mitochondrial F1 ATPase, Acta Crystallogr. D, vol.52, pp.30-42, 1996.

G. N. Murshudov, Refinement of macromolecular structures by the maximum-likelihood method, Acta Crystallogr. D, vol.53, pp.240-255, 1997.

R. A. Nicholls, M. Fischer, S. Mcnicholas, and G. N. Murshudov, Conformationindependent structural comparison of macromolecules with ProSMART, Acta Crystallogr. D, vol.70, pp.2487-2499, 2014.

W. L. Delano, The PyMOL Molecular Graphics System, LLC, 2002.

V. B. Chen, MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr. D, vol.66, pp.12-21, 2010.

M. De-la-peñ-a, O. J. Kyrieleis, and S. Cusack, Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase, EMBO J, vol.26, pp.4913-4925, 2007.

Q. Ye, R. M. Krug, and Y. J. Tao, The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA, Nature, vol.444, pp.1078-1082, 2006.

E. F. Pettersen, UCSF Chimera-a visualization system for exploratory research and analysis, J. Comp. Chem, vol.25, pp.1605-1612, 2004.

X. Siebert and J. Navaza, UROX 2.0: an interactive tool for fitting atomic models into electron-microscopy reconstructions, Acta Crystallogr. D, vol.65, pp.651-658, 2009.

R. M. Esnouf, Further additions to MolScript version 1.4, including reading and contouring of electron-density maps, Acta Crystallogr. D, vol.55, pp.938-940, 1999.

E. Area, 3D structure of the influenza virus polymerase complex: localization of subunit domains, Proc. Natl Acad. Sci. USA, vol.101, pp.308-313, 2004.

C. Wakai, M. Iwama, K. Mizumoto, and K. Nagata, Recognition of cap structure by influenza B virus RNA polymerase is less dependent on the methyl residue than recognition by influenza A virus polymerase, J. Virol, vol.85, pp.7504-7512, 2011.

, RESEARCH ARTICLE Macmillan Publishers Limited. All rights reserved ©2014

, Scientific RepoRts |, vol.6

, Whereas PB2 and NP use importins-? 9, pp.34-37

, Both RanBP5 and PA-PB1(1-686) were eluted in the same single peak, but MALLS-RI indicated a molecular weight corresponding of a mixture rather than a stable ternary complex (supplementary Figure 6). We then attempted to produce a PA-PB1(1-686)-RanBP5 heterotrimer by the self-processing polyprotein strategy. A long ORF encoding for the trimeric complex was created by inserting the IPO5 gene downstream of the PB1(1-686) coding sequence, PB1 are conjointly imported as a preformed heterodimeric submodule by the importin-? RanBP5 10, vol.12

S. Online, Ab-initio modelling was performed using 15 DAMMIF models which were averaged by DAMAVER. Averaged model correlation with the diffusion curve was then checked using the damstart file as a starting envelope for DAMMIN. The polymerase DAMAVER envelope (Fig. 4a) appears as a pear shaped structure in which the homologous model can be fitted. Additional envelope volume is visible close to the endonuclease domain, implying that it adopts multiple conformations in solution. Using the same methodology, we determine RanBP5 to be a monomer in solution with a measured Mw of 144 kDa close to the theoretical Mw of 126 kDa (Table 3 and supplementary Figure 7). RanBP5 displays an Rg of 38.8 Å and a Dmax of 136 Å. With a Mw lower than that of PA-PB1(1-686), RanBP5 displays a larger Dmax and Rg indicating an extended structure. We have looked over the Protein Data Base (PDB) and found yeast, SAXS was used for the characterisation of PA-PB1(1-686), RanBP5 and PA-PB1(1-686)-RanBP5, respectively in solution. Using the Vc determination method 39 on the diffusion data of PA-PB1(1-686) shows a Mw estimate of 146 kDa (Table 3 and supplementary Figure 7

, Online SEC-SAXS was therefore used for all experiments in order to limit the contribution of partially aggregated, oligomeric or dissociated protein to the experimental curve. The experimental setup consists of a High Pressure Liquid Chromatography (HPLC) system connected to an analytical S200 increase column (5/150 GL, GE Healthcare) followed downstream by the SAXS sample capillary. SAXS measurements were performed every second with a Pilatus 1 M detector at distance of 2.87 m allowing a q range of 0.03 to 4.5 nm with a wavelength of 0.01 nm. Following data collection, experimental curves were subtracted and analysed using Primus (ATSAS) or Scatter (Bioisis) programs suits 56 . To verify the molecular mass, the Rambo and Tainer method was used 39,57 . Rg predictions using the Guinier extrapolation were plotted against the elution volume to select the most monodisperse part of the protein elution peak. SAXS datasets within this zone were then scaled and averaged to produce one unique I(q) curve. GNOM 58 was then used to produce a P(r) function which was subsequently used by DAMMIF 59 to generate 15 ab-initio models. DAMAVER 60 was then used to generate an average model. Consistency of the DAMAVER averaging with the original experimental curve was assessed by using DAMMIN 41 and using the damstart.pdb envelope as a starting model, SAXS analysis. All datasets were collected on BM29 (ESRF). The initial trials using direct sample measurement showed a slight concentration dependency of the Guinier estimated Rg

C. Cianci, L. Tiley, and M. Krystal, Differential activation of the influenza virus polymerase via template RNA binding, J Virol, vol.69, pp.3995-3999, 1995.

M. Hagen, T. D. Chung, J. A. Butcher, and M. Krystal, Recombinant influenza virus polymerase: requirement of both 5? and 3? viral ends for endonuclease activity, J Virol, vol.68, pp.1509-1515, 1994.

L. S. Tiley, M. Hagen, J. T. Matthews, and M. Krystal, Sequence-specific binding of the influenza virus RNA polymerase to sequences located at the 5? ends of the viral RNAs, J Virol, vol.68, pp.5108-5116, 1994.

S. J. Plotch, M. Bouloy, I. Ulmanen, and R. M. Krug, A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription, Cell, vol.23, pp.847-858, 1981.

S. Reich, Structural insight into cap-snatching and RNA synthesis by influenza polymerase, Nature, vol.516, pp.361-366, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01132328

A. Pflug, D. Guilligay, S. Reich, and S. Cusack, Structure of influenza A polymerase bound to the viral RNA promoter, Nature, vol.516, pp.355-360, 2014.

N. Hengrung, Crystal structure of the RNA-dependent RNA polymerase from influenza C virus, Nature, vol.527, pp.114-117, 2015.

J. Mukaigawa and D. P. Nayak, Two signals mediate nuclear localization of influenza virus (A/WSN/33) polymerase basic protein 2, J Virol, vol.65, pp.245-253, 1991.

F. Tarendeau, Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit, Nat Struct Mol Biol, vol.14, pp.229-233, 2007.

T. Deng, Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex, J Virol, vol.80, pp.11911-11919, 2006.

S. Huet, Nuclear import and assembly of influenza A virus RNA polymerase studied in live cells by fluorescence crosscorrelation spectroscopy, J Virol, vol.84, pp.1254-1264, 2010.

E. C. Hutchinson, O. E. Orr, M. Liu, S. Engelhardt, O. G. Fodor et al., Characterization of the interaction between the influenza A virus polymerase subunit PB1 and the host nuclear import factor Ran-binding protein 5, J Gen Virol, vol.92, pp.1859-1869, 2011.

S. Chang, Cryo-EM structure of influenza virus RNA polymerase complex at 4.3 A resolution, Mol Cell, vol.57, pp.925-935, 2015.

J. A. Al-tawfiq, A. Zumla, and Z. A. Memish, Coronaviruses: severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus in travelers. Current opinion in infectious diseases, vol.27, pp.411-417, 2014.

S. Lucas and A. M. Nelson, HIV and the spectrum of human disease, The Journal of pathology, vol.235, pp.229-241, 2015.

T. Crepin, Polyproteins in structural biology, Curr Opin Struct Biol, vol.32, pp.139-146, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01241235

Y. Nie, I. Bellon-echeverria, S. Trowitzsch, C. Bieniossek, and I. Berger, Multiprotein complex production in insect cells by using polyproteins, Methods in molecular biology, vol.1091, pp.131-141, 2014.

C. Bieniossek, T. Imasaki, Y. Takagi, and I. Berger, MultiBac: expanding the research toolbox for multiprotein complexes, Trends Biochem Sci, vol.37, pp.49-57, 2012.

S. Trowitzsch, C. Bieniossek, Y. Nie, F. Garzoni, and I. Berger, New baculovirus expression tools for recombinant protein complex production, J Struct Biol, vol.172, pp.45-54, 2010.

K. Sugiyama, Structural insight into the essential PB1-PB2 subunit contact of the influenza virus RNA polymerase, Embo J, vol.28, pp.1803-1811, 2009.

Y. An, P. Meresse, P. J. Mas, and D. J. Hart, CoESPRIT: a library-based construct screening method for identification and expression of soluble protein complexes, PLoS One, vol.6, p.16261, 2011.

D. Guilligay, The structural basis for cap binding by influenza virus polymerase subunit PB2, Nat Struct Mol Biol, vol.15, pp.500-506, 2008.

C. Bieniossek, T. J. Richmond, and I. Berger, MultiBac: multigene baculovirus-based eukaryotic protein complex production. Current protocols in protein science / editorial board, Unit, vol.5, p.20, 2008.

F. Baudin, C. Bach, S. Cusack, and R. W. Ruigrok, Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent, Embo J, vol.13, pp.3158-3165, 1994.

T. Crepin, Mutational and metal binding analysis of the endonuclease domain of the influenza virus polymerase PA subunit, J Virol, vol.84, pp.9096-9104, 2010.

A. Dias, The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit, Nature, vol.458, pp.914-918, 2009.

X. He, Crystal structure of the polymerase PA(C)-PB1(N) complex from an avian influenza H5N1 virus, Nature, vol.454, pp.1123-1126, 2008.

E. Obayashi, The structural basis for an essential subunit interaction in influenza virus RNA polymerase, Nature, vol.454, pp.1127-1131, 2008.

U. Desselberger, V. R. Racaniello, J. J. Zazra, and P. Palese, The 3? and 5?-terminal sequences of influenza A, B and C virus RNA segments are highly conserved and show partial inverted complementarity, Gene, vol.8, pp.315-328, 1980.

J. S. Robertson, 5? and 3? terminal nucleotide sequences of the RNA genome segments of influenza virus, Nucleic Acids Res, vol.6, pp.3745-3757, 1979.

J. J. Skehel and A. J. Hay, Nucleotide sequences at the 5? termini of influenza virus RNAs and their transcripts, Nucleic Acids Res, vol.5, pp.1207-1219, 1978.

G. G. Brownlee and J. L. Sharps, The RNA polymerase of influenza a virus is stabilized by interaction with its viral RNA promoter, J Virol, vol.76, pp.7103-7113, 2002.

, Scientific RepoRts |, vol.6

A. I. Tomescu, N. C. Robb, N. Hengrung, E. Fodor, and A. N. Kapanidis, Single-molecule FRET reveals a corkscrew RNA structure for the polymerase-bound influenza virus promoter, Proc Natl Acad Sci, vol.111, pp.3335-3342, 2014.

K. Melen, Importin alpha nuclear localization signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein, J Biol Chem, vol.278, pp.28193-28200, 2003.

T. Naito, F. Momose, A. Kawaguchi, and K. Nagata, Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits, J Virol, vol.81, pp.1339-1349, 2007.

A. Portela and P. Digard, The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication, J Gen Virol, vol.83, pp.723-734, 2002.

F. Weber, G. Kochs, S. Gruber, and O. Haller, A classical bipartite nuclear localization signal on Thogoto and influenza A virus nucleoproteins, Virology, vol.250, pp.9-18, 1998.

E. Fodor and M. Smith, The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex, J Virol, vol.78, pp.9144-9153, 2004.

R. P. Rambo and J. A. Tainer, Accurate assessment of mass, models and resolution by small-angle scattering, Nature, vol.496, pp.477-481, 2013.

J. Kobayashi and Y. Matsuura, Structural basis for cell-cycle-dependent nuclear import mediated by the karyopherin Kap121p, J Mol Biol, vol.425, pp.1852-1868, 2013.

D. I. Svergun, Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing, Biophys. J, vol.76, pp.2879-2886, 1999.

E. Delaforge, Large-Scale Conformational Dynamics Control H5N1 Influenza Polymerase PB2 Binding to Importin alpha, Journal of the American Chemical Society, vol.137, pp.15122-15134, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01376157

E. Thierry, Influenza Polymerase Can Adopt an Alternative Configuration Involving a Radical Repacking of PB2 Domains, Mol Cell, vol.61, pp.125-137, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01430621

F. Momose, Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis, J Biol Chem, vol.277, pp.45306-45314, 2002.

G. Chase, Hsp90 inhibitors reduce influenza virus replication in cell culture, Virology, vol.377, pp.431-439, 2008.

D. J. Fitzgerald, Multiprotein expression strategy for structural biology of eukaryotic complexes, Structure, vol.15, pp.275-279, 2007.

D. Palmberger, D. Rendic, and . Sweetbac, Applying MultiBac Technology Towards Flexible Modification of Insect Cell Glycosylation, Methods in molecular biology 1321, pp.153-169, 2015.

A. Iwai, Influenza A virus polymerase inhibits type I interferon induction by binding to interferon beta promoter stimulator 1, J Biol Chem, vol.285, pp.32064-32074, 2010.

T. Deng, J. Sharps, E. Fodor, and G. G. Brownlee, In vitro assembly of PB2 with a PB1-PA dimer supports a new model of assembly of influenza A virus polymerase subunits into a functional trimeric complex, J Virol, vol.79, pp.8669-8674, 2005.

K. M. Graef, The PB2 subunit of the influenza virus RNA polymerase affects virulence by interacting with the mitochondrial antiviral signaling protein and inhibiting expression of beta interferon, J Virol, vol.84, pp.8433-8445, 2010.

D. Patel, L. W. Schultz, and T. C. Umland, Influenza A polymerase subunit PB2 possesses overlapping binding sites for polymerase subunit PB1 and human MAVS proteins, Virus Res, vol.172, pp.75-80, 2013.

C. Degut, A. Monod, F. Brachet, T. Crepin, and C. Tisne, In Vitro/In Vivo Production of tRNA for X-Ray Studies, Methods in molecular biology, vol.1320, pp.37-57, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01993848

S. R. Price, N. Ito, C. Oubridge, J. M. Avis, and K. Nagai, Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies, J Mol Biol, vol.249, pp.398-408, 1995.

S. Boulo, Human importin alpha and RNA do not compete for binding to influenza A virus nucleoprotein, Virology, vol.409, pp.84-90, 2011.

S. Chenavas, Monomeric nucleoprotein of influenza A virus, PLoS Pathog, vol.9, p.1003275, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01666129

M. V. Petoukhov, P. V. Konarev, A. G. Kikhney, and D. I. Svergun, ATSAS 2.1 -towards automated and web-supported small-angle scattering data analysis, J. Appl. Crystallogr, vol.40, pp.223-228, 2007.

R. P. Rambo and J. A. Tainer, Super-resolution in solution X-ray scattering and its applications to structural systems biology, Annual review of biophysics, vol.42, pp.415-441, 2013.

A. V. Semenyuk and D. I. Svergun, GNOM -a program package for small-angle scattering data processing, J. Appl. Crystallogr, vol.24, pp.537-540, 1991.

D. Franke and D. I. Svergun, DAMMIF , a program for rapid ab-initio shape determination in small-angle scattering, J. Appl. Crystallogr, vol.42, pp.342-346, 2009.

V. V. Volkov and D. I. Svergun, Uniqueness of ab initio shape determination in small-angle scattering, J. Appl. Crystallogr, vol.36, pp.860-864, 2003.

D. Svergun, C. Barberato, and M. H. Koch, CRYSOL -a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates, J. Appl. Crystallogr, vol.28, pp.768-773, 1995.

M. V. Petoukhov and D. I. Svergun, Global rigid body modeling of macromolecular complexes against small-angle scattering data, Biophysical journal, vol.89, pp.1237-1250, 2005.

E. F. Pettersen, UCSF Chimera--a visualization system for exploratory research and analysis, J Comput Chem, vol.25, pp.1605-1612, 2004.

I. Wong and T. M. Lohman, A double-filter method for nitrocellulose-filter binding: application to protein-nucleic acid interactions, Proc Natl Acad Sci, vol.90, pp.5428-5432, 1993.

R. Arranz, R. Coloma, F. J. Chichon, J. J. Conesa, J. L. Carrascosa et al.,

J. Valpuesta, J. Ortin, and . Martin-benito, The structure of native influenza virion 352 ribonucleoproteins, Science, vol.338, pp.1634-1637, 2012.

F. Baudin, C. Bach, S. Cusack, and R. W. Ruigrok, Structure of influenza virus, 1994.

R. I. , Influenza virus nucleoprotein melts secondary structure in panhandle RNA and 355 exposes the bases to the solvent, The EMBO journal, vol.13, pp.3158-3165

L. M. Bloyet, J. Brunel, M. Dosnon, V. Hamon, J. Erales et al.,

P. Bignon, S. Roche, D. Longhi, and . Gerlier, Modulation of Re-initiation of, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01911531

, Measles Virus Transcription at Intergenic Regions by PXD to NTAIL Binding Strength

, PLoS pathogens, vol.12, p.1006058

S. Boivin and D. J. Hart, Interaction of the influenza A virus polymerase PB2 C-361 terminal region with importin alpha isoforms provides insights into host adaptation and 362 polymerase assembly, The Journal of biological chemistry, vol.286, pp.10439-10448, 2011.

S. Chenavas, L. F. Estrozi, A. Slama-schwok, B. Delmas, C. D. Primo et al.,

T. Li, R. W. Crepin, and . Ruigrok, Monomeric nucleoprotein of influenza A virus, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01666129

, PLoS pathogens, vol.9, p.1003275

S. X. Cohen, M. Ben-jelloul, F. Long, A. Vagin, P. Knipscheer et al.,

V. S. Sixma, G. N. Lamzin, A. Murshudov, and . Perrakis, ARP/wARP and 368 molecular replacement: the next generation, Acta crystallographica. Section D, Biological 369 crystallography, vol.64, pp.49-60, 2008.

G. Communie, R. W. Ruigrok, M. R. Jensen, and M. Blackledge, Intrinsically 371 disordered proteins implicated in paramyxoviral replication machinery. Current opinion in 372 virology, vol.5, pp.72-81, 2014.

J. F. Cros, A. Garcia-sastre, and P. Palese, An unconventional NLS is critical for 374 the nuclear import of the influenza A virus nucleoprotein and ribonucleoprotein, Traffic, vol.375, pp.205-213, 2005.

D. Elton, L. Medcalf, K. Bishop, D. Harrison, and P. Digard, Identification of 377 amino acid residues of influenza virus nucleoprotein essential for RNA binding, Journal of 378 virology, vol.73, pp.7357-7367, 1999.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and 380 development of Coot, Acta crystallographica. Section D, Biological crystallography, vol.381, pp.486-501, 2010.

J. R. Gallagher, U. Torian, D. M. Mccraw, and A. K. Harris, Structural studies of 383 influenza virus RNPs by electron microscopy indicate molecular contortions within NP 384 supra-structures, Journal of structural biology, 2016.

Y. Gaudin, R. W. Ruigrok, C. Tuffereau, M. Knossow, and A. Flamand, Rabies 386 virus glycoprotein is a trimer, Virology, vol.187, pp.627-632, 1992.

F. C. Gerard, A. Ede, C. Leyrat, I. Ivanov, D. Blondel et al.,

M. Ruigrok and . Jamin, Modular organization of rabies virus phosphoprotein, Journal of molecular biology, vol.389, pp.978-996, 2009.

I. Gutsche, A. Desfosses, G. Effantin, W. L. Ling, M. Haupt et al.,

G. Sachse and . Schoehn, Structural virology. Near-atomic cryo-EM structure of 392 the helical measles virus nucleocapsid, Science, vol.348, pp.704-707, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01162615

B. M. Hause, M. Ducatez, E. A. Collin, Z. Ran, R. Liu et al.,

S. Kaplan, A. D. Chakravarty, R. J. Hoppe, R. R. Webby, F. Simonson et al., , 2013.

, Isolation of a novel swine influenza virus from Oklahoma in 2011 which is distantly related 396 to human influenza C viruses, PLoS pathogens, vol.9, p.1003176

L. Holm and P. Rosenstrom, Dali server: conservation mapping in 3D, Nucleic, vol.398, pp.545-549, 2010.

M. R. Jensen, G. Communie, E. A. Ribeiro, N. Martinez, A. Desfosses et al.,

L. Salmon, F. Mollica, M. Gabel, S. Jamin, R. W. Longhi et al.,

. Blackledge, Intrinsic disorder in measles virus nucleocapsids, Proceedings of the 402 National Academy of Sciences of the United States of America, vol.108, pp.9839-9844, 2011.

W. Kabsch, Xds. Acta crystallographica. Section D, Biological crystallography, vol.404, pp.125-132, 2010.

K. Klumpp, R. W. Ruigrok, and F. Baudin, Roles of the influenza virus 406 polymerase and nucleoprotein in forming a functional RNP structure, The EMBO journal, vol.407, pp.1248-1257, 1997.

A. Labaronne, C. Swale, A. Monod, G. Schoehn, T. Crepin et al., , 2016.

, Binding of RNA by the Nucleoproteins of Influenza Viruses A and B. Viruses 8

J. Liu, Y. Cong, R. Yin, C. Ding, S. Yu et al., The 411 deletion of an extra six nucleotides in the 5' -untranslated region of the nucleoprotein 412 gene of Newcastle disease virus NA-1 decreases virulence, BMC veterinary research, p.413, 2014.