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Abstract—The page size used for virtual to physical address translation
has globally not changed since the late 1960’s: the IBM 360, circa 1964,
already had 4 KiB pages. This 4 KiB page size has proven to be incredibly
robust given the changes in processor architectures, workloads behavior,
memory size, and access patterns. However, with 64-bit registers, 57-bit
virtual addresses, and increasingly bigger physical memories, we have to
ask ourselves whether 4 KiB is still an adequate page size for modern
workloads on modern machines. Inherently, the page size has an influence
on (a) the miss rate of the translation lookaside buffer, the cache that
contains the recently used virtual to physical translations, and (b) the
memory allocated by the system versus the memory actually used by a
process. The page size also constraints some microarchitectural choices,
such as cache design, which impacts the overall performance and energy
efficiency. We focus more particularly on High Performance Computing
(HPC) applications because they are extremely demanding in terms of
memory, and are indicative of future general-purpose needs.

In this paper, we empirically study the evolution of the miss rate and
memory occupancy with respect to the page size, and conclude that a
page size of 32 KiB is better suited for current HPC systems. We also
propose a page table scheme for RISC-V-based HPC systems based on
our observations and discuss its benefits.

I. INTRODUCTION

On-chip computation has benefited from Dennard scaling and
Moore’s law for decades, seeing improvements that led to multicore
architectures becoming the standard [1]. Matching workloads have
gone parallel, and are now able to handle huge amounts of data.
Meanwhile, the page size used for virtual to physical address
translation has remained basically the same: 4 KiB.

In 1964, Amdahl et al. [2] suggested 4 KiB pages for easy program
relocation in the IBM 360. Not long after, 1965, Comfort [3]
formalized the concept of virtual memory and introduced a set of
associative registers to cache the recent translations, that we now
know as a Translation Lookaside Buffer (TLB). Since then, this 4 KiB
size seems to have been unanimously adopted, as it is the one used in
virtually all processors. Notable exceptions are the late Alpha 21x64
and Sparc64 V6 to V9, with 8 KiB page size, and more recently and
more successfully the Apple ARM processors that have 16 KiB pages
since the A9 and M1 [4], [5]. One would expect that the page size
would be chosen similarly to cache-block length, which has been
empirically determined using agreed-upon benchmarks. However, we
are not aware of any formal publication reporting the reasons behind
8 KiB or 16 KiB pages.

Processors issue virtual addresses, which are translated into actual
physical addresses. These translations occur at the granularity of the
page size. A TLB is used to cache the recent translations, and, as
any cache, implements a victim selection algorithm to evict an entry
in case of conflict. The size of a page has a very important impact
on performance: the bigger the page, the fewer the number of entries
needed in the TLB, hence less conflicts. It also has an influence

on the memory that is allocated compared to the memory that is
actually needed. Indeed, memory is allocated at page granularity, so
using 32 KiB pages to store a few bytes results in much more wasted
memory than with 4 KiB pages.

Establishing the best page size in the general case makes little
sense, as the trade-offs for embedded devices are different from those
for servers, for instance. To narrow the scope, this paper focuses on
the study of HPC systems, for three reasons:

1) HPC benchmarks are regular and work on large data sets,
although across benchmarks their behaviour is heterogeneous [6],

2) They are, in part, executed on a local cluster on top of a coherent
shared memory library, which heavily uses the memory system,

3) Processors in HPC clusters are already specialized, so relatively
small modifications leading to improvements in performance can
be adopted.

Most of the current top supercomputers are x86-based, and only
a few years ago have we seen an ARM-based supercomputer take
the top position in the Top500 for the first time [7], nearly a decade
after ARM’s adoption in commodity computers. Similarly, although
RISC-V was conceived nearly a decade ago, there are currently no
sufficiently high-performance micro-architectures to allow for its
adoption in HPC. Still, many commercial RISC-V processors have
already been announced for general-purpose applications, such as
SiFive’s P870 and Ventana’s Veyron V2 processors. A few prototypes
can also be found that show the feasibility and viability of RISC-V
processors in the HPC context, e.g. [8], [9], or Monte Cimone, which is
the first fully operational RISC-V-based cluster supporting a complete
software stack for HPC [10]. As we expect this Instruction Set
Architecture (ISA) to find its way to the Top500 in the foreseeable
future, we think it is a great opening for revisiting some basic
architectural choices, namely the page size.

To explore which is the more suitable page size for HPC systems,
we propose to employ fast functional simulation and binary instrumen-
tation to run multicore HPC benchmarks and feed a TLB simulator.
Based on the simulation results and the trade-offs at hand, we define
a proper page size for the type of workload we are interested in.

Even though this is not a novel subject, to the best of our knowledge
no thorough study has been published on this topic for supercomputers.
With Moore’s law slowdown, the switch to more specialized multi-core
processors [1], and the first draft of a 128-bit architecture emerging
within the RISC-V space [11], we think it is time to reassess if 4 KiB
is still an adequate page size for modern and future workloads.

The main contributions of this paper are: (1) An empirical approach
to gather TLB statistics on simulated multicore machines, (2) The
definition of a parametric method to determine, according to TLB-
and memory-related criteria, the best page size for one or a set of
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benchmarks, (3) Experimental evidence to recommend a page size
for HPC systems.

II. MOTIVATION AND STATE-OF-THE-ART

Virtual addresses are a useful Operating System (OS) abstraction
that allows each process to have its own isolated address space.
However, the OS has to maintain a coherent mapping between the
virtual and physical addresses (including when a process’ memory is
paged-out) and, more particularly, it adds a new level of indirection
as, at each memory access, virtual addresses have to be translated
into physical addresses. Given the throughput of data and instruction
memory accesses, this translation is hardware assisted, and most
processors include a page-walker that traverses the page table to find
the translation, as well as a TLB to cache recent results.

A TLB has four important parameters that affect its performance:
the number of entries, the level of associativity, the replacement or
victim selection algorithm and the page size [12]. The impact of
the number of entries is straightforward: the more entries, the more
translations it can store. Depending on the TLB’s level of associativity,
a memory block can only occupy a single entry of the TLB (direct-
mapped), any of the TLB entries (fully associative), or any entry in
a set (set-associative). When a translation entry cannot be mapped
to an empty entry, the replacement algorithm chooses an entry to be
replaced by the new one. These parameters are important to reduce
the miss rate, i.e. the frequency with which the entry is not found in
the TLB and has to be searched for in main memory. Reducing the
miss rate results in a reduction of the average translation latency. The
page size, however, is directly linked to the number of entries, and is
crucial to minimize the translation overhead: the bigger the page, the
fewer the entries needed. Nonetheless, if pages are too big, it might
result in wasteful memory bloat: once it is accessed, the whole page
has to be loaded into memory, even though only part of it might be
effectively used. In addition, pages might have to be swapped on
disk, and in that situation copying void data is both useless and costly.
There is, in consequence, a trade-off between miss rate and memory
usage.

4 KiB has been the standard page size for decades, even though
many solutions to reduce the total number of pages for a given process,
and thus the TLB occupancy, have been proposed and implemented.
For instance, modern OSs support superpages (e.g. Linux, FreeBSD,
Windows, ...), which is a memory management technique that groups
contiguous smaller pages into a single and bigger page (usually 2 MB),
reducing the number of entries needed in the TLB. According to Zhu
et al. [13], different implementations of superpage management exhibit
very different performance characteristics in terms of runtime and
memory consumption. This mechanism puts a lot of pressure on the
OS, which has to keep track of available memory and move allocated
pages to reduce fragmentation and allow for superpage allocation.

In ARM 64-bit processors, the Memory Management Unit (MMU)
supports contiguous bits, which indicates that an entry belongs to a
set of 16 contiguously mapped entries that can be cached in a single
TLB entry instead of 16. The same mechanism is supported on RISC-
V, with the Naturally-Aligned Power-Of-Two (NAPOT) Translation
Continuity Extension (Svnapot) [14]. It can be extended to support
up to 64 KiB contiguous page regions. To the best of our knowledge,
there is no publication reporting the reasons behind this number.

The latest publication we found on this subject dates back almost
10 years. Weisberg and Wiseman [15] state that virtual memory
systems should use pages larger than 4 KiB. By comparing the total
number of TLB misses and overall memory usage of single-threaded

TABLE I: Fujitsu A64FX TLB specifications

Association
method

Number
of entries

Replacement
algorithm

Data
TLB

L1 Fully associative 16 FIFO

L2 4-way 1 024 LRU

Instruction
TLB

L1 Fully associative 16 FIFO

L2 4-way 1 024 LRU

benchmarks, they argue that for large data objects, a better page size
would be 256 KiB, whereas for instructions and small data objects,
16 KiB would be a better fit. Although it is important to quantify
the total number of misses and memory usage, we think it does not
give a good view of the overall execution of an application. This is
because, even though the number of misses reduces with larger pages,
it might be sufficiently low when comparing to the total number of
TLB accesses, hence having a low impact on the performance. For
that reason, our method uses the rate between the number of misses
and the total number of memory accesses (i.e. the miss rate) and the
rate between the memory that is actually used by the benchmark and
the total memory usage (i.e. the memory bloat rate).

Furthermore, as we focus on HPC systems, we opt to use highly
parallel benchmarks with large data sets. Manocha et al. [16] study
the implications of superpage management on graph analytics, which
presents very irregular memory access patterns. They conclude that
superpages can indeed reduce address translation overheads in ideal
scenarios. In less ideal scenarios, however, this reduction is highly
impacted, specially because of memory fragmentation due to the
huge size of the pages. They show that, with a better superpage
management, this impact can be mitigated. However, for this same
reason, we chose not to test pages bigger than 256 KiB. Superpages
can be used regardless of the minimal size of the page, making it a
useful approach anyhow.

There are also techniques that reduce translation latency through
speculation, such as CoPTA [17]. It achieves an average address
prediction accuracy of 82%, which improves overall performance.
This solution could also be used with larger pages. They show that
overheads caused by TLB misses can take up to 40% of total execution
time, and that the Linux memory allocator tends to map contiguous
virtual pages to contiguous physical pages. This gives credance to our
claim that larger pages could improve TLB and overall performance.

III. METHODS

A. Reference TLB Architecture

As a reference, we chose the specification of the Fujitsu’s A64FX
TLBs [18]. The A64FX is a 48-core 64-bit ARM processor designed
for massively parallel computing used in the Fugaku supercomputer,
which held the top position in the Top500 for two years [7]. Each
core has two-level split instruction and data TLBs, each with their
own specifications given in Table I.

In order to compare the TLB performance with different standard
page sizes, we use two metrics:

• Miss rate: this is the ratio of the number of accesses that do
not find a valid translation in the TLB over the total number of
TLB accesses. Misses incur performance degradation as they
require accessing lower-level memories to find the translation.
As we work with multiple cores, hence multiple TLBs, we take
the mean miss rate of all TLBs. Using a second level (L2) TLB



can help reduce this latency, so we will study its impact on both
levels.

• Memory bloat rate: memory is reclaimed by the OS at page
granularity, while actual use in programs is, at worse, at byte
granularity. Therefore, increasing the page size might increase the
total memory needed for a program execution while the memory
that is effectively used by the program is constant, regardless
of page size. The ratio of both gives information on wasted,
unusable memory, that we call memory bloat.

By evaluating these two metrics over a set of HPC programs, we
can determine a page size in line with the trade-off between reducing
the TLB miss rate and increasing the memory bloat.

B. Functional ISA and TLB Simulators

We use the QEMU [19] cross-ISA simulator to make these
measurements and validate our hypothesis. We trace all memory
accesses, for both data and instructions, and feed a TLB simulator
that can explore different configurations concurrently. We simulate
RISC-V applications on a x86-64 host machine. Both the plugin used
for tracing memory accesses in QEMU and the TLB simulator are
open-source and available in [20], [21].

The simulated system may contain as many target Central Process-
ing Units (CPUs) as needed, which are also known as Virtual CPUs
(vCPUs). QEMU scales well with the number of cores on Symmetric
Multiprocessing (SMP) host machines as long as the number of vCPUs
is less than or equal to the number of CPUs on the host machine [22],
[23]. It also supports binary instrumentation through the use of
plugins [24]. This infrastructure allows for callback functions to be
called on specific events, such as the execution of an instruction or a
memory access. These functions are provided with information such
as the virtual and physical addresses of the memory accesses, or the
address and size of the instruction being executed. We exploit these
callbacks to send this data to our simulator, a separate process, which
will reproduce the TLB operation and output the metrics we want.

We use QEMU’s user-mode simulation, which simulates an appli-
cation on top of the host machine’s OS. This means that the simulator
provides only information concerning the running application.

The parameters of the simulations are the following:
1) Number of cores/threads: 32, 64 and 96 cores
2) Page size: from 4 KiB to 256 KiB
3) Multi-core benchmarks: NAS Parallel Benchmarks (NPB),

PARSEC and SPLASH3
We run the benchmarks with very big datasets, requiring up to

several giga-bytes, which is representative of real HPC applications.
They are compiled with OpenMP or pthreads, according to the
available implementation. The NPB benchmarks [25] are run using
the class B or C dataset. PARSEC [26] and SPLASH [27] are run
with the native or large inputs.

C. Modeling approach

Our experiments will produce two plots (miss rate and memory
bloat) as a function of the page size p ∈ P where P = {212+l | l ∈
N∧ l ≤ 6}. We use them to define a cost function Jn,b(p) computed
as a weighted sum of the miss rate mrn,b and the memory bloat
mbn,b for a given benchmark b and number of cores n, as a function
of the page size p. This function is defined in Eq. 1, for which mr,
mb and w ∈ [0, 1]. The weight w can be chosen according to the
importance one wants to give to one or other metric.

Jn,b(p) = w ·mrn,b(p) + (1− w) ·mbn,b(p) (1)

We define p∗n,b as the page size that minimizes Eq. 1 for a given
n and b (Eq. 2), and p∗ as the size that minimizes the cost function
for all values of n and b.

p∗n,b = argmin
p∈P

Jn,b(p) = {p | Jn,b(p) = min
π∈P

Jn,b(π)} (2)

Obtaining a single p∗ value for all benchmarks and number of
cores can be done in many different ways. We opt for the one that
minimizes the sum of all cost functions. First, the cost functions are
normalized so that they all have the same weight on the summation.
This leads to Eq. 3, in which max(Jn,b) is the highest cost value for
a given benchmark and number of cores. We then sum all normalized
cost functions, and apply argmin to this result, which gives Eq. 4.

Ĵn,b(p) =
Jn,b(p)

max(Jn,b)
(3)

p∗ = argmin
p∈P

∑
b∈{benchmarks}

∑
n∈{cores}

Ĵn,b(p) (4)

IV. RESULTS

In this section, we evaluate how increasing the page size affects
the miss rate and memory usage in both data and instruction TLBs.

A. Data TLB

Fig. 1 plots the cost function (Eq. 1) of the L1 data TLB for all
benchmarks, for 32, 64 and 96 cores, with w = 0.5, i.e. with both
miss rate and memory bloat functions equally prioritized. Looking at
each benchmark separately, we note that, in some cases, by increasing
the page size, the miss rate reduces faster than the memory bloat
increases. This explains the initial downward trend of some of the cost
curves, such as for the Conjugate Gradient (CG) and Integer Sort (IS).
These are the benchmarks that would greatly benefit from a bigger
page size, but only up to a certain point, since the cost rises again
after a certain page size. For some benchmarks, such as Fluidanimate,
the cost function is almost constant. This does not mean larger pages
do not have an impact on its performance, but rather that the miss
rate and the memory bloat vary almost equally, which is acceptable
if memory is not a crucial resource. In fact, going from 4 KiB to
32 KiB, for instance, reduces the miss rate on Fluidanimate by 5×.
For other benchmarks, however, the cost is always increasing, so the
impact of the page size on the memory is higher than on the miss
rate, and would not benefit as much from a bigger page size, as their
lowest cost is at 4 KiB.

We can also note that, for most cases, increasing the number of
cores increases the cost. By looking at it in more details, we observe
that both the miss rate and the memory bloat increase in these cases,
because more pages are required. This is probably due to OpenMP
implementation and data initialization, since this augmentation is
virtually only seen in the first core.

Fig. 1a and 1b alone make it difficult to take a decision on the
page size that minimizes the cost. However, they give an outlook
of the trade-off between the miss rate and the memory bloat when
changing the page size for each benchmark. Table II compares the
page size that minimizes the cost for each case. Although there are
some discrepancies, NPB benchmarks clearly would benefit more
from larger pages than the PARSEC and SPLASH benchmarks. This
confirms that the ideal page size depends indeed on the application.

As defined in Eq. 4, p∗ is the page size that reduces the summation
of the costs for all sets of benchmarks and cores, which is shown in
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Fig. 1: L1 Data TLB costs for all benchmarks and number of cores
with w = 0.5

TABLE II: Best page size (p∗n,b) for w = 0.5

Benchmark (b) p∗n,b (KiB)

(n) 32 cores 64 cores 96 cores

Conjugate Gradient (CG) 64 64 64
Integer Sort (IS) 32 32 32
Fourier Transform (FT) 32 16 32
Multi-Grid (MG) 8 8 8
Embarassingly Parallel (EP) 4 4 4

Blackscholes 4 4 4
Freqmine 8 4 8
Fluidanimate 64 32 -
Raytrace 4 4 4

Ocean 4 4 -
Water-nsquared 4 4 4
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Fig. 2: Results for the sum of the normalized cost of all benchmarks
for all number of CPU cores.

Fig. 2a for five different values of w. When prioritizing memory, i.e.
w < 0.5, p∗ would be either 4 KiB or 8 KiB. Likewise, if the miss
rate reduction is prioritized, with w > 0.5, this page size becomes
32 KiB. Finally, if both metrics are equally prioritized, i.e. w = 0.5,
the page size p∗ is 16 KiB.

We can note that, after a certain page size, the value of the cost
only increases, for all values of w. This shows that, even if miss
rate reduction is overprioritized, choosing a too big page size is not
a good idea, as its impact in memory usage becomes too significant.

Regarding the L2 data TLB, we observed that, in some cases, the
miss rate increases with bigger page sizes, which seems counterin-
tuitive. This is due to the fact that, after a certain size, there are so
few misses on the L1 TLB, that the L2 TLB is barely accessed. For
instance, in some benchmarks, when using 256 KiB pages, almost
all of the most frequently used pages fit on the L1 TLB. However,
the first access to a page causes a miss in both L1 and L2 TLBs,



so almost all accesses to the L2 TLB cause a miss, resulting in a
miss rate close to 100%. To avoid these cases, we ignore the misses
caused by the first access to a page. Applying our method on the
L2 data TLB results in a p∗ of 16 KiB for w ≥ 0.5, and 4 KiB for
w < 0.5, as can be seen in Fig. 2b.

B. Instruction TLB

As for the L1 instruction TLB, we realized that the miss rate is
already incredibly low with 4 KiB pages, with a mean of 0.002%.
These benchmarks have a small number of instructions that repeat
quite often and that fit in a few pages. Even though there is a reduction
in the miss rate when increasing the page size, it is insignificant when
compared to the memory bloat it incurs.

The application of our method on the L1 instruction TLB concludes
that the page size p∗ for instructions is 4 KiB for the five w values.
However, even though bigger page sizes increase memory bloat,
memory used for the instructions of these benchmarks is quite low,
in the order of a few hundred kilo-bytes. The L2 instruction TLB
is nearly unused for the set of benchmarks, and its miss rate is
insignificant.

C. Limitations

Our measurement methodology has some limitations that we discuss
below.

The first one concerns the fact that we run QEMU in user-mode.
This ignores the execution of the OS, which might slightly alter the
TLB content as it accesses different memory zones, hence increasing
the miss rate.

The second one is that we ignore OS decisions regarding remapping,
page promotion, and a few other mechanisms. This is due to the way
we gather our statistics: we just run addresses through our simulator.
Although there is some loss in fidelity, Badaroux et al. [28] have
shown that statistics gathered by QEMU in full-system mode (i.e.,
both OS and user applications are simulated) depend on the execution
time of the binary instrumentation. In addition, HPC benchmarks very
often make little use of the OS. So, overall, we believe that neglecting
these OS mechanisms does not undermine our conclusions.

The third limitation is intercluster communication. We limit
ourselves to a cluster of up to 96 CPUs sharing memory, and make
the assumption that we can ignore the effects of the intercluster
network accesses. As properly designed HPC programs tend to avoid
intercluster communication, we think that network accesses can be
ignored for the kind of metrics we are estimating.

Finally, the fact that we track memory accesses instead of memory
allocation can also be seen as a limitation. Because of this, we ignore
metadata and other allocated chunks of data that are never directly
accessed by the application. Even though this possibly results in an
overestimation of the memory bloat, this data should be constant for
every page size, and should not impact the choice of the best size
through the cost function.

V. DISCUSSION

Trade-offs when choosing the page size: Page size has an impact
on both TLB miss rate and memory bloat, and its extent depends on
the application. Still, using the method proposed in Section III-C, we
conclude that if we prioritise miss rate over memory bloat, which is
reasonable for HPC systems, 32 KiB pages are the most suitable on
average for the set of HPC benchmarks considered in this work.

Very common HPC kernels such as Conjugate Gradient (CG),
which is extensively used in scientific applications, and Integer Sort

TABLE III: Minimum, maximum, average and normalized average
miss rate and memory bloat for all page sizes

Page size
(KiB)

Miss rate Memory bloat

min max avg avg
norm min max avg avg

norm

4 0.033% 19.5% 3.9% 1 0.02% 67% 9% 1
8 0.013% 12.7% 2.9% 0.74 0.03% 80% 11% 1.15
16 0.004% 8.7% 2.2% 0.56 0.05% 89% 13% 1.30
32 0.002% 8.7% 1.7% 0.44 0.08% 94% 14% 1.44
64 0.001% 8.6% 1.3% 0.34 0.14% 97% 16% 1.66
128 0.000% 7.3% 1.0% 0.26 0.24% 97% 19% 1.95
256 0.000% 7.3% 0.9% 0.23 0.42% 97% 24% 2.41

(IS), are examples of applications where the increase of the page
size significantly reduces the TLB miss rate (going from 4 KiB to
32 KiB pages leads to a reduction of 5.08× and 1.36× for CG
and IS, respectively). These memory intensive benchmarks perform
irregular memory accesses with address offsets bigger than 4 KiB. The
increased page size helps ensure that more of these irregular accesses
fall inside the same page. For more regular benchmarks, however,
the benefit of using larger pages is not as significant, or might even
be nonexistent. In these latter cases, the TLB miss rate is already low
enough with 4 KiB pages and, even though larger pages reduce the
miss rate, it is not as significant as the increase in memory bloat.

Table III gives the minimum, maximum and average miss rate and
memory bloat for the considered benchmarks as a function of the
page size. It also shows the average values normalized with respect
to the 4 KiB case. For 32 KiB pages, there is an average TLB miss
rate reduction of 2.27× for an average memory bloat increase of
1.44×. Beyond this page size, the increase of the memory bloat is
higher than the miss rate reduction.

We also compared the miss rate using different page sizes with
different TLB configurations. If we increase the page size while
reducing the number of TLB entries, so as to keep the amount of
addressable memory constant, we expect to keep roughly the same
miss rate. For a fully associative TLB, we tested the two cases of 64
entries/4 KiB pages and 16 entries/16 KiB pages. The results show
that, in the second case, the miss rate is slightly lower. For 4 KiB
pages, the average miss rate is 2.82%, whereas with 16 KiB pages
the miss rate is 2.2%. In practice, this means that using larger pages
can also translate to a reduction in the TLBs size, resulting in lower
chip area while maintaining the same performance.

Microarchitecture level implications: Increasing the page size can
also benefit the processor microarchitecture. To reduce memory access
latency, processors often follow a Virtually Indexed Physically Tagged
(VIPT) approach to access the caches and the TLB in parallel. This
induces a constraint on the size of the cache, s, and its associativity,
k, as it must be accessed using only bits of the page offset (the
lower part of the address that does not undergo virtual to physical
translation) that we assume is p-bit wide. The maximum size of a
VIPT cache is then s = k · 2p, so the only hardware solution to have
larger caches is to increase the associativity k, which in turn increases
the implementation complexity of the cache controller. Parasar et
al. [29] show that, for many real-world applications, increasing the
cache associativity significantly worsens the access latency and energy
consumption. By increasing the page size, we can have large caches
with fewer ways (associativity level), and therefore improve both
performance and energy efficiency.

Modern caches also implement hardware memory prefetching



mechanisms that use speculation to increase performance. Roughly,
these mechanisms take advantage of temporal and spatial locality to
prefetch data that is contiguous in memory, but are commonly limited
to data that resides on the same page [30]. By having larger pages,
prefetchers can provide more data to the processor before hitting a
page boundary, improving cache performance.

System level implications: Currently, the RISC-V standard defines
56-bit physical addresses for all memory systems, with 12 bits for
the page offset, and 44 bits to represent the Physical Page Number
(PPN). Using a different page size changes this organization: for
32 KiB pages, the page offset becomes 15-bit wide, and hence the
PPN shrinks to 41 bits. Using all the available bits would allow to
reach a physical address of 63 bits, with 48 bits to represent the
PPN, quite enough for the next generations of supercomputers in the
following 30 years. This leads to the alternative page-based 63-bit
virtual-memory system for RISC-V, shown in Fig. 3b, that we call
Sv63. A shorter term Sv51 scheme is also possible for those computer
that do not require that large a memory space.

Since modern processors use multilevel page tables, the Virtual
Page Number (VPN) part of the virtual address is split into multiple
VPNs. A single TLB miss can result in a page walk, a sequence of
dependent memory accesses to access the required virtual to physical
translation. This has a huge impact on performance, as each memory
access can take up to hundreds of processor cycles, degrading server
applications by 5%-14% and HPC applications by up to 50% according
to [31], [32]. Hence, reducing the number of levels of the page table
is beneficial for performance. As shown in Fig. 3b, the Sv63 scheme
eliminates one level of the page table with respect to the Sv57 scheme.
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Fig. 3: When changing the page size, the VPN and page offset
partition changes, allowing for fewer page walks

Another benefit of larger pages is that fewer page walks are needed
to address the same, or even a larger, amount of memory. In RISC-V
and x86-64, 5-level paging is required to address 257 bytes of memory
using 4 KiB pages, as shown Fig. 3a. In ARM64, 4-level paging is
used to address up to 252 bytes with the same base page size. With
32 KiB pages, 251 bytes of memory could be addressed with 3-level
paging, or up to 263 bytes with 4-level paging, as showed in Fig. 3b.

Regarding persistent storage accesses, having larger contiguous
pages is beneficial for storage transfers, as storage organization (be it
magnetic or solid-state) favors long sequential reads and writes over
sequences of shorter ones. Then, if the memory bloat stays under
control, this may also lead to performance improvements. Of course
this can have the negative effect of requiring more data to be written
to the backing storage, even if only a small part of a page is actually
modified. This effect could be exacerbated in the case of swapping,
but this situation is not typical of HPC workloads.

General-purpose computing: Although we focused on HPC
workloads, this methodology can also be applied to other environments.
In general-purpose computing, for instance, the TLB miss rate and
the memory bloat could be equally weighted, i.e. w = 0.5. We
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Fig. 4: Normalized cost of SPEC CPU2017 benchmarks for w = 0.5

applied our methodology on the SPEC CPU2017 Integer benchmarks,
that measures compute intensive performance by stressing both the
processor and the memory system. The results are shown in Fig. 4,
and we conclude that the page size that reduces the cost for this
set of applications is actually 16 KiB, with a miss rate reduction of
1.62× and a memory bloat increase of 1.03×. These results appear
to justify Apple’s 16 KiB pages on their ARM line of processors, as
they are designed for general-purpose use.

Yet, these results do not justify ARM’s and RISC-V’s choices of
64 KiB on their contiguous bit and Svnapot specifications. Fig. 2a
shows that for the five cases studied, the cost is always increasing
when using pages larger than 32 KiB. To reduce this cost, these
solutions still support 4 KiB as the base page size, but at the expense
of a bigger pressure in TLBs. This introduces more complexity in the
OS as it is the responsible of finding how to best use this mechanism,
in addition to superpages.

128-bit address space: Finally, future HPC systems might need
to access very large memory pools, possibly requiring more than 64-
bit addresses. The RISC-V includes a 128-bit specification, in which
the general purpose registers of the processor and the base instructions
work on 128 bits. However, the virtual memory organisation is yet
to be defined [11]. We believe larger pages would be particularly
beneficial to these systems, for which simply extrapolating from
existing 64-bit architectures would be largely sub-optimal. With
larger workloads and address spaces, it is expected that the pressure
on the TLB will increase accordingly. Increasing the amount of
addressable memory with larger pages, as well as allowing for a
reduction in the number of page walks and other microarchitectural
improvements, is a first step towards more scalable systems.

VI. CONCLUSION

Choosing the size of the pages can be difficult due to the
compromise between translation performance and memory usage.
Although 4 KiB pages have been the standard for more than half a
century, with Apple recently moving up to 16 KiB pages and ways to
merge TLB entries being added, this might change soon.

This study defines a method to determine the page size for a given
system according to the trade-off between miss rate and memory



overhead. We analyzed HPC systems by exploring the impact of
the page size on TLB miss rate and memory bloat for a set of well
known parallel benchmarks. We show that, for systems in which
memory usage is not as critical as performance, such as HPC, using
32 KiB pages can result in a mean reduction of 2.27× in miss rate,
with a 1.44× increase in memory bloat compared to the 4 KiB
baseline. Hence, we propose to use 32 KiB pages as an alternative
page-based 63-bit virtual-memory system for RISC-V, specialized for
HPC systems. Furthermore, we discussed some microarchitectural
choices that become available with larger page sizes and that may
improve overall performance, such as increasing the number of sets
in the cache and reducing the number of page walk levels. This
approach can also be applied to other cases, such as general-purpose
processors, for which we show that 16 KiB pages is a good choice,
which corroborates the choice in the newest Apple processors.

Although a 128-bit instruction set has already been specified in
RISC-V, its memory organisation is yet to be defined. We believe
these systems would specially benefit from bigger page sizes, so the
results from this study can provide insight on this topic.
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Instruction Set, Version 1.7. In The RISC-V Instruction Set Manual -
Volume I: Unprivileged ISA. The RISC-V Foundation, 20191213 edition,
December 2019.

[12] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems.
Prentice Hall Press, USA, 4th edition, 2014.

[13] Weixi Zhu, Alan L. Cox, and Scott Rixner. A comprehensive analysis of
superpage management mechanisms and policies. In USENIX Conference
on Usenix Annual Technical Conference. USENIX Association, 2020.

[14] Andrew Waterman, Krste Asanović, and John Hauser. Chapter 5,
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