P. V. Vignais, The superoxide-generating NADPH oxidase: structural aspects and activation mechanism, Cellular and Molecular Life Sciences (CMLS), vol.59, issue.9, pp.1428-1459, 2002.
DOI : 10.1007/s00018-002-8520-9

O. Inanami, J. L. Johnson, J. K. Mcadara, J. E. Benna, L. R. Faust et al., Activation of the Leukocyte NADPH Oxidase by Phorbol Ester Requires the Phosphorylation of p47PHOX on Serine 303 or 304, Journal of Biological Chemistry, vol.273, issue.16, pp.9539-9543, 1998.
DOI : 10.1074/jbc.273.16.9539

J. L. Johnson, J. W. Park, J. E. Benna, L. P. Faust, O. Inanami et al., Activation of p47PHOX, a Cytosolic Subunit of the Leukocyte NADPH Oxidase. PHOSPHORYLATION OF Ser-359 OR Ser-370 PRECEDES PHOSPHORYLATION AT OTHER SITES AND IS REQUIRED FOR ACTIVITY, Journal of Biological Chemistry, vol.273, issue.52, pp.35147-35152, 1998.
DOI : 10.1074/jbc.273.52.35147

E. P. Reeves, H. Lu, H. L. Jacobs, C. G. Messina, S. Bolsover et al., Killing activity of neutrophils is mediated through activation of proteases by K+??flux, Nature, vol.81, issue.6878, pp.291-297, 2002.
DOI : 10.1038/416291a

P. G. Heyworth, J. T. Curnutte, W. M. Nauseef, B. D. Volpp, D. W. Pearson et al., Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558., Journal of Clinical Investigation, vol.87, issue.1, pp.352-356, 1991.
DOI : 10.1172/JCI114993

Y. Nisimoto, S. Motalebi, C. Han, and J. D. Lambeth, The p67phox Activation Domain Regulates Electron Flow from NADPH to Flavin in Flavocytochromeb 558, Journal of Biological Chemistry, vol.274, issue.33, pp.22999-23005, 1999.
DOI : 10.1074/jbc.274.33.22999

A. Someya, I. Nagaoka, and T. Yamashita, Purification of the 260 kDa cytosolic complex involved in the Superoxide production of guinea pig neutrophils, FEBS Letters, vol.13, issue.2, pp.215-218, 1993.
DOI : 10.1016/0014-5793(93)80276-Z

F. B. Wientjes, J. J. Hsuan, N. F. Totty, and A. W. Segal, homology 3 domains, Biochemical Journal, vol.296, issue.3, pp.557-561, 1993.
DOI : 10.1042/bj2960557

S. Tsunawaki, H. Mizunari, M. Nagata, O. Tatsuzawa, and T. Kuratsuji, A Novel Cytosolic Component, p40phox, of Respiratory Burst Oxidase Associates with p67phox and Is Absent in Patients with Chronic Granulomatous Disease Who Lack p67phox, Biochemical and Biophysical Research Communications, vol.199, issue.3, pp.1378-1387, 1994.
DOI : 10.1006/bbrc.1994.1383

C. P. Ponting, T. Ito, J. Moscat, M. T. Diaz-meco, F. Inagaki et al., OPR, PC and AID: all in the PB1 family, Trends in Biochemical Sciences, vol.27, issue.1, p.10, 2002.
DOI : 10.1016/S0968-0004(01)02006-0

J. Bravo, D. Karathanassis, C. M. Pacold, M. E. Pacold, C. D. Ellson et al., The Crystal Structure of the PX Domain from p40phox Bound to Phosphatidylinositol 3-Phosphate, Molecular Cell, vol.8, issue.4, pp.829-839, 2001.
DOI : 10.1016/S1097-2765(01)00372-0

A. Fuchs, M. C. Dagher, J. Faure, and P. V. Vignais, Topological organization of the cytosolic activating complex of the superoxide-generating NADPH-oxidase. Pinpointing the sites of interaction between p47phox, p67phox and p40phox using the two-hybrid system, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1312, issue.1, pp.39-47, 1996.
DOI : 10.1016/0167-4889(96)00020-1

URL : https://hal.archives-ouvertes.fr/hal-00820791

T. Ito, Y. Matsui, T. Ago, K. Ota, and H. Sumimoto, Novel modular domain PB1 recognizes PC motif to mediate functional protein-protein interactions, The EMBO Journal, vol.20, issue.15, pp.3938-3946, 2001.
DOI : 10.1093/emboj/20.15.3938

S. Tsunawaki, S. Kagara, K. Yoshikawa, L. S. Yoshida, T. Kuratsuji et al., Involvement of p40phox in activation of phagocyte NADPH oxidase through association of its carboxyl-terminal, but not its amino-terminal, with p67phox, Journal of Experimental Medicine, vol.184, issue.3, pp.893-902, 1996.
DOI : 10.1084/jem.184.3.893

A. R. Cross, p40phox participates in the activation of NADPH oxidase by increasing the affinity of p47phox for flavocytochrome b558, Biochemical Journal, vol.349, issue.1, pp.113-117, 2000.
DOI : 10.1042/bj3490113

S. Vergnaud, M. H. Paclet, J. Benna, M. A. Pocidalo, and F. Morel, Complementation of NADPH oxidase in p67-phox-deficient CGD patients, European Journal of Biochemistry, vol.269, issue.4, pp.1059-1067, 2000.
DOI : 10.1046/j.1432-1327.2000.01097.x

K. Lapouge, S. J. Smith, Y. Groemping, and K. Rittinger, Architecture of the p40-p47-p67phox Complex in the Resting State of the NADPH Oxidase: A CENTRAL ROLE FOR p67 phox, Journal of Biological Chemistry, vol.277, issue.12, pp.10121-10128, 2002.
DOI : 10.1074/jbc.M112065200

R. Nakamura, H. Sumimoto, K. Mizuki, K. Hata, T. Ago et al., The PC motif : a novel and evolutionarily conserved sequence involved in interaction between p40 phox and p67phox, SH3 domain-containing cytosolic factors of the phagocyte NADPH oxidase, European Journal of Biochemistry, vol.251, issue.3, pp.583-589, 1998.
DOI : 10.1046/j.1432-1327.1998.2510583.x

M. I. Wilson, D. J. Gill, O. Perisic, M. T. Quinn, W. et al., PB1 Domain-Mediated Heterodimerization in NADPH Oxidase and Signaling Complexes of Atypical Protein Kinase C with Par6 and p62, Molecular Cell, vol.12, issue.1, pp.39-50, 2003.
DOI : 10.1016/S1097-2765(03)00246-6

G. E. Brown, M. Q. Stewart, H. Liu, V. L. Ha, Y. et al., A Novel Assay System Implicates PtdIns(3,4)P2, PtdIns(3)P, and PKC?? in Intracellular Production of Reactive Oxygen Species by the NADPH Oxidase, Molecular Cell, vol.11, issue.1, pp.35-47, 2003.
DOI : 10.1016/S1097-2765(03)00005-4

T. Ago, H. Nunoi, T. Ito, and H. Sumimoto, Mechanism for Phosphorylation-induced Activation of the Phagocyte NADPH Oxidase Protein p47phox: TRIPLE REPLACEMENT OF SERINES 303, 304, AND 328 WITH ASPARTATES DISRUPTS THE SH3 DOMAIN-MEDIATED INTRAMOLECULAR INTERACTION IN p47 phox , THEREBY ACTIVATING THE OXIDASE, Journal of Biological Chemistry, vol.274, issue.47, pp.33644-33653, 1999.
DOI : 10.1074/jbc.274.47.33644

L. R. Faust, J. El-benna, B. M. Babior, C. , and S. J. , The phosphorylation targets of p47phox, a subunit of the respiratory burst oxidase. Functions of the individual target serines as evaluated by site-directed mutagenesis., Journal of Clinical Investigation, vol.96, issue.3, pp.1499-1505, 1995.
DOI : 10.1172/JCI118187

Y. Groemping, K. Lapouge, S. J. Smerdon, and K. Rittinger, Molecular Basis of Phosphorylation-Induced Activation of the NADPH Oxidase, Cell, vol.113, issue.3, pp.343-355, 2003.
DOI : 10.1016/S0092-8674(03)00314-3

T. Ago, F. Kuribayashi, H. Hiroaki, R. Takeya, T. Ito et al., Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation, Proceedings of the National Academy of Sciences, vol.100, issue.8, pp.4474-4479, 2003.
DOI : 10.1073/pnas.0735712100

S. Grizot, F. Fieschi, M. C. Dagher, and E. Pebay-peyroula, The Active N-terminal Region of p67phox: STRUCTURE AT 1.8 A RESOLUTION AND BIOCHEMICAL CHARACTERIZATIONS OF THE A128V MUTANT IMPLICATED IN CHRONIC GRANULOMATOUS DISEASE, Journal of Biological Chemistry, vol.276, issue.24, pp.21627-21631, 2001.
DOI : 10.1074/jbc.M100893200

URL : https://hal.archives-ouvertes.fr/hal-00820780

K. Lapouge, S. J. Smith, P. A. Walker, S. J. Gamblin, S. J. Smerdon et al., Structure of the TPR Domain of p67phox in Complex with Rac??GTP, Molecular Cell, vol.6, issue.4, pp.899-907, 2000.
DOI : 10.1016/S1097-2765(05)00091-2

K. Kami, R. Takeya, H. Sumimoto, and D. Kohda, Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67phox, Grb2 and Pex13p, The EMBO Journal, vol.21, issue.16, pp.4268-4276, 2002.
DOI : 10.1093/emboj/cdf428

Z. Otwinowski and W. Minor, [20] Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol, vol.276, pp.307-326, 1997.
DOI : 10.1016/S0076-6879(97)76066-X

J. Navaza, : an automated package for molecular replacement, Acta Crystallographica Section A Foundations of Crystallography, vol.50, issue.2, pp.157-163, 1994.
DOI : 10.1107/S0108767393007597

A. T. Brunger, P. D. Adams, G. M. Clore, W. L. Delano, P. Gros et al., Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination, Acta Crystallographica Section D Biological Crystallography, vol.54, issue.5, pp.905-921, 1998.
DOI : 10.1107/S0907444998003254

A. Perrakis, M. Harkiolaki, K. S. Wilson, and V. S. Lamzin, and molecular replacement, Acta Crystallographica Section D Biological Crystallography, vol.57, issue.10, pp.1445-1450, 2001.
DOI : 10.1107/S0907444901014007

T. A. Jones, J. Y. Zou, S. W. Cowan, and K. , Improved methods for building protein models in electron density maps and the location of errors in these models, Acta Crystallographica Section A Foundations of Crystallography, vol.47, issue.2, pp.110-119, 1991.
DOI : 10.1107/S0108767390010224

A. Musacchio, M. Noble, R. Pauptit, R. Wierenga, and M. Saraste, Crystal structure of a Src-homology 3 (SH3) domain, Nature, vol.359, issue.6398, pp.851-855, 1992.
DOI : 10.1038/359851a0

A. Musacchio, M. Saraste, and M. Wilmanns, High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides, Nature Structural Biology, vol.11, issue.8, pp.546-551, 1994.
DOI : 10.1107/S0021889891004399

X. Wu, B. Knudsen, S. M. Feller, J. Zheng, A. Sali et al., Structural basis for the specific interaction of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-Crk, Structure, vol.3, issue.2, pp.215-226, 1995.
DOI : 10.1016/S0969-2126(01)00151-4

J. Liang, J. K. Chen, S. T. Schreiber, C. , and J. , Crystal Structure of P13K SH3 Domain at 2.0 ?? Resolution, Journal of Molecular Biology, vol.257, issue.3, pp.632-643, 1996.
DOI : 10.1006/jmbi.1996.0190

J. E. Benna, P. M. Dang, M. Gaudry, M. Fay, F. Morel et al., Phosphorylation of the Respiratory Burst Oxidase Subunit p67phox during Human Neutrophil Activation: REGULATION BY PROTEIN KINASE C-DEPENDENT AND INDEPENDENT PATHWAYS, Journal of Biological Chemistry, vol.272, issue.27, pp.17204-17208, 1997.
DOI : 10.1074/jbc.272.27.17204

A. P. Bouin, N. Grandvaux, P. V. Vignais, A. Fuchs, R. et al., p40phox Is Phosphorylated on Threonine 154 and Serine 315 during Activation of the Phagocyte NADPH Oxidase: IMPLICATION OF A PROTEIN KINASE C-TYPE KINASE IN THE PHOSPHORYLATION PROCESS, Journal of Biological Chemistry, vol.273, issue.46, pp.30097-30103, 1998.
DOI : 10.1074/jbc.273.46.30097

A. C. Wallace, R. A. Laskowski, T. , and J. M. , LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions, "Protein Engineering, Design and Selection", vol.8, issue.2, pp.127-134, 1995.
DOI : 10.1093/protein/8.2.127

I. De-mendez, N. Homayounpour, and T. L. Leto, Specificity of p47phox SH3 domain interactions in NADPH oxidase assembly and activation., Molecular and Cellular Biology, vol.17, issue.4, pp.2177-2185, 1997.
DOI : 10.1128/MCB.17.4.2177

D. Diekmann, A. Abo, C. Johnston, A. W. Segal, and A. Hall, Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity, Science, vol.265, issue.5171, pp.531-533, 1994.
DOI : 10.1126/science.8036496

J. H. Leusen, K. Fluiter, P. M. Hilarius, D. Roos, A. J. Verhoeven et al., Interactions between the cytosolic components p47phox and p67phox of the human neutrophil NADPH oxidase that are not required for activation in the cell-free system, Journal of Biological Chemistry, vol.270, issue.19, pp.11216-11221, 1995.
DOI : 10.1074/jbc.270.19.11216

L. C. Mcphail, SH3-dependent assembly of the phagocyte NADPH oxidase, Journal of Experimental Medicine, vol.180, issue.6, pp.2011-2015, 1994.
DOI : 10.1084/jem.180.6.2011

A. Nicholls, K. A. Sharp, and B. Honig, Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons, Proteins: Structure, Function, and Genetics, vol.39, issue.4, pp.281-296, 1991.
DOI : 10.1002/prot.340110407

C. P. Ponting, Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: Binding partners of SH3 domains?, Protein Science, vol.270, issue.11, pp.2353-2357, 1996.
DOI : 10.1002/pro.5560051122

D. Diekmann, A. Abo, C. Johnston, A. W. Segal, and A. Hall, Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity, Science, vol.265, issue.5171, pp.531-532, 1994.
DOI : 10.1126/science.8036496

D. Noack, J. Rae, A. R. Cross, J. Munoz, S. Salmen et al., Autosomal recessive chronic granulomatous disease caused by novel mutations in NCF-2 , the gene encoding the p67- phox component of phagocyte NADPH oxidase, Human Genetics, vol.105, issue.5, pp.460-467, 1999.
DOI : 10.1007/s004390051131

M. Goebl and M. Yanagida, The TPR snap helix: a novel protein repeat motif from mitosis to transcription, Trends in Biochemical Sciences, vol.16, pp.173-177, 1991.
DOI : 10.1016/0968-0004(91)90070-C

J. R. Lamb, S. Tugendreich, and P. Hieter, Tetratrico peptide repeat interactions: to TPR or not to TPR?, Trends in Biochemical Sciences, vol.20, issue.7, pp.257-259, 1995.
DOI : 10.1016/S0968-0004(00)89037-4

A. K. Das, P. T. Cohen, and D. Barford, The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions, The EMBO Journal, vol.17, issue.5, pp.1192-1199, 1998.
DOI : 10.1093/emboj/17.5.1192

H. Koga, H. Terasawa, H. Nunoi, K. Takeshige, F. Inagaki et al., Tetratricopeptide Repeat (TPR) Motifs of p67phoxParticipate in Interaction with the Small GTPase Rac and Activation of the Phagocyte NADPH Oxidase, Journal of Biological Chemistry, vol.274, issue.35, pp.25051-25060, 1999.
DOI : 10.1074/jbc.274.35.25051

K. Lapouge, S. J. Smith, P. A. Walker, S. J. Gamblin, S. J. Smerdon et al., Structure of the TPR Domain of p67phox in Complex with Rac??GTP, Molecular Cell, vol.6, issue.4, pp.899-907, 2000.
DOI : 10.1016/S1097-2765(05)00091-2

D. M. Lemaster and F. M. Richards, Proton-nitrogen-15 heteronuclear NMR studies of Escherichia coli thioredoxin in samples isotopically labeled by residue type, Biochemistry, vol.24, issue.25, pp.7263-7268, 1985.
DOI : 10.1021/bi00346a036

A. Fuchs, M. Dagher, A. Jouan, and P. V. Vignais, Activation of the O-2-Generating NADPH Oxidase in a Semi-Recombinant Cell-Free System. Assessment of the Function of Rac in the Activation Process, European Journal of Biochemistry, vol.297, issue.2, pp.587-595, 1994.
DOI : 10.1016/0968-0004(93)90051-N

URL : https://hal.archives-ouvertes.fr/hal-00820798

Z. Otwinowski and W. Minor, [20] Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol, vol.276, pp.307-326, 1997.
DOI : 10.1016/S0076-6879(97)76066-X

C. M. Weeks and R. Miller, version 2.0, Journal of Applied Crystallography, vol.32, issue.1, pp.120-124, 1999.
DOI : 10.1107/S0021889898010504

A. Perrakis, T. K. Sixma, K. S. Wilson, and V. S. Lamzin, : Improvement and Extension of Crystallographic Phases by Weighted Averaging of Multiple-Refined Dummy Atomic Models, Acta Crystallographica Section D Biological Crystallography, vol.53, issue.4, pp.448-455, 1997.
DOI : 10.1107/S0907444997005696

T. A. Jones, J. Zou, S. W. Cowan, and M. Kjeldgaard, Improved methods for building protein models in electron density maps and the location of errors in these models, Acta Crystallographica Section A Foundations of Crystallography, vol.47, issue.2, pp.110-119, 1991.
DOI : 10.1107/S0108767390010224

A. T. Brü-nger, Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination, Acta Crystallographica Section D Biological Crystallography, vol.54, issue.5, pp.905-921, 1998.
DOI : 10.1107/S0907444998003254

R. A. Laskowski, M. W. Macarthur, D. S. Moss, T. , and J. M. , PROCHECK: a program to check the stereochemical quality of protein structures, Journal of Applied Crystallography, vol.26, issue.2, pp.283-291, 1993.
DOI : 10.1107/S0021889892009944

P. J. Kraulis, MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures, Journal of Applied Crystallography, vol.24, issue.5, pp.946-950, 1991.
DOI : 10.1107/S0021889891004399

E. A. Merrit and D. J. Bacon, [26] Raster3D: Photorealistic molecular graphics, Methods Enzymol, vol.277, pp.505-524, 1997.
DOI : 10.1016/S0076-6879(97)77028-9

C. Han, J. L. Freeman, T. Lee, S. A. Motalebi, and J. D. Lambeth, Regulation of the Neutrophil Respiratory Burst Oxidase. IDENTIFICATION OF AN ACTIVATION DOMAIN IN p67phox, Journal of Biological Chemistry, vol.273, issue.27, pp.16663-16668, 1998.
DOI : 10.1074/jbc.273.27.16663

C. Scheufler, A. Brinker, G. Bourenkov, S. Pegoraro, L. Moroder et al., Structure of TPR Domain???Peptide Complexes, Cell, vol.101, issue.2, pp.199-210, 2000.
DOI : 10.1016/S0092-8674(00)80830-2

Y. Nisimoto, S. Motalebi, C. Han, and J. D. Lambeth, The p67phox Activation Domain Regulates Electron Flow from NADPH to Flavin in Flavocytochromeb 558, Journal of Biological Chemistry, vol.274, issue.33, pp.22999-23005, 1999.
DOI : 10.1074/jbc.274.33.22999

J. H. Leusen, A. De-klein, P. M. Hilarius, A. Ahlin, J. Palmblad et al., Disturbed interaction of p21-rac with mutated p67-phox causes chronic granulomatous disease, Journal of Experimental Medicine, vol.184, issue.4, pp.1243-1249, 1996.
DOI : 10.1084/jem.184.4.1243

R. S. Sikorski, W. A. Michaud, and P. Hieter, The superoxide-generating NADPH oxidase: structural aspects and activation mechanism, Mol. Cell. Biol. Vignais, P. V. Cell Mol Life Sci, vol.13, issue.59, pp.121-1221, 1993.

B. M. Babior, NADPH oxidase, Current Opinion in Immunology, vol.16, issue.1, pp.42-49, 2004.
DOI : 10.1016/j.coi.2003.12.001

URL : https://hal.archives-ouvertes.fr/hal-00820744

O. Perisic, M. I. Wilson, D. Karathanassis, J. Bravo, M. E. Pacold et al., The role of Références Bibliographiques, 2004.

A. Arce, P. M. Nieto, V. Diaz, R. Garcia-castro, A. Bernad et al., Lectin, Bioconjugate Chemistry, vol.14, issue.4, pp.817-823, 2003.
DOI : 10.1021/bc034008k

S. Becker, M. Spiess, and H. D. Klenk, The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus, Journal of General Virology, vol.76, issue.2, pp.393-399, 1995.
DOI : 10.1099/0022-1317-76-2-393

E. Berger, P. Murphy, and J. Farber, CHEMOKINE RECEPTORS AS HIV-1 CORECEPTORS: Roles in Viral Entry, Tropism, and Disease, Annual Review of Immunology, vol.17, issue.1, pp.657-700, 1999.
DOI : 10.1146/annurev.immunol.17.1.657

K. Bezouska, Design, functionnal evaluation and biochemical applications of carbohydrate dendrimers (glycodendrimers), J. Biotechnol, vol.90, pp.269-290, 2002.

A. Blauvelt, H. Asada, M. W. Saville, V. Klaus-kovtun, D. J. Altman et al., Productive infection of dendritic cells by HIV-1 and their ability to capture virus are mediated through separate pathways., Journal of Clinical Investigation, vol.100, issue.8, pp.2043-2053, 1997.
DOI : 10.1172/JCI119737

A. Cambi, F. De-lange, N. Van-maarseveen, M. Nijhuis, B. Joosten et al., Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells, The Journal of Cell Biology, vol.79, issue.1, pp.145-55, 2004.
DOI : 10.1073/pnas.97.11.6013

P. U. Cameron, P. S. Freudenthal, J. M. Barker, S. Gezelter, K. Inaba et al., Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells, Science, vol.257, issue.5068, pp.383-387, 1992.
DOI : 10.1126/science.1352913

M. Colmenares, A. Puig-kroger, O. M. Pello, A. L. Corbi, and L. Rivas, Dendritic Cell (DC)-specific Intercellular Adhesion Molecule 3 (ICAM-3)-grabbing Nonintegrin (DC-SIGN, CD209), a C-type Surface Lectin in Human DCs, Is a Receptor for LeishmaniaAmastigotes, Journal of Biological Chemistry, vol.277, issue.39, pp.36766-36769, 2002.
DOI : 10.1074/jbc.M205270200

D. Dimitrov, How Do Viruses Enter Cells? The HIV Coreceptors Teach Us a Lesson of Complexity, Cell, vol.91, issue.6, pp.721-751, 1997.
DOI : 10.1016/S0092-8674(00)80460-2

R. Doms and D. Trono, The plasma membrane as a combat zone in the HIV battlefield, Genes & Development, vol.14, issue.21, pp.2677-88, 2000.
DOI : 10.1101/gad.833300

A. Engering, T. B. Geijtenbeek, S. J. Van-vliet, M. Wijers, E. Van-liempt et al., The Dendritic Cell-Specific Adhesion Receptor DC-SIGN Internalizes Antigen for Presentation to T Cells, The Journal of Immunology, vol.168, issue.5, pp.2118-2126, 2002.
DOI : 10.4049/jimmunol.168.5.2118

H. Feinberg, D. A. Mitchell, K. Drickamer, and W. I. Weis, Structural Basis for Selective Recognition of Oligosaccharides by DC-SIGN and DC-SIGNR, Science, vol.294, issue.5549, pp.2163-2166, 2001.
DOI : 10.1126/science.1066371

H. Feinberg, Y. Guo, D. Mitchell, K. Drickammer, and W. Weiss, Extended Neck Regions Stabilize Tetramers of the Receptors DC-SIGN and DC-SIGNR, Journal of Biological Chemistry, vol.280, issue.2, pp.1327-1335, 2005.
DOI : 10.1074/jbc.M409925200

T. B. Geijtenbeek, D. S. Kwon, R. Torensma, S. J. Van-vliet, G. C. Van-duijnhoven et al., DC-SIGN, a Dendritic Cell???Specific HIV-1-Binding Protein that Enhances trans-Infection of T Cells, Cell, vol.100, issue.5, pp.587-597, 2000.
DOI : 10.1016/S0092-8674(00)80694-7

T. B. Geijtenbeek, R. Torensma, S. J. Van-vliet, G. C. Van-duijnhoven, G. J. Adema et al., Identification of DC-SIGN, a Novel Dendritic Cell???Specific ICAM-3 Receptor that Supports Primary Immune Responses, Cell, vol.100, issue.5, pp.575-585, 2000.
DOI : 10.1016/S0092-8674(00)80693-5

T. B. Geijtenbeek, R. Torensma, S. J. Van-vliet, G. C. Van-duijnhoven, G. J. Adema et al., Identification of DC-SIGN, a Novel Dendritic Cell???Specific ICAM-3 Receptor that Supports Primary Immune Responses, Cell, vol.100, issue.5, pp.575-585, 2000.
DOI : 10.1016/S0092-8674(00)80693-5

T. B. Geijtenbeek, A. Engering, V. Kooyk, and Y. , DC-SIGN, a C-type lectin on dendritic cells that unveils many aspects of dendritic cell biology, J. Leukoc .Biol, vol.71, pp.921-931, 2002.

A. Granelli-piperno, V. Finkel, E. Delgado, and R. M. Steinman, Virus replication begins in dendritic cells during the transmission of HIV-1 from mature dendritic cells to T cells, Current Biology, vol.9, issue.1, pp.21-29, 1999.
DOI : 10.1016/S0960-9822(99)80043-8

F. Halary, A. Amara, H. Lortat-jacob, M. Messerle, T. Delaunay et al., Human Cytomegalovirus Binding to DC-SIGN Is Required for Dendritic Cell Infection and Target Cell trans-Infection, Immunity, vol.17, issue.5, pp.653-664, 2002.
DOI : 10.1016/S1074-7613(02)00447-8

URL : https://hal.archives-ouvertes.fr/hal-01061427

J. Hu, M. B. Gardner, and C. J. Miller, Simian Immunodeficiency Virus Rapidly Penetrates the Cervicovaginal Mucosa after Intravaginal Inoculation and Infects Intraepithelial Dendritic Cells, Journal of Virology, vol.74, issue.13, pp.6087-6095, 2000.
DOI : 10.1128/JVI.74.13.6087-6095.2000

H. Kiefer, R. Vogel, and K. Maier, Bacterial expression of G-protein-coupled receptors: prediction of expression levels from sequence, Receptors Channels, vol.7, pp.109-128, 2000.

D. S. Kwon, G. Gregorio, N. Bitton, W. A. Hendrickson, and D. R. Littman, DC-SIGN-Mediated Internalization of HIV Is Required for Trans-Enhancement of T Cell Infection, Immunity, vol.16, issue.1, pp.135-144, 2002.
DOI : 10.1016/S1074-7613(02)00259-5

J. J. Landers, I. Cao, L. T. Lee, P. P. Piehler, A. Myc et al., Prevention of Influenza Pneumonitis by Sialic Acid???Conjugated Dendritic Polymers, The Journal of Infectious Diseases, vol.186, issue.9, pp.1222-1230, 2002.
DOI : 10.1086/344316

P. Y. Lozach, H. Lortat-jacob, A. De-lacroix-de-lavalette, I. Staropoli, S. Foung et al., DC-SIGN and L-SIGN Are High Affinity Binding Receptors for Hepatitis C Virus Glycoprotein E2, Journal of Biological Chemistry, vol.278, issue.22, pp.20358-20366, 2003.
DOI : 10.1074/jbc.M301284200

URL : https://hal.archives-ouvertes.fr/hal-01061433

M. Dermott, R. Ziylan, U. Spehner, D. Bausinger, H. Lipsker et al., Birbeck Granules Are Subdomains of Endosomal Recycling Compartment in Human Epidermal Langerhans Cells, Which Form Where Langerin Accumulates, Molecular Biology of the Cell, vol.13, issue.1, pp.317-335, 2002.
DOI : 10.1091/mbc.01-06-0300

D. A. Mitchell, A. J. Fadden, and K. Drickamer, A Novel Mechanism of Carbohydrate Recognition by the C-type Lectins DC-SIGN and DC-SIGNR: SUBUNIT ORGANIZATION AND BINDING TO MULTIVALENT LIGANDS, Journal of Biological Chemistry, vol.276, issue.31, pp.28939-28945, 2001.
DOI : 10.1074/jbc.M104565200

E. Navarro-sanchez, R. Altmeyer, A. Amara, O. Schwartz, F. Fieschi et al., Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses, EMBO Reports, vol.4, issue.7, pp.723-728, 2003.
DOI : 10.1038/sj.embor.embor866

URL : https://hal.archives-ouvertes.fr/pasteur-01372706

N. Sol-foulon, A. Moris, C. Nobile, C. Boccaccio, A. Engering et al., HIV-1 Nef-Induced Upregulation of DC-SIGN in Dendritic Cells Promotes Lymphocyte Clustering and Viral Spread, Immunity, vol.16, issue.1, pp.145-155, 2002.
DOI : 10.1016/S1074-7613(02)00260-1

URL : https://hal.archives-ouvertes.fr/pasteur-01107753

N. S. Stambach and M. E. Taylor, Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells, Glycobiology, vol.13, issue.5, pp.401-410, 2003.
DOI : 10.1093/glycob/cwg045

L. Tailleux, O. Schwartz, J. L. Herrmann, E. Pivert, M. Jackson et al., Receptor on Human Dendritic Cells, The Journal of Experimental Medicine, vol.71, issue.1, pp.121-127, 2003.
DOI : 10.4049/jimmunol.164.9.4843

URL : https://hal.archives-ouvertes.fr/pasteur-01372712

U. Treichel, K. H. Meyer-zum-buschenfelde, H. P. Dienes, and G. Gerken, Receptor-mediated entry of hepatitis B virus particles into liver cells, Archives of Virology, vol.142, issue.3, pp.493-501, 1997.
DOI : 10.1007/s007050050095

S. G. Turville, P. U. Cameron, A. Handley, G. Lin, S. Pohlmann et al., Diversity of receptors binding HIV on dendritic cell subsets, Nature Immunology, vol.3, issue.10, pp.975-983, 2002.
DOI : 10.1038/ni841

J. Valladeau, O. Ravel, C. Dezutter-dambuyant, K. Moore, M. Kleijmeer et al., Langerin, a Novel C-Type Lectin Specific to Langerhans Cells, Is an Endocytic Receptor that Induces the Formation of Birbeck Granules, Immunity, vol.12, issue.1, pp.71-81, 2000.
DOI : 10.1016/S1074-7613(00)80160-0

V. Heijne and G. , Mitochondrial targeting sequences may form amphiphilic helices, EMBO J, vol.5, pp.1335-1377, 1986.

W. I. Weis and K. Drickamer, Trimeric structure of a C-type mannose-binding protein, Structure, vol.2, issue.12, pp.1227-1267, 1994.
DOI : 10.1016/S0969-2126(94)00124-3

T. B. Geijtenbeek, DC-SIGN, a Dendritic Cell???Specific HIV-1-Binding Protein that Enhances trans-Infection of T Cells, Cell, vol.100, issue.5, pp.587-97, 2000.
DOI : 10.1016/S0092-8674(00)80694-7

C. P. Alvarez, F. Lasala, J. Carrillo, O. Muniz, A. L. Corbi et al., C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquitocell-derived dengue viruses DC-SIGN: escape mechanism for pathogens A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands Extended neck regions stabilize tetramers of the receptors DC-SIGN and DC-SIGNR, Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells, pp.6841-6845, 2001.

H. Feinberg, D. A. Mitchell, K. Drickamer, and W. I. Weis, Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR Science, pp.2163-2169, 2001.

E. Arce, P. M. Nieto, V. Diaz, R. G. Castro, A. Bernad et al., Lectin, Bioconjugate Chemistry, vol.14, issue.4, pp.817-840, 2003.
DOI : 10.1021/bc034008k

F. Lasala, E. Arce, J. R. Otero, J. Rojo, and R. Delgado, Mannosyl Glycodendritic Structure Inhibits DC-SIGN-Mediated Ebola Virus Infection in cis and in trans, Antimicrobial Agents and Chemotherapy, vol.47, issue.12, pp.3970-3972, 2003.
DOI : 10.1128/AAC.47.12.3970-3972.2003

J. Rojo and R. Delgado, Glycodendritic structures: promising new antiviral drugs, Journal of Antimicrobial Chemotherapy, vol.54, issue.3, pp.579-81, 2004.
DOI : 10.1093/jac/dkh399

E. Duverger, N. Frison, A. C. Roche, and M. Monsigny, Carbohydrate-lectin interactions assessed by surface plasmon resonance, Biochimie, vol.85, issue.1-2, pp.167-79, 2003.
DOI : 10.1016/S0300-9084(03)00060-9

URL : https://hal.archives-ouvertes.fr/hal-00088171

N. Frison, M. E. Taylor, E. Soilleux, M. T. Bousser, R. Mayer et al., Oligolysine-based Oligosaccharide Clusters: SELECTIVE RECOGNITION AND ENDOCYTOSIS BY THE MANNOSE RECEPTOR AND DENDRITIC CELL-SPECIFIC INTERCELLULAR ADHESION MOLECULE 3 (ICAM-3)-GRABBING NONINTEGRIN, Journal of Biological Chemistry, vol.278, issue.26, pp.23922-23931, 2003.
DOI : 10.1074/jbc.M302483200

F. Halary, Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection Immunity, pp.653-64, 2002.

P. Schuck, Size-Distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling, Biophysical Journal, vol.78, issue.3, pp.1606-1625, 2000.
DOI : 10.1016/S0006-3495(00)76713-0

P. Y. Lozach, DC-SIGN and L-SIGN Are High Affinity Binding Receptors for Hepatitis C Virus Glycoprotein E2, Journal of Biological Chemistry, vol.278, issue.22, pp.20358-66, 2003.
DOI : 10.1074/jbc.M301284200

URL : https://hal.archives-ouvertes.fr/hal-01061433

P. Zhu, E. Chertova, J. Bess, . Jr, J. D. Lifson et al., Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions, Proceedings of the National Academy of Sciences, vol.100, issue.26, pp.15812-15819, 2003.
DOI : 10.1073/pnas.2634931100

. Le-groupe-de-auling, Elle possède en fait un centre dinucléaire de fer à pont µ-oxo, dans son état actif

P. Reichard, The evolution of ribonucleotide reduction, Trends in Biochemical Sciences, vol.22, issue.3, pp.81-85, 1997.
DOI : 10.1016/S0968-0004(97)01003-7

S. Booker, S. Licht, J. Broderick, and J. Stubbe, Coenzyme B12-Dependent Ribonucleotide Reductase: Evidence for the Participation of Five Cysteine Residues in Ribonucleotide Reduction, Biochemistry, vol.33, issue.42, pp.12676-12685, 1994.
DOI : 10.1021/bi00208a019

G. Schimpff-weiland, H. Follmann, and G. Auling, A new manganese-activated ribonucleotide reductase found in gram-positive bacteria, Biochemical and Biophysical Research Communications, vol.102, issue.4, pp.1276-1282, 1981.
DOI : 10.1016/S0006-291X(81)80149-0

A. Willing, H. Follmann, and G. Auling, Ribonucleotide reductase of Brevibacterium ammoniagenes is a manganese enzyme, European Journal of Biochemistry, vol.255, issue.3, pp.603-611, 1988.
DOI : 10.1016/0163-7258(83)90020-7

J. Plönzig and G. Auling, Manganese deficiency impairs ribonucleotide reduction but not DNA replication in Arthrobacter species, Archives of Microbiology, vol.48, issue.4, pp.396-401, 1987.
DOI : 10.1007/BF00410942

F. Fieschi, E. Torrents, L. Toulokhonova, A. Jordan, U. Hellman et al., The Manganese-containing Ribonucleotide Reductase of Corynebacterium ammoniagenes Is a Class Ib Enzyme, Journal of Biological Chemistry, vol.273, issue.8, pp.4329-4337, 1998.
DOI : 10.1074/jbc.273.8.4329

P. Reichard, The evolution of ribonucleotide reduction, Trends in Biochemical Sciences, vol.22, issue.3, pp.81-85, 1997.
DOI : 10.1016/S0968-0004(97)01003-7

S. Booker and J. Stubbe, Cloning, sequencing, and expression of the adenosylcobalamin-dependent ribonucleotide reductase from Lactobacillus leichmannii., Proceedings of the National Academy of Sciences, vol.90, issue.18, pp.8352-8356, 1993.
DOI : 10.1073/pnas.90.18.8352

S. Booker, S. Licht, J. Broderick, and J. Stubbe, Coenzyme B12-Dependent Ribonucleotide Reductase: Evidence for the Participation of Five Cysteine Residues in Ribonucleotide Reduction, Biochemistry, vol.33, issue.42, pp.12676-12685, 1994.
DOI : 10.1021/bi00208a019

E. Mulliez, S. Ollagnier, M. Fontecave, R. Eliasson, R. et al., Formate is the hydrogen donor for the anaerobic ribonucleotide reductase from Escherichia coli., Proceedings of the National Academy of Sciences, vol.92, issue.19, pp.8759-8762, 1995.
DOI : 10.1073/pnas.92.19.8759

A. Jordan, I. Gibert, and J. Barbé, Cloning and sequencing of the genes from Salmonella typhimurium encoding a new bacterial ribonucleotide reductase., Journal of Bacteriology, vol.176, issue.11, pp.3420-3427, 1994.
DOI : 10.1128/jb.176.11.3420-3427.1994

A. Jordan, E. Aragall, I. Gibert, and J. Barbé, Promoter identification and expression analysis of Salmonella typhimurium and Escherichia coli nrdEF operons encoding one of two class I ribonucleotide reductases present in both bacteria, Molecular Microbiology, vol.19, issue.4, pp.777-790, 1996.
DOI : 10.1046/j.1365-2958.1996.424950.x

A. Jordan, E. Pontis, F. Åslund, U. Hellman, I. Gibert et al., The Ribonucleotide Reductase System of Lactococcus lactis: CHARACTERIZATION OF AN NrdEF ENZYME AND A NEW ELECTRON TRANSPORT PROTEIN, Journal of Biological Chemistry, vol.271, issue.15, pp.8779-8785, 1996.
DOI : 10.1074/jbc.271.15.8779

F. D. Yang, G. Z. Lu, R. , and H. , Isolation of ribonucleotide reductase from Mycobacterium tuberculosis and cloning, expression, and purification of the large subunit., Journal of Bacteriology, vol.176, issue.21, pp.6738-6743, 1994.
DOI : 10.1128/jb.176.21.6738-6743.1994

C. M. Fraser, J. D. Gocayne, O. White, M. D. Adams, R. A. Clayton et al., The Minimal Gene Complement of Mycoplasma genitalium, Science, vol.270, issue.5235, pp.397-403, 1995.
DOI : 10.1126/science.270.5235.397

R. Himmelreich, H. Hilbert, H. Plagens, E. Pirkl, B. C. Li et al., Complete Sequence Analysis of the Genome of the Bacterium Mycoplasma Pneumoniae, Nucleic Acids Research, vol.24, issue.22, pp.4420-4449, 1996.
DOI : 10.1093/nar/24.22.4420

G. Schimpff-weiland, H. Follmann, and G. Auling, A new manganese-activated ribonucleotide reductase found in gram-positive bacteria, Biochemical and Biophysical Research Communications, vol.102, issue.4, pp.1276-1282, 1981.
DOI : 10.1016/S0006-291X(81)80149-0

A. Willing, H. Follmann, and G. Auling, Ribonucleotide reductase of Brevibacterium ammoniagenes is a manganese enzyme, European Journal of Biochemistry, vol.255, issue.3, pp.603-611, 1988.
DOI : 10.1016/0163-7258(83)90020-7

J. Plönzig and G. Auling, Manganese deficiency impairs ribonucleotide reduction but not DNA replication in Arthrobacter species, Archives of Microbiology, vol.48, issue.4, pp.396-401, 1987.
DOI : 10.1007/BF00410942

D. M. Webley, R. B. Duff, A. , and G. , The Metabolism of Iron-, Zinc- and Manganese-Deficient Nocardia opaca, Journal of General Microbiology, vol.29, issue.1, pp.179-187, 1962.
DOI : 10.1099/00221287-29-1-179

A. Willing, H. Follmann, and G. Auling, Nucleotide and thioredoxin specificity of the manganese ribonucleotide reductase from Brevibucterium ammoniagenes, European Journal of Biochemistry, vol.10, issue.1, pp.167-173, 1988.
DOI : 10.1007/BF00428013

J. A. Hoch, [13] Genetic analysis in Bacillus subtilis, Methods Enzymol, vol.204, pp.305-320, 1991.
DOI : 10.1016/0076-6879(91)04015-G

L. Thelander, B. Sjöberg, and S. Eriksson, [30] Ribonucleoside diphosphate reductase (Escherichia coli), Methods Enzymol, vol.51, pp.227-237, 1978.
DOI : 10.1016/S0076-6879(78)51032-X

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

M. Malumbres, J. A. Gil, M. , and J. F. , Codon preference in Corynebacteria, Gene, vol.134, issue.1, pp.15-24, 1993.
DOI : 10.1016/0378-1119(93)90169-4

S. Moriya, N. Ogasawara, and H. Yoshikawa, chromosome. III. Nucleotide sequence of some 10,000 base pairs in the origin region, Nucleic Acids Research, vol.13, issue.7, pp.2251-2265, 1985.
DOI : 10.1093/nar/13.7.2251

A. Jordan, F. Åslund, E. Pontis, P. Reichard, and A. Holmgren, Characterization of Escherichia coli NrdH: A GLUTAREDOXIN-LIKE PROTEIN WITH A THIOREDOXIN-LIKE ACTIVITY PROFILE, Journal of Biological Chemistry, vol.272, issue.29, pp.18044-18050, 1997.
DOI : 10.1074/jbc.272.29.18044

A. Jordan, I. Gibert, and J. Barbé, Two different operons for the same function: comparison of the Salmonella typhimurium nrd AB and nrdEF genes, Gene, vol.167, issue.1-2, pp.75-79, 1995.
DOI : 10.1016/0378-1119(95)00656-7

U. Rova, K. Goodtzova, R. Ingemarson, G. Behravan, A. Grä-slund et al., Evidence by Site-Directed Mutagenesis Supports Long-Range Electron Transfer in Mouse Ribonucleotide Reductase, Biochemistry, vol.34, issue.13, pp.4267-4275, 1995.
DOI : 10.1021/bi00013a016

F. J. Da-silva, W. , and R. J. , The Biological Chemistry of the Elements. The Inorganic Chemistry of Life, 1991.

M. Schmidt, B. Meier, and F. Parak, X-ray structure of the cambialistic superoxide dismutase from Propionibacterium shermanii active with Fe or Mn, Journal of Biological Inorganic Chemistry, vol.1, issue.6, pp.532-541, 1996.
DOI : 10.1007/s007750050089

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

P. Nordlund, E. , and H. , Structure and Function of the Escherichia coli Ribonucleotide Reductase Protein R2, Journal of Molecular Biology, vol.232, issue.1, pp.123-164, 1993.
DOI : 10.1006/jmbi.1993.1374

F. D. Yang, S. C. Curran, L. S. Li, D. Avarbock, J. D. Graf et al., Characterization of two genes encoding the Mycobacterium tuberculosis ribonucleotide reductase small subunit., Journal of Bacteriology, vol.179, issue.20, pp.6408-6415, 1997.
DOI : 10.1128/jb.179.20.6408-6415.1997

D. Mhz1h and . Hz, 75 (2H, t, CH 2 -OH or CH 2 -NH); 3.55 (2H, br s, NH and OH)27 (2H, t, CH 2 -NH or CH 2 -OH)25 (6H, s, 2 CH 3 ) 13 C NMR (20 MHz, CDCl 3 ) 146.5; 137.01 (ArCH); 125.53 (ArCH)8 (ArCH); 60.6 (CH 2 -OH or CH 2 -NH)3 (CH 2 -NH or CH 2 -OH) MS (EI) mM-NHCH 2 CH 2 OH) ) Compound 11b was obtained in a pure form after chromatography on silica gel eluting with a dichloromethane/methanol mixture (98:2) or after distillation under reduced pressure (yield, 80% oil). b.p70 (1H, s, ArH) m, NH or OH); 3.40 (1H, br s, OH or NH) (ArCH), CDCl 3 ) 7.02 (1H, d, J 8 Hz32 (2H, m, CH 2 -NH or CH 2 -OH)CH 2 -OH or CH 2 -NH); 42.1 (CH 2 -NH or CH 2 -OH) Compound 11c was purified by washing of the crude residue with dichloromethane (yield, 64%), pp.5342-107

A. Hz, . Hz1h, and . Hz1h, 90 (1H, t, OH or NH)60 (1H, br s, CHOH); 3.33 (2H, m, CH 2 -OH or CH 2 -NH)90 (2H, m, CH 2 -NH or CH 2 -OH)08 (3H, s, CH 3 )04 (3H, s, CH 3 ) 13 C NMR (50 MHz, Me 2 SO-d 6 ) 147.1; 136.1; 130.0 (ArCH); 123.0 (CH 2 -OH or CH 2 -NH), CH 2 -NH or CH 2 -OH)M1- CH 2 CHOHCH 2 OH) ). For 6-(N-substituted anilino)uracil derivatives 12a, b, and c, pp.38306852-38306863

A. Hz and . Hz, 40 (1H, br s, OH)03 (1H, s, 5-CH)70 (2H, m, 3-CH 2 or 1-CH 2 ); 3.50 (2H, m, 1-CH 2 or 3-CH 2 )22 (6H, s, 2 CH 3 ) 13 C NMR (50 MHz, Me 2 SO-d 6 ) 163.6 (CO)) MS (EI) m, M1) ). 12b: m.p, pp.700-275

. Mhz, 30 (1H, br s, NH)00 (1H, br s, NH), 1H, SCHEME 1. Biological functions of free flavins. d, J 8 Hz, p.0

A. ). Hz, 13 (1H, s, 5-CH)65 (2H, t, 3-CH 2 or 1-CH 2 ); 3.44 (2H, t, 1-CH 2 or 3-CH 2 ); 2.49 (3H, s, CH 3 ), pp.802260-802273

M. Fab, M1-C 3 H 6 OH) ). 12c: After the addition of aqueous NaOH (10%), the unreacted starting compound 11c was removed by filtration and washed with water. Aqueous HCl was added to the filtrate to reach pH 3. Compound 12c was collected by filtration and purified by crystallization from water (yield, 65%). m, MHz, Me 2 SO-d 6 ) 10.35 (1H, br s, pp.290-237

A. Hz and . Hz, 80 (1H, br s, 2-CHOH)1H, t, 3-CH 2 OH); 3.95 (1H, s, 5-CH)65 (3H, m, 1-CH 2 and 2-CH)50 (3H, s, CH 3 ); 2.22 (3H, s, CH 3 ). 13 C NMR (50 MHz, ArCHArCHArCH, vol.7877, issue.1249, p.31775

F. Hallé, M. , and J. M. , Iron release from ferrisiderophores. A multi-step mechanism involving a NADH/FMN oxidoreductase and a chemical reduction by FMNH2, European Journal of Biochemistry, vol.58, issue.2, pp.621-627, 1992.
DOI : 10.1016/0167-4838(90)90213-Y

J. Covès and M. Fontecave, Reduction and mobilization of iron by a NAD(P)H: flavin oxidoreductase from Escherichia coli, European Journal of Biochemistry, vol.26, issue.3, pp.635-641, 1993.
DOI : 10.1016/0166-6851(80)90045-6

P. Reichard, Interactions Between Deoxyribonucleotide and DNA Synthesis, Annual Review of Biochemistry, vol.57, issue.1, pp.349-374, 1988.
DOI : 10.1146/annurev.bi.57.070188.002025

T. Yubisui, T. Matsuki, K. Tanishima, M. Takeshita, Y. et al., NADPH-flavin reductase in human erythrocytes and the reduction of methemoglobin through flavin by the enzyme, Biochemical and Biophysical Research Communications, vol.76, issue.1, pp.174-182, 1977.
DOI : 10.1016/0006-291X(77)91683-7

K. S. Quandt and D. E. Hultquist, Flavin reductase: sequence of cDNA from bovine liver and tissue distribution., Proceedings of the National Academy of Sciences, vol.91, issue.20, pp.9322-9326, 1994.
DOI : 10.1073/pnas.91.20.9322

Y. Izumoto, T. Mori, and K. Yamamoto, Cloning and nucleotide sequence of the gene for NADH:FMN oxidoreductase from Vibrio harveyi, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1185, issue.2, pp.243-246, 1994.
DOI : 10.1016/0005-2728(94)90216-X

B. Lei, M. Liu, S. Huang, T. , and S. C. , Vibrio harveyi NADPH-flavin oxidoreductase: cloning, sequencing and overexpression of the gene and purification and characterization of the cloned enzyme., Journal of Bacteriology, vol.176, issue.12, pp.3552-3558, 1994.
DOI : 10.1128/jb.176.12.3552-3558.1994

S. Zenno and K. Saigo, Identification of the genes encoding NAD(P)H-flavin oxidoreductases that are similar in sequence to Escherichia coli Fre in four species of luminous bacteria: Photorhabdus luminescens, Vibrio fischeri, Vibrio harveyi, and Vibrio orientalis., Journal of Bacteriology, vol.176, issue.12, pp.3544-3551, 1994.
DOI : 10.1128/jb.176.12.3544-3551.1994

E. Jablonski and M. Deluca, Purification and properties of the NADH and NADPH specific FMN oxidoreductases from Beneckea harveyi, Biochemistry, vol.16, issue.13, pp.2932-2936, 1977.
DOI : 10.1021/bi00632a020

G. Spyrou, E. Haggard-ljungquist, M. Krook, H. Jornvall, E. Nilsson et al., Characterization of the flavin reductase gene (fre) of Escherichia coli and construction of a plasmid for overproduction of the enzyme., Journal of Bacteriology, vol.173, issue.12, pp.3673-3679, 1991.
DOI : 10.1128/jb.173.12.3673-3679.1991

S. Zenno, K. Saigo, H. Kanoh, and S. Inouye, Identification of the gene encoding the major NAD(P)H-flavin oxidoreductase of the bioluminescent bacterium Vibrio fischeri ATCC 7744., Journal of Bacteriology, vol.176, issue.12, pp.3536-3543, 1994.
DOI : 10.1128/jb.176.12.3536-3543.1994

S. Inouye, ATCC 7744, is a flavoprotein, FEBS Letters, vol.56, issue.2-3, pp.163-168, 1994.
DOI : 10.1016/0014-5793(94)00528-1

K. Chikuba, T. Yubisui, K. Shirabe, and M. Takeshita, Cloning and Nucleotide Sequence of a cDNA of the Human Erythrocyte NADPH-Flavin Reductase, Biochemical and Biophysical Research Communications, vol.198, issue.3, pp.1170-1176, 1994.
DOI : 10.1006/bbrc.1994.1165

J. Tanner, B. Lei, M. Liu, S. C. Tu, and K. L. Krause, Crystallization and Preliminary Crystallographic Analysis of NADPH:FMN Oxidoreductase from Vibrio harveyi, Journal of Molecular Biology, vol.241, issue.2, pp.283-287, 1994.
DOI : 10.1006/jmbi.1994.1501

M. Eschenbrenner, J. Covès, and M. Fontecave, The Flavin Reductase Activity of the Flavoprotein Component of Sulfite Reductase from Escherichia coli: A NEW MODEL FOR THE PROTEIN STRUCTURE, Journal of Biological Chemistry, vol.270, issue.35, pp.20550-20555, 1995.
DOI : 10.1074/jbc.270.35.20550

F. Yoneda, Y. Sakuma, M. Ichiba, and K. Shinomura, Syntheses of isoalloxazines and isoalloxazine 5-oxides. A new synthesis of riboflavin, Journal of the American Chemical Society, vol.98, issue.3, pp.830-835, 1976.
DOI : 10.1021/ja00419a034

J. P. Furste, W. Pansegrau, R. Frank, H. Blöcker, P. Scholz et al., Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector, Gene, vol.48, issue.1, pp.119-131, 1986.
DOI : 10.1016/0378-1119(86)90358-6

H. J. Fromm, [3] Summary of kinetic reaction mechanisms, Methods Enzymol, vol.63, pp.42-53, 1979.
DOI : 10.1016/0076-6879(79)63005-7

H. J. Fromm, [18] Use of competitive inhibitors to study substrate binding order, Methods Enzymol, vol.63, pp.467-486, 1979.
DOI : 10.1016/0076-6879(79)63020-3

L. H. Hall, M. L. Bowers, and C. N. Durfor, Further consideration of flavin coenzyme biochemistry afforded by geometry-optimized molecular orbital calculations, Biochemistry, vol.26, issue.23, pp.7401-7409, 1987.
DOI : 10.1021/bi00397a031

B. Nefsky and M. Deluca, Studies on the NADH and NADPH: Riboflavin 5???-phosphate (FMN) oxidoreductases from Beneckea harveyi: Characterization of the FMN binding sites, Archives of Biochemistry and Biophysics, vol.216, issue.1, pp.10-16, 1982.
DOI : 10.1016/0003-9861(82)90182-5

F. Lori, A. Malykh, A. Cara, D. Sun, J. N. Weinstein et al., Hydroxyurea as an inhibitor of human immunodeficiency virus-type 1 replication, Science, vol.266, issue.5186, pp.801-805, 1994.
DOI : 10.1126/science.7973634

. Ferredoxin-nadp-reductase-;-pdr and . Phthalate-dioxygenase-reductase, Rf, riboflavin; AMP, adenosine 5-monophosphate; 2,5-ADP, 2-phosphoad- enosine 5-phosphate; ADP-ribose, adenosine 5-diphosphoribose; ATP-ribose, 2-phosphoadenosine 5-diphosphoribose; NMNH, -nicotinamide mononucleotide reduced form; 3-acetyl-NADH, 3-acetylpyridine adenine dinucleotide reduced form; thio-NADH, thionicotinamide adenine dinucleotide reduced form; v i , initial velocity; v m , maximal velocity; K m(app) , apparent Michaelis constant; e, enzyme concentration