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Abstract

Monographs are graph-like structures with directed edges of unlimited length that are freely adjacent to each other. The standard
nodes are represented as edges of length zero. They can be drawn in a way consistent with standard graphs and many others,
like E-graphs or 8-graphs. The category of monographs share many properties with the categories of graph structures (algebras
of monadic many-sorted signatures, equivalent to presheaf toposes), except that there is no terminal monograph. It is universal
in the sense that its slice categories (or categories of typed monographs) are equivalent to the categories of graph structures.
Type monographs thus emerge as a natural way of specifying graph structures. A detailed analysis of single and double pushout
transformations of monographs is provided, and a notion of attributed typed monographs generalizing typed attributed E-graphs
is analyzed w.r.t. attribute-preserving transformations.

Keywords: Algebraic Graph Transformation, Graph Structures, Typed Graphs
Conflict of Interest: none.

1 Introduction

Many different notions of graphs are used in mathematics and computer science: simple graphs, directed graphs, multigraphs,
hypergraphs, etc. One favourite notion in the context of logic and rewriting is that also known as quivers, i.e., structures of the form
pN,E, s, tq where N,E are sets and s, t are functions from E (edges) to N (nodes), identifying the source and target tips of every
edge (or arrow). One reason for this is that the category of quivers is isomorphic to the category of algebras of the many-sorted
signature with two sorts nodes and edges and two operator names src and tgt of type edges Ñ nodes. In conformity with this
tradition, by graph we mean quiver throughout this paper.

In order to conveniently represent elaborate data structures it is often necessary to enrich the structure of graphs with attributes:
nodes or edges may be labelled with elements from a fixed set, or with values taken in some algebra, or with sets of values as in [1],
etc. An interesting example can be found in [2] with the notion of E-graphs, since the attributes are also considered as nodes. More
precisely, an E-graph is an algebra whose signature can be represented by the following graph:

edges nodes

ev-edges nv-edges

values

srce

tgte

srcev srcnv

tgtev tgtnv
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The names given to the sorts and operators help to understand the structure of E-graphs: the edges relate the nodes among
themselves, the nv-edges relate the nodes to the values, and the ev-edges relate the edges to the values. Hence the sort values
holds attributes that are also nodes. But then we see that in E-graphs the ev-edges are adjacent to edges. This is non-standard,
but we may still accept such structures as some form of graph, if only because we understand how they can be drawn.

Hence the way of generalizing the notion of graphs seems to involve a generalization of the signature of graphs considered as
algebras. This path has been followed by Michael Löwe in [3], where a graph structure is defined as a monadic many-sorted signature.
Indeed in the examples above, and in many examples provided in [3], all operators have arity 1 and can therefore be considered as
edges from their domain to their range sort. Is this the reason why they are called graph structures? But the example above shows
that E-graphs are very different from the graph that represent their signature. Besides, it is not convenient that our understanding
of such structures should be based on syntax, i.e., on the particular names given to sorts and operators in the signature.

Furthermore, it is difficult to see how the algebras of some very simple monadic signatures can be interpreted as graphs of any
form. Take for instance the signature of graphs and reverse the target function to tgt : nodesÑ edges. Then there is a symmetry
between the sorts nodes and edges, which means that in an algebra of this signature nodes and edges would be objects of the same
nature. Is this still a graph? Can we draw it? Worse still, if the two sorts are collapsed into one, does it mean that a node/edge
can be adjacent to itself?

We may address these problems by restricting graph structures to some class of monadic signatures whose algebras are guaranteed
to behave in an orthodox way, say by exhibiting clearly separated edges and nodes. But this could be prone to arbitrariness, and it
would still present another drawback: that the notion of graph structure does not easily give rise to a category. Indeed, it is difficult
to define morphisms between algebras of different signatures, if only because they can have any number of carrier sets.

The approach adopted here is rather to reject any structural distinction between nodes and edges, hence to adopt a unified view
of nodes as edges of length 0, and standard edges as edges of length 2 since they are adjacent to two nodes. This unified view
logically allows edges to be adjacent to any edges and not just to nodes, thus generalizing the ev-edges of E-graphs, and even to
edges that are adjacent to themselves. Finally, there is no reason to restrict the length of edges to 0 or 2, and we will find good
reasons (in Section 6) for allowing edges of infinite, ordinal length. The necessary notions and notations are introduced in Section 2.
The structure of monograph (together with morphisms) is defined in Section 3, yielding a bestiary of categories of monographs
according to some of their characteristics. The properties of these categories w.r.t. the existence of limits and co-limits are analyzed
in Section 4.

We then see in Section 5 how monographs can be accurately represented by drawings, provided of course that they have finitely
many edges and that these have finite length. In particular, such drawings correspond to the standard way of drawing a graph for
those monographs that can be identified with standard graphs, and similarly for E-graphs.

Section 6 is devoted to the comparison between monographs and graph structures, and the corresponding algebras (that we may
call graph structured algebras). We show a property of universality of monographs, in the sense that all graph structured algebras
can be represented (though usually not in a canonical way) as typed monographs, i.e., as morphisms of monographs.

The notion of graph structure has been introduced in [3] in order to obtain categories of partial homomorphisms in which
techniques of algebraic graph rewriting could be carried out. The correspondence with monographs established in Section 6 calls
for a similar development of partial morphisms of monographs in Section 7. The single and double pushout methods of rewriting
monographs can then be defined, analyzed and compared in Section 8.

The notion of E-graph has been introduced in [2] in order to obtain well-behaved categories (w.r.t. graph rewriting) of attributed
graphs, and hence to propose suitable representations of real-life data structures. This is achieved by enriching E-graphs with a data
type algebra, and by identifying nodes of sort value with the elements of this algebra. We pursue a similar approach in Section 9
with the notion of attributed typed monograph by identifying elements of an algebra with edges, and obtain similarly well-behaved
categories. Due to the universality of monographs we see that any Σ-algebra can be represented as an attributed typed monograph.

We conclude in Section 10. Note that parts of Sections 4 to 6 have been published in [4].

2 Basic Definitions and Notations

2.1 Sets

For any sets A, B, relation R Ď A ˆ B and subset X Ď A, let RrXs
def
“ ty P B | x P X ^ px, yq P Ru. For any x P A, by abuse

of notation we write Rrxs for Rrtxus. If R is functional we write Rpxq for the unique element of Rrxs, and if S Ď C ˆ D is also

functional and RrAs Ď C let S ˝R
def
“ tpx, SpRpxqqq | x P Au.

A function f : A Ñ B is a triple pA,R,Bq where R Ď A ˆ B is a functional relation. We write f rXs and fpxq for RrXs and

Rpxq respectively. For any Y Ě f rXs, let f |YX
def
“ pX,R X pX ˆ Y q, Y q and f |X

def
“ f |BX . If A Ď B then pA, tpx, xq | x P Au, Bq is

an inclusion function. A function g “ pC, S,Dq may be composed on the left with f if B “ C, and then g ˝ f
def
“ pA,S ˝ R,Dq. If

RrAs Ď C we may write g ˝R or S ˝ f for S ˝R.

Sets and functions form the category Set with identities IdA
def
“ pA, tpx, xq | x P Au, Aq. In Set we use the standard product

pA ˆ B, π1, π2q and coproduct pA ` B,µ1, µ2q of pairs of sets pA,Bq. The elements p P A ˆ B are pairs of elements of A and B,
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i.e., p “ pπ1ppq, π2ppqq. For functions f : C Ñ A and g : C Ñ B we write xf, gy : C Ñ A ˆ B for the unique function such that

π1 ˝ xf, gy “ f and π2 ˝ xf, gy “ g, i.e., xf, gypzq
def
“ pfpzq, gpzqq for all z P C. The elements of A ` B are pairs µ1pxq

def
“ px, 0q or

µ2pyq
def
“ py, 1q for all x P A and y P B, so that A1 Ď A and B1 Ď B entail A1 `B1 “ µ1rA

1s Y µ2rB
1s.

An ordinal is a set α such that every element of α is a subset of α, and such that the restriction of the membership relation
P to α is a strict well-ordering of α (a total order where every non-empty subset of α has a minimal element). Every member of
an ordinal is an ordinal, and we write λ ă α for λ P α. For any two ordinals α, β we have either α ă β, α “ β or α ą β (see
e.g. [5]). Every ordinal α has a successor α Y tαu, denoted α ` 1. Natural numbers n are identified with finite ordinals, so that

n “ t0, 1, . . . , n´ 1u and ω
def
“ t0, 1, . . . u is the smallest infinite ordinal.

2.2 Sequences

For any set E and ordinal λ, an E-sequence s of length λ is an element of Eλ, i.e., a function s : λÑ E. Let ε be the only element
of E0 (thus leaving E implicit), and for any e P E let eÒλ be the only element of teuλ. For any s P Eλ and ι ă λ, the image of ι by

s is written sι. If λ is finite and non-zero then s can be described as s “ s0 ¨ ¨ ¨ sλ´1. For any ordinal α, let Eăα
def
“

Ť

λăαE
λ; this

is a disjoint union. For any s P Eăα let |s| be the length of s, i.e., the unique λ ă α such that s P Eλ.
We will often use the following notational convention: for any x P E and s P Eλ, we write x | s (and say that x occurs in s) if

there exists ι ă λ such that sι “ x.
For any set F and function f : E Ñ F , let făα : Eăα Ñ Făα be the function defined by făαpsq

def
“ f ˝ s for all s P Eăα. We

have IdăαE “ IdEăα and pg ˝ fqăα “ găα ˝ făα for all g : F Ñ G. Since s P Eλ entails f ˝ s P Fλ, then |făαpsq| “ |s|.
If s and s1 are respectively E- and F -sequences of length λ, then they are both functions with domain λ hence there is a

function xs, s1y of domain λ. Thus xs, s1y is an pE ˆ F q-sequence of length λ, and then πăα1 pxs, s1yq “ π1 ˝ xs, s
1y “ s and similarly

πăα2 pxs, s1yq “ s1 for all α ą λ. If f : E Ñ F and g : E Ñ G then xf, gy : E Ñ F ˆG, hence for all s P Eăα of length λ ă α we have
xf, gyăαpsq “ xf, gy ˝ s “ xf ˝ s, g ˝ sy “ xfăαpsq, găαpsqy is an pF ˆGq-sequence of length λ.

For s P Eăω and pAeqePE an E-indexed family of sets, let As
def
“

ś

ιă|s|Asι . In particular we take Aε
def
“ 1 as a terminal object in

Set. For pBeqePE an E-indexed family of sets and pfe : Ae Ñ BeqePE an E-indexed family of functions, let fs
def
“

ś

ιă|s| fsι : As Ñ Bs.

2.3 Signatures and Algebras

A signature is a function1 Σ : Ω Ñ Săω, such that Σpoq ‰ ε for all o P Ω. The elements of Ω are called operator names and those

of S sorts. The arity of an operator name o P Ω is the finite ordinal n
def
“ |Σpoq| ´ 1, its range is Rngpoq

def
“ Σpoqn (the last element

of the S-sequence Σpoq) and its domain is Dompoq
def
“ Σpoq|n (the rest of the sequence). o is monadic if n “ 1. The signature Σ is

finite if Ω and S are finite, it is a graph structure if all its operator names are monadic.
A Σ-algebra A is a pair ppAsqsPS , po

AqoPΩq where pAsqsPS is an S-indexed family of sets and poA : ADompoq Ñ ARngpoqqoPΩ is an
Ω-indexed family of functions. A Σ-homomorphism h from A to a Σ-algebra B is an S-indexed family of functions phs : As Ñ BsqsPS
such that

oB ˝ hDompoq “ hRngpoq ˝ o
A

for all o P Ω. Let 1A
def
“ pIdAsqsPS and for any Σ-homomorphism k : B Ñ C, the Σ-homomorphism k ˝ h : A Ñ C is defined by

pk ˝ hqs
def
“ ks ˝ hs for all s P S. Let Σ-Alg be the category of Σ-algebras and Σ-homomorphisms.

2.4 Categories

We assume familiarity with the notions of functors, limits, colimits and their preservation and reflection by functors, see [7].
Isomorphism between objects in a category is denoted by » and equivalence between categories by «.

For any object T of a category C, the slice category CzT has as objects the morphisms of codomain T of C, as morphisms from
object a : A Ñ T to object b : B Ñ T the morphisms f : A Ñ B of C such that b ˝ f “ a, and the composition of morphisms in
CzT is defined as the composition of the underlying morphisms in C (see [2] or [7, Definition 4.19]).

3 Monographs and their Morphisms

Definition 3.1 (monographs, edges, ordinal for A). A set A is a monograph if there exists a set E (whose elements are called edges
of A) and an ordinal α (said to be an ordinal for A) such that pE,A,Eăαq is a function.

A monograph is therefore a functional relation, which means that its set of edges is uniquely determined. On the contrary, there
are always infinitely many ordinals for a monograph. As running example we consider the monograph A “ tpx, x y xq, py, y x yqu

1For the sake of simplicity we do not allow the overloading of operator names as in [6]. These names will turn out to be irrelevant anyway.
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then its set of edges is E “ tx, yu. Since Apxq and Apyq are elements of E3 Ď Eă4, then pE,A,Eă4q is a function. Hence 4 is an
ordinal for A, and so are all the ordinals greater than 4.

It is easy to see that for any set of monographs there exists a common ordinal for all its members.

Definition 3.2 (length |x|, edge xι, trace trpAq, O-monographs). For any monograph A with set of edges E, the length of an edge
x P E is the length |Apxq|, also written |x| if there is no ambiguity. Similarly, for any ι ă |x| we may write xι for Apxqι. The trace

of A is the set trpAq
def
“ t|x| | x P Eu. For any set O of ordinals, A is an O-monograph if trpAq Ď O.

Since any ordinal is a set of ordinals, we see that an ordinal α is for a monograph iff this is an α-monograph. Hence all edges of
a monograph have finite length iff it is an ω-monograph.

Definition 3.3 (adjacency, nodes NA, standard monographs). For any monograph A and edges x, y of A, x is adjacent to y if
y | Apxq (see Section 2.2). A node is an edge of length 0, and the set of nodes of A is written NA. A is standard if y | Apxq entails
y P NA, i.e., all edges are sequences of nodes.

The running example A has no nodes and is therefore not standard. Since Apxq “ x y x then x is adjacent to y and to itself.
Similarly, Apyq “ y x y yields that y is adjacent to x and to itself. In this case the adjacency relation is symmetric, but this is not
generally the case, e.g., a node is never adjacent to any edge, while edges may be adjacent to nodes.

Definition 3.4 (morphisms of monographs). A morphism f from monograph A to monograph B with respective sets of edges E
and F , denoted f : AÑ B, is a function f : E Ñ F such that făα ˝A “ B ˝ f , where α is any ordinal for A. If E Ď F and f is the
inclusion function then it is an inclusion morphism; these morphisms will be depicted as hooked arrows f : A ãÑ B.

Building on the running example, we consider the permutation f “ px yq of E (in cycle notation), we see that fă4 ˝ Apxq “
fă4px y xq “ y x y “ Apyq “ A ˝ fpxq and similarly that fă4 ˝ Apyq “ fă4py x yq “ x y x “ Apxq “ A ˝ fpyq, hence fă4 ˝ A “ A ˝ f
and f is therefore a morphism from A to A. Since f ˝ f “ IdE is obviously the identity morphism 1A then f is an isomorphism.

Note that the terms of the equation făα ˝ A “ B ˝ f are functional relations and not functions. One essential feature is that
this equation holds for all ordinals α for A iff it holds for one. Thus if we are given a morphism then we know that the equation
holds for all big enough α’s, and if we want to prove that a function is a morphism then we need only prove that there exists a big
enough α such that the equation holds.

This equation is of course equivalent to făα ˝ Apxq “ B ˝ fpxq for all x P E. The terms of this last equation are F -sequences
that should therefore have the same length:

|x| “ |Apxq| “ |făα ˝Apxq| “ |B ˝ fpxq| “ |fpxq|,

i.e., the length of edges are preserved by morphisms. Hence trpAq Ď trpBq, and the equality holds if f is surjective. This means
that if B is an O-monograph then so is A, and that every ordinal for B is an ordinal for A. This also means that the images of
nodes can only be nodes:

f´1rNBs “ tx P E | |fpxq| “ 0u “ tx P E | |x| “ 0u “ NA.

The sequences făα ˝Apxq and B ˝ fpxq should also have the same elements

pfăα ˝Apxqqι “ pf ˝ pApxqqqι “ fpApxqιq “ fpxιq

and pB ˝ fpxqqι “ Bpfpxqqι “ fpxqι

for all ι ă |x|. Thus f : E Ñ F is a morphism iff

|fpxq| “ |x| and fpxιq “ fpxqι for all x P E and all ι ă |x|.

Assuming that f : A Ñ B is a morphism and that B is standard, we have fpxιq “ fpxqι P NB thus xι P f
´1rNBs “ NA for all

x P E and ι ă |x|, hence A is also standard.
Given morphisms f : AÑ B and g : B Ñ C, we see that g ˝ f is a morphism from A to C by letting α be an ordinal for B, so

that
pg ˝ fqăα ˝A “ găα ˝ făα ˝A “ găα ˝B ˝ f “ C ˝ g ˝ f.

Definition 3.5 (categories of monographs, functor E). Let Monogr be the category of monographs and their morphisms. Let
SMonogr be its full subcategory of standard monographs. For any set O of ordinals, let O-Monogr (resp. O-SMonogr) be the
full subcategory of O-monographs (resp. standard O-monographs). Let FMonogr be the full subcategory of finite ω-monographs
(i.e. monographs with finitely many edges that all have finite length).

Let E be the forgetful functor from Monogr to Set, i.e., for every monograph A let EA be the set of edges of A, and for every
morphism f : AÑ B let Ef : EAÑ EB be the underlying function, usually denoted f .

4



There is an obvious similitude between standard t0, 2u-monographs and graphs. It is actually easy to define a functor M :
Graph Ñ t0, 2u-SMonogr by mapping any graph G “ pN,E, s, tq to the monograph MG whose set of edges is the coproduct
N ` E, and that maps every edge e P E to the sequence of nodes speq tpeq (and of course every node x P N to ε). Similarly
graph morphisms are transformed into morphisms of monographs through a coproduct of functions. It is easy to see that M is an
equivalence of categories.

It is customary in Algebraic Graph Transformation to call typed graphs the objects of GraphzG, where G is a graph called type
graph, see e.g. [2]. We will extend this terminology to monographs and refer to the objects of MonogrzT as the monographs typed
by T and T as a type monograph.

4 Limits and Colimits

The colimits of monographs follow the standard constructions of colimits in Set and Graph.

Lemma 4.1. Every pair pA,Bq of monographs has a coproduct pA` B,µ1, µ2q such that trpA` Bq “ trpAq Y trpBq and if A and
B are finite (resp. standard) then so is A`B.

Proof. Let α be an ordinal for A and B, and pEA ` EB,µ1, µ2q be the coproduct of pEA,EBq in Set. Since every element of

EA ` EB is either a µ1pxq or a µ2pyq for some x P EA, y P EB, we can define a monograph C by taking EC
def
“ EA ` EB with

Cpµ1pxqq
def
“ µăα1 ˝Apxq and Cpµ2pyqq

def
“ µăα2 ˝Bpyq for all x P EA, y P EB, so that µ1 : AÑ C and µ2 : B Ñ C are morphisms. It

is obvious that trpCq “ trpAq Y trpBq and if A and B are finite (resp. standard) then so is C.

EA

EB

EA` EB ED

f
µ1

g
µ2

h

A

B

C D

f
µ1

g
µ2

h

Let f : AÑ D and g : B Ñ D, there exists a unique function h from EA` EB “ EC to ED such that f “ h ˝ µ1 and g “ h ˝ µ2,
hence

hăα ˝ Cpµ1pxqq “ ph ˝ µ1q
ăα ˝Apxq “ făα ˝Apxq “ D ˝ fpxq “ D ˝ hpµ1pxqq

for all x P EA, and similarly hăα ˝Cpµ2pyqq “ D ˝hpµ2pyqq for all y P EB, hence hăα ˝C “ D ˝h, i.e., h : C Ñ D is a morphism.

Lemma 4.2. Every pair of parallel morphisms f, g : A Ñ B has a coequalizer pQ, cq such that trpQq “ trpBq and if B is finite
(resp. standard) then so is Q.

Proof. Let α be an ordinal for B and „ be the smallest equivalence relation on EB that contains R “ tpfpxq, gpxqq | x P EAu and
c : EB Ñ EB{„ be the canonical surjection, so that c ˝ f “ c ˝ g. We thus have for all x P EA that

căα ˝B ˝ fpxq “ pc ˝ fqăα ˝Apxq “ pc ˝ gqăα ˝Apxq “ căα ˝B ˝ gpxq.

For all y, y1 P EB such that cpyq “ cpy1q, i.e., y „ y1, since „ is the symmetric and transitive closure of R then there exists a
finite sequence y0, . . . , yn of elements of EB such that y0 “ y, yn “ y1 and yi R yi`1 or yi`1 R yi for all 0 ď i ă n, hence
căα ˝Bpyiq “ căα ˝Bpyi`1q, and therefore căα ˝Bpyq “ căα ˝Bpy1q.

We can now define a monograph Q by taking EQ “ EB{„ with Qpcpyqq
def
“ căα ˝Bpyq, so that c : B Ñ Q is a morphism. Since

c is surjective then trpQq “ trpBq and if B is finite (resp. standard) then so is Q.

EA EB EB{„

ED

f

g
c

d
h

A B Q

D

f

g
c

d
h

Let d : B Ñ D such that d ˝ f “ d ˝ g. Since c is a coequalizer of f , g in Set (see [7, Examples 16.3 (2)]) then there exists a unique
function h from EQ to ED such that d “ h ˝ c, and h : QÑ D is a morphism since for all y P EB,

D ˝ hpcpyqq “ D ˝ dpyq “ dăα ˝Bpyq “ hăα ˝ căα ˝Bpyq “ hăα ˝Qpcpyqq.
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Corollary 4.3. The epimorphisms in Monogr are the surjective morphisms.

Proof. Assume f : A Ñ B is an epimorphism. Let pB ` B,µ1, µ2q be a coproduct of pB,Bq and pQ, cq be the coequalizer of
µ1 ˝ f, µ2 ˝ f : AÑ B`B constructed in the proof of Lemma 4.2, then c ˝µ1 ˝ f “ c ˝µ2 ˝ f , hence c ˝µ1 “ c ˝µ2. For all y P EB we
thus have µ1pyq „ µ2pyq, and since µ1pyq ‰ µ2pyq then µ1pyq must be related by R to some element of EpB `Bq, hence there is an
x P EA such that µ1pyq “ µ1 ˝ fpxq, thus y “ fpxq since µ1 is injective; this proves that f is surjective. The converse is obvious.

A well-known consequence of Lemmas 4.1, 4.2 and that ∅ is the initial monograph is that all finite diagrams have colimits.

Theorem 4.4. The categories of Definition 3.5 are finitely co-complete.

We next investigate the limits in categories of monographs. Products of monographs are more difficult to build than products
of graphs. This is due to the fact that edges of identical length may be adjacent to edges of different lengths.

Lemma 4.5. Every pair pA,Bq of monographs has a product pAˆB, π11, π
1
2q such that AˆB is finite whenever A and B are finite.

Proof. Let α be an ordinal for A and B, let pEAˆ EB, π1, π2q be the product of pEA,EBq in Set, we consider the set of subsets H
of tpx, yq P EA ˆ EB | |x| “ |y|u such that px, yq P H entails pxι, yιq P H for all ι ă |x|. This set contains ∅ and is closed under

union, hence it has a greatest element EP , and we let P px, yq
def
“ xApxq, Bpyqy for all px, yq P EP ; this is obviously an EP -sequence,

hence P is a monograph. Let π11
def
“ π1|EP and π12

def
“ π2|EP , we have

π1ăα1 ˝ P px, yq “ Apxq “ A ˝ π11px, yq

for all px, yq P EP , hence π11 : P Ñ A and similarly π12 : P Ñ B are morphisms.

EA

EB

EAˆ EBEC

f
π1

g
π2

xf, gy

A

B

PC

f
π11

g
π12

h

Let f : C Ñ A and g : C Ñ B, then xf, gy : EC Ñ EA ˆ EB and for all z P EC we have |fpzq| “ |z| “ |gpzq| hence
xf, gyrECs Ď tpx, yq P EA ˆ EB | |x| “ |y|u. Assume that px, yq P xf, gyrECs, then there exists a z P EC such that x “ fpzq and
y “ gpzq, hence |x| “ |y|, fpzιq “ fpzqι “ xi and gpzιq “ gpzqι “ yι for all ι ă |x|, hence pxι, yιq P xf, gyrECs. Thus xf, gyrECs Ď EP

and we let h
def
“ xf, gy|EPEC , then h is the unique function such that π11 ˝ h “ f and π12 ˝ h “ g, and h : C Ñ P is a morphism since for

all z P EC,
P ˝ hpzq “ P pfpzq, gpzqq “ xA ˝ fpzq, B ˝ gpzqy “ xfăα ˝ Cpzq, găα ˝ Cpzqy “ hăα ˝ Cpzq.

We therefore see that EpAˆBq is only a subset of EAˆ EB.

Lemma 4.6. Every pair of parallel morphisms f, g : AÑ B has an equalizer pE, eq such that E is finite whenever A is finite.

Proof. Let α be an ordinal for A, EE
def
“ tx P EA | fpxq “ gpxqu, e : EE ãÑ EA be the inclusion function and Epxq

def
“ Apxq for all

x P EE. Since
făα ˝Apxq “ B ˝ fpxq “ B ˝ gpxq “ găα ˝Apxq

then Epxq is an EE-sequence, hence E is a monograph. Besides eăα ˝Epxq “ Apxq “ A ˝ epxq, hence e : E Ñ A is a morphism such
that f ˝ e “ g ˝ e.

EA EBEE

ED

f

g
e

d
h

A BE

D

f

g
e

d
h
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For any d : D Ñ A such that f ˝ d “ g ˝ d, we have dpyq P EE for all y P ED, hence h
def
“ d|EEED is the unique function such that

d “ e ˝ h. We have
eăα ˝ hăα ˝D “ dăα ˝D “ A ˝ d “ A ˝ e ˝ h “ eăα ˝ E ˝ h

and eăα : pEEqăα ãÑ pEAqăα is the inclusion function, hence hăα ˝D “ E ˝ h and h : D Ñ E is a morphism.

Corollary 4.7. The monomorphisms in Monogr are the injective morphisms.

Proof. Assume f : AÑ B is a monomorphism. Let pAˆA, π1, π2q be a product of pA,Aq and pE, eq be the equalizer of f ˝π1, f ˝π2 :
AˆAÑ B constructed in the proof of Lemma 4.6, then f ˝π1 ˝ e “ f ˝π2 ˝ e, hence π1 ˝ e “ π2 ˝ e. For all x, y P EA, if fpxq “ fpyq
then f ˝ π1px, yq “ f ˝ π2px, yq hence px, yq P EE and therefore x “ π1 ˝ epx, yq “ π2 ˝ epx, yq “ y, hence f is injective. The converse
is obvious.

A well-known consequence of Lemmas 4.5 and 4.6 is that all non-empty finite diagrams in Monogr have limits. Since a limit of
O-monographs (resp. standard monographs) is an O-monograph (resp. standard), this holds for all categories of Definition 3.5. In
particular they all have pullbacks.

We shall now investigate the limits of the empty diagram in these categories, i.e., their possible terminal objects.

Definition 4.8. For any set of ordinals O, let

TO “

"

tpλ, 0Òλq | λ P Ou if 0 P O
∅ otherwise.

If 0 P O then 0 is a node of TO and obviously ETO “ trpTOq “ O. Hence in all cases TO is a standard O-monograph.

Lemma 4.9. TO is terminal in O-SMonogr.

Proof. If 0 R O then ∅ “ TO is the only standard O-monograph, hence it is terminal. Otherwise let A be any standard O-
monograph, α an ordinal for A and ` : EAÑ O be the function that maps every edge x P EA to its length |x|. Since A is standard
then p`ăα ˝ Apxqqι “ |Apxqι| “ 0 for all ι ă |x|, hence `ăα ˝ Apxq “ 0Ò|x| “ TO ˝ `pxq, so that ` : A Ñ TO is a morphism. Since
morphisms preserve the length of edges and there is exactly one edge of each length in TO, then ` is unique.

We now use the fact that every ordinal is a set of ordinals.

Lemma 4.10. For any monograph T and morphism f : Tα Ñ T , any ordinal for T is equal to or greater than α.

Proof. Let β be an ordinal for T , then by the existence of f we have α “ trpTαq Ď trpT q Ď β, hence α ď β.

Lemma 4.11. Monogr, SMonogr and FMonogr have no terminal object.

Proof. Suppose that T is a terminal monograph, then there is an ordinal β for T and there is a morphism from Tβ`1 to T ; by
Lemma 4.10 this implies that β ` 1 ď β, a contradiction. This still holds if T is standard since Tβ`1 is standard. And it also holds
if T is a finite ω-monograph, since then β can be chosen finite, and then Tβ`1 is also a finite ω-monograph.

Since terminal objects are limits of empty diagrams obviously these categories are not finitely complete.

Theorem 4.12. O-SMonogr is finitely complete for every set of ordinals O. The categories Monogr, SMonogr and FMonogr
are not finitely complete.

Proof. By Lemmas 4.5, 4.6, 4.9 and 4.11.

The category Graph is also known to be adhesive, a property of pushouts and pullbacks that has important consequences on
algebraic transformations (see [8]) and that we shall therefore investigate.

Definition 4.13 (van Kampen squares, adhesive categories). A pushout square pA,B,C,Dq is a van Kampen square if for any
commutative cube
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C

D

A

B

C 1

D1

A1

B1

where the back faces pA1, A,B1, Bq and pA1, A,C 1, Cq are pullbacks, it is the case that the top face pA1, B1, C 1, D1q is a pushout iff
the front faces pB1, B,D1, Dq and pC 1, C,D1, Dq are both pullbacks.

A category has pushouts along monomorphisms if all sources pA, f, gq have pushouts whenever f or g is a monomorphism.
A category is adhesive if it has pullbacks, pushouts along monomorphisms and all such pushouts are van Kampen squares.

As in the proof that Graph is adhesive, we will use the fact that the category Set is adhesive.

Lemma 4.14. E reflects isomorphisms.

Proof. Let f : AÑ B such that f is bijective, then it has an inverse f´1 : EB Ñ EA. For all y P EB and all ι ă |y|, let x “ f´1pyq,
we have

f´1pyιq “ f´1pfpxqιq “ f´1pfpxιqq “ xι “ f´1pyqι

hence f´1 : B Ñ A is a morphism, and f is therefore an isomorphism.

A side consequence is that Monogr is balanced, i.e., if f is both a monomorphism and an epimorphism, then by Corollaries 4.3
and 4.7 f is bijective, hence is an isomorphism. More important is that we can use [7, Theorem 24.7], i.e., that a faithful and
isomorphism reflecting functor from a category that has some limits or colimits and preserves them, also reflects them.

Lemma 4.15. E preserves and reflects finite colimits.

Proof. It is easy to see from the proofs of Lemmas 4.1 and 4.2 that E preserves both coproducts and coequalizers, so that E preserves
all finite co-limits and hence also reflects them.

This is particularly true for pushouts. The situation for pullbacks is more complicated since E does not preserve products.

Lemma 4.16. E preserves and reflects pullbacks.

Proof. We first prove that E preserves pullbacks. Let f : AÑ C, g : B Ñ C and α be an ordinal for A and B, we assume w.l.o.g. a
canonical pullback pE, h, kq of pf, g, Cq, i.e., let pAˆB, π11, π

1
2q be the product of pA,Bq and pE, eq be the equalizer of pf ˝π11, g ˝π

1
2q

with h “ π11 ˝ e and k “ π12 ˝ e. Let pEAˆ EB, π1, π2q be the product of pEA,EBq in Set, we have by the proof of Lemma 4.5 that
EpAˆBq Ď EAˆ EB, π11 “ π1|EpAˆBq and π12 “ π2|EpAˆBq.

Let H
def
“ tpx, yq P EA ˆ EB | fpxq “ gpyqu and j : H ãÑ EA ˆ EB be the inclusion function. By canonical construction

pH,π1 ˝ j, π2 ˝ jq is a pullback of pf, g,ECq in Set; we next prove that it is the image by E of the pullback pE, h, kq of pf, g, Cq in
Monogr.

A

B C

E

AˆB f

g

h

k

e
π11

π12

EA

EB EC

H

EAˆ EB f

g

π1 ˝ j

π2 ˝ j

j π1

π2

By the construction of E in Lemma 4.6 we have EE “ tpx, yq P EpAˆBq | fpxq “ gpyqu Ď H and e : EE ãÑ EpAˆBq is the
inclusion function. For all px, yq P H we have |x| “ |fpxq| “ |gpyq| “ |y|, and for all ι ă |x| we have fpxιq “ fpxqι “ gpyqι “ gpyιq
so that pxι, yιq P H and therefore H Ď EpAˆBq by the construction of A ˆ B in Lemma 4.5. We thus have H “ EE hence
π1 ˝ j “ π11 ˝ e “ h and π2 ˝ j “ π12 ˝ e “ k, so that E preserves pullbacks and hence as above E also reflects them.
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Theorem 4.17. The categories of Definition 3.5 are adhesive.

Proof. The existence of pullbacks and pushouts is already established. Let pA,B,C,Dq be a pushout square of monographs along
a monomorphism and the commutative cube depicted below left,

C

D

A

B

C 1

D1

A1

B1

EC

ED

EA

EB

EC 1

ED1

EA1

EB1

whose back faces are pullbacks. Its image by functor E is the commutative cube in Set depicted on the right. Its bottom face
pEA,EB,EC,EDq is a pushout along a monomorphism by Lemma 4.15 and Corollary 4.7, and its back faces are pullbacks by
Lemma 4.16. If the top face pA1, B1, C 1, D1q is a pushout then again so is pEA1,EB1,EC 1,ED1q, and since Set is an adhesive category
(see [8]) then the front faces of the right cube are pullbacks, hence so are the front faces of the left cube by Lemma 4.16. Conversely,
if these front faces are pullbacks then by the same argument the top face of both cubes are pushouts. Hence pA,B,C,Dq is a van
Kampen square.

It is known that every topos is adhesive [9] but that some adhesive categories are not toposes [8, Example 3.8]. Monogr,
SMonogr and FMonogr are new examples of adhesive categories that are not toposes (by Theorem 4.12).

5 Drawing Monographs

Obviously we may endeavour to draw a monograph A only if EA is finite and if its edges have finite lengths, i.e., if A is a finite
ω-monograph. If we require that any monograph MG should be drawn as the graph G, then a node should be represented by a bullet

and an edge of length 2 by an arrow joining its two adjacent nodes. But generally the adjacent edges may not be nodes
and there might be more than 2 of them, hence we adopt the following convention: an edge e of length at least 2 is represented as
a sequence of connected arrows with an increasing number of tips

x0 x1 x2 x3

(where Apeq “ x0x1x2x3 ¨ ¨ ¨ ) and such that any arrow should enter xi at the same angle as the next arrow leaves xi. For the sake
of clarity we represent symmetric adjacencies by a pair of crossings rather than a single one, e.g., if Apeq “ xe1y and Ape1q “ xey,
where x and y are nodes, the drawing may be

but not

It is sometimes necessary to name the edges in a drawing. We may then adopt the convention sometimes used for drawing
diagrams in a category: the bullets are replaced by the names of the corresponding nodes, and arrows are interrupted to write their
name at a place free from crossing, as in

x y
e e1

Note that no confusion is possible between the names of nodes and those of other edges, e.g., in

x

y

z

it is clear that x and z are nodes since arrow tips point to them, and that y is the name of an edge of length 3.
As is the case of graphs, monographs may not be planar and drawing them may require crossing edges that are not adjacent; in

this case no arrow tip is present at the crossing and no confusion is possible with the adjacency crossings. However, it may seem

preferable in such cases to erase one arrow in the proximity of the other, as in .
There remains to represent the edges of length 1. Since Apeq “ x is standardly written A : e ÞÑ x, the edge e will be drawn as
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x

In order to avoid confusion there should be only one arrow out of the thick dash, e.g., if Apeq “ e1 and Ape1q “ ex where x is a node,
the drawing may be

but not e

e1

since this last drawing may be interpreted as the monograph Ape1q “ x and Apeq “ e1e1, that is not isomorphic to the intended
monograph.

Other conventions may be more appropriate depending on the context or on specific monographs. Consider for instance a
monograph with one node x and two edges xÒ3 and xÒ4. The concentration of many arrow tips on a single bullet would potentially
confuse readers unless it is sufficiently large. One possibility is to replace the bullet by a circle and treat it as a standard edge
without tips. This monograph could then be drawn as

x

These conventions are designed so that it is only possible to read a drawing of any finite ω-monograph A as the monograph A itself
if all edges are named in the drawing, or as some monograph isomorphic to A otherwise. This would not be possible if a monograph
A was a function rather than a functional relation, since then its codomain pEAqăα would not be pictured. It would of course be
possible to add the ordinal α to the drawing, but then would it still qualify as a drawing?

Note that the drawing of a graph or of a standard t0, 2u-monograph can be read either as a graph G or as a monograph A, and
then MG » A.

One particularity of monographs is that edges can be adjacent to themselves, as in

We may also draw a typed monograph a : AÑ T , where every edge e P EA has a type apeq that can be written at the proximity
of e. For instance, a monograph typed by T “ tpu, vq, pv, uqu is drawn with labels u and v as in

u

u

v

v
vu

u

Of course, knowing that a is a morphism sometimes allows to deduce the type of an edge, possibly from the types of adjacent
edges. In the present case, indicating a single type would have been enough to deduce all the others.

In particular applications it may be convenient to adopt completely different ways of drawing (typed) monographs.

Example 5.1. In [10] term graphs are defined from structures pV,E, lab, attq where V is a set of nodes, E a set of hyperedges,
att : E Ñ V ăω defines the adjacencies and lab : E Ñ Ω such that |attpeq| is 1 plus the arity of labpeq for all e P E (for the sake of
simplicity, we consider only ground terms of a signature Σ : Ω Ñ Săω such that Ω X S “ ∅). The first element of the sequence
attpeq is considered as the result node of e and the others as its argument nodes, so that e determines paths from its result node to
all its argument nodes. Term graphs are those structures such that paths do not cycle, every node is reachable from a root node
and is the result node of a unique hyperedge. This definition is given for unsorted signatures but can easily be generalized, as we
do now.

We consider the type monograph TΣ defined by ETΣ
def
“ S YΩ, and

TΣpsq
def
“ ε for all s P S,

TΣpoq
def
“ Σpoq for all o P Ω.
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Note that TΣ is a standard ω-monograph, and indeed that any standard ω-monograph has this form for a suitable Σ.
Any typed monograph a : A Ñ TΣ corresponds to a structure pV,E, lab, attq where V “ NA, E “ EAzNA, labpeq “ apeq and

attpeq “ Apeq for all e P E. The only difference (due to our definition of signatures) is that the result node of e is now the last node
of the sequence Apeq.

We now consider the signature Σ with two sorts s, s1, a binary function symbol f with Σpfq “ s1 s1 s and a constant symbol c
with Σpcq “ s1. We represent the term graph fpc, cq, where the two occurrences of c are shared, as a typed monograph a : AÑ TΣ .
We need two edges e, e1 and their result nodes x, x1, the first for f and the second for c. Thus A is defined by

EA “ tx, x1, e, e1u, Apxq “ Apx1q “ ε, Apeq “ x1 x1 x and Ape1q “ x1.

The typing morphism a : AÑ TΣ is given by

apxq “ s, apx1q “ s1, apeq “ f and ape1q “ c.

We give below the standard drawing of the monograph A typed by a and the (clearly preferable) standard depiction of the corre-
sponding term graph.

s1 s

a

f
f

a

s

s1

6 Graph Structures and Typed Monographs

The procedure of reading the drawing of a graph as a Γg-algebra G, where Γg is the signature of graphs given in Section 1, is rather
simple: every bullet is interpreted as an element of Gnodes, every arrow as an element of Gedges and the images of this element by the
functions srcG and tgtG are defined according to geometric proximity in the drawing. A procedure for reading E-graphs would be
similar, except that bullets may be interpreted either as nodes or values, and this typing information should therefore be indicated
in the drawing.

Since the drawing of a graph is nothing else than the drawing of a standard t0, 2u-monograph, we may skip the drawing step
and directly transform a standard t0, 2u-monograph A as a Γg-algebra G. Then

Gnodes “ NA, Gedges “ tx P EA | |x| “ 2u, srcGpxq “ x0 and tgtGpxq “ x1

for all x P Gedges. Thus every node of A is typed by nodes and all other edges are typed by edges. This typing is obviously a
morphism from A to the monograph tpnodes, εq, pedges, nodes nodesqu that is isomorphic to the terminal object of t0, 2u-SMonogr
(see Lemma 4.9).

More generally, for any given graph structure Γ (signatures of the form Γ : Ω Ñ S2, see Section 2.3) we may ask which
monographs, equipped with a suitable morphism to a type monograph T , can be interpreted in this way as Γ -algebras. As above,
the edges of T should be the sorts of Γ . But this is not sufficient since there is no canonical way of linking adjacencies in T (such
as edges0 “ nodes and edges1 “ nodes) with the operator names of Γ (such as src and tgt). We will therefore use a notion of
morphism between signatures in order to rename operators, and we also rename sorts in order to account for functoriality in T .

Definition 6.1 (categories Sig, GrStruct, Sigsrt). A morphism r from Σ : Ω Ñ Săω to Σ1 : Ω1 Ñ S1ăω is a pair propn, rsrtq of
functions ropn : Ω Ñ Ω1 and rsrt : S Ñ S1 such that

răωsrt ˝Σ “ Σ1 ˝ ropn.

For any morphism r1 : Σ1 Ñ Σ2 let r1 ˝ r
def
“ pr1opn ˝ ropn, r

1
srt ˝ rsrtq : Σ Ñ Σ2, 1Σ

def
“ pIdΩ , IdSq, and Sig be the category of signatures

and their morphisms. Let GrStruct be the full subcategory of graph structures.
Let Sigsrt be the subcategory of Sig restricted to morphisms of the form propn, jq where j is an inclusion function. We write 9»

for the isomorphism relation between objects in Sigsrt.

Note that graph structures Γ can be interpreted as graphs with sorts as vertices and operator names as arrows (so that GrStruct
is obviously equivalent to Graph).

The question is therefore to elucidate the link between T and Γ . As explained above, the edges of T correspond to the sorts of
Γ (vertices in a graph). We also see that every adjacency in T corresponds to an operator name in Γ (arrows in a graph), e.g., an
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edge e of length 2 adjacent to e0 and e1 (i.e. such that T peq “ e0 e1) corresponds to two operator names (two arrows), say srce
and tgte, of domain sort e and range sort e0 and e1 respectively. Since edges may have length greater than 2, we create canonical
operator names of the form [e¨ι] for the ιth adjacency of the edge e for every ι ă |e| (hence we favor [e¨0] and [e¨1] over srce and
tgte).

Definition 6.2 (functor S : Monogr Ñ GrStruct). To every monograph T we associate the set of operator names ΩT
def
“ t[e¨ι] |

e P ET and ι ă |e|u and the graph structure ST : ΩT Ñ pET qăω defined by ST p[e¨ι]q
def
“ e eι for all [e¨ι] P ΩT , i.e., we let

Domp[e¨ι]q
def
“ e and Rngp[e¨ι]q

def
“ eι.

To every morphism f : T Ñ T 1 in Monogr we associate the morphism Sf : ST Ñ ST 1 defined by: pSfqopn is the function that
maps every operator name [e¨ι] P ΩT to the operator name [fpeq¨ι] P ΩT 1 , and pSfqsrt is the function f : ET Ñ ET 1.

We see that Sf is indeed a morphism of graph structures:

pSfqăωsrt ˝ ST p[e¨ι]q “ fpeq fpeιq “ fpeq fpeqι “ ST 1p[fpeq¨ι]q “ ST 1 ˝ pSfqopnp[e¨ι]q

for all [e¨ι] P ΩT , and it is obvious that S is a faithful functor. With the equivalence GrStruct « Graph the functor S can be
seen as a transformation of monographs as graphs.

The next lemma is central as it shows that no graph structure is omitted by the functor S if we allow sort-preserving isomorphisms
of graph structures. We assume the Axiom of Choice through its equivalent formulation known as the Numeration Theorem [5].

Lemma 6.3. For every graph structure Γ there exists a monograph T such that ST 9» Γ .

Proof. Let Γ : Ω Ñ Săω and for every sort s P S let Ωs be the set of operator names o P Ω whose domain sort is s, i.e.,
Ωs

def
“ Dom´1

rss. By the Numeration Theorem there exists an ordinal λs equipollent to Ωs, i.e., such that there exists a bijection

νs : λs Ñ Ωs. Let T be the monograph such that ET
def
“ S and T psqι

def
“ Rngpνspιqq for all ι ă λs, so that T psq is an S-sequence of

length λs.

s1

s0

s2

s sΓ ST

...

T psq

[s¨0]

[s¨1]

[s¨2]

νsp0q

νsp1q

νsp2q

We now consider the function ropn : ΩT Ñ Ω defined by ropnp[s¨ι]q
def
“ νspιq. This function is surjective since for all o P Ω, by

taking s “ Dompoq and ι “ ν´1
s poq we get ι ă λs “ |s| hence [s¨ι] P ΩT and obviously ropnp[s¨ι]q “ o. It is also injective since

ropnp[s¨ι]q “ ropnp[s
1¨ι1]q entails s “ Dompνspιqq “ Dompνs1pι

1qq “ s1 hence ι “ ι1 and therefore [s¨ι] “ [s1¨ι1]. Finally, we see that

IdăωS ˝ ST p[s¨ι]q “ s sι “ DompνspιqqRngpνspιqq “ Γ pνspιqq “ Γ ˝ ropnp[s¨ι]q

for all [s¨ι] P ΩT , hence propn, IdSq : ST Ñ Γ is an isomorphism, so that ST 9» Γ .

The reason why monographs require edges of ordinal length now becomes apparent: the length of an edge s is the cardinality of
Ωs, i.e., the number of operator names whose domain sort is s, and no restriction on this cardinality is ascribed to graph structures.
The bijections νs provide linear orderings of the sets Ωs. Since T psq depends on νs the monograph T such that ST 9» Γ may not be
unique, even though S is injective on objects, as we now show.

Theorem 6.4. S is an isomorphism-dense embedding of Monogr into GrStruct.

Proof. It is trivial by Lemma 6.3 that S is isomorphism-dense since ST 9» Γ entails ST » Γ . Assume that ST “ ST 1 then ET “ ET 1

and ΩT “ ΩT 1 , hence |T peq| “ |T 1peq| for all e P ET , and T peqι “ pST p[e¨ι]qq1 “ pST 1p[e¨ι]qq1 “ T 1peqι for all ι ă |e|, thus
T “ T 1.

It is clear that S cannot be an equivalence of categories (since GrStruct has a terminal object), so some of the structure of
Monogr must be lost in GrStruct. We illustrate this on graphs.
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e eι[e¨ι] ÞÑST

x xιA EA

ET

[e¨ι]A

a a

Figure 1: The ST -algebra A “ ATa where a : AÑ T

Example 6.5. We consider the graph structure Γg of graphs. We have Ωnodes “ ∅ and Ωedges “ tsrc, tgtu, hence λedges “

2. Let νedges : 2 Ñ Ωedges be the bijection defined by νedges : 0 ÞÑ src, 1 ÞÑ tgt, the corresponding monograph is Tg
def
“

tpnodes, εq, pedges, nodes nodesqu, and we easily check that STg 9» Γg. However, the only automorphism of Tg is 1Tg
, while

Γg has a non-trivial automorphism m “ ppsrc tgtq, Idtnodes,edgesuq (in cycle notation), hence S is not surjective on morphisms.

This automorphism reflects the fact that a graph structure does not define an order between its operator names. Directing edges
as arrows from src to tgt or the other way round is a matter of convention that is reflected in the choice of νedges in Example 6.5.
This contrasts with monographs where edges are inherently directed by ordinals, and also with the structure of graphs where the
source function comes first. In the translation from Monogr to GrStruct the direction of edges are necessarily lost.

Example 6.6. The signature Γe of E-graphs from [2] has five sorts edges, nv-edges, ev-edges, nodes, values and six operator
names srce, tgte, srcnv, tgtnv, srcev, tgtev whose domain and range sorts are defined as in Section 1. We haveΩnodes “ Ωvalues “ ∅,
Ωedges “ tsrce, tgteu, Ωnv-edges “ tsrcnv, tgtnvu and Ωev-edges “ tsrcev, tgtevu. There are four possible monographs T such that
ST 9» Γe given by

T pnodesq “ T pvaluesq “ ε, T pnv-edgesq “ nodes values or values nodes,
T pedgesq “ nodes nodes, T pev-edgesq “ edges values or values edges.

These four monographs are depicted below.

T1 T2 T3 T4

The type indicated by the syntax (and consistent with the drawings of E-graphs in [2]) is of course T1.

The restrictions of S to the categories of Definition 3.5 are isomorphism-dense embeddings into full subcategories of GrStruct
that are easy to define. The O-monographs correspond to graph structures Γ : Ω Ñ Săω such that |Ωs| P O for all s P S, and the
standard monographs to ΩRngpoq “ ∅ for all o P Ω. The finite monographs correspond to finite S, hence FMonogr corresponds to
finite signatures.

We can now describe precisely how a monograph A typed by T through a : AÑ T can be read as an ST -algebra A. As mentioned
above, every edge x of A is typed by apxq P ET and should therefore be interpreted as an element of Aapxq, hence Aapxq is the set

of all edges x P EA that are typed by apxq. Then, for every ι ă |x| “ |apxq|, the ιth adjacent edge xι of x is the image of x by
the ιth operator name for this type of edge, that is [apxq¨ι]. Note that the sort of this image is apxιq “ apxqι that is precisely the
range sort of the operator name [apxq¨ι] in ST (see Definition 6.2), so that A is indeed an ST -algebra. This leads to the following
definition.

Definition 6.7 (functor AT : MonogrzT Ñ ST -Alg). Given a monograph T , we define the function AT that maps every object
a : AÑ T of MonogrzT to the ST -algebra A “ ATa defined by

• Ae
def
“ a´1res for all e P ET , and

• [e¨ι]Apxq
def
“ xι for all [e¨ι] P ΩT and x P Ae.

Besides, AT also maps every morphism f : aÑ b, where b : B Ñ T , to the ST -homomorphism AT f from A to B “ AT b defined by

pAT fqe
def
“ f |BeAe for all e P ET.

The ST -algebra A can be pictured as in Figure 1. The carrier sets Ae form a partition of EA. Since f : aÑ b (not pictured) is a
function f : EAÑ EB such that b ˝ f “ a, then b ˝ f rAes “ ara´1ress Ď teu hence f rAes Ď b´1res “ Be, so that f |BeAe is well-defined.
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We also see that h “ AT f is an ST -homomorphism from A to B since for every operator name [e¨ι] P ΩT we have Domp[e¨ι]q “ e,
Rngp[e¨ι]q “ eι and

[e¨ι]B ˝ hepxq “ [e¨ι]Bpfpxqq “ fpxqι “ fpxιq “ fp[e¨ι]Apxqq “ heι ˝ [e¨ι]
A
pxq

for all x P Ae. It is obvious from Definition 6.7 that AT preserves identities and composition of morphisms, hence that it is indeed
a functor.

Theorem 6.8. For every monograph T , AT : MonogrzT « ST -Alg.

Proof. Let a : AÑ T and b : B Ñ T be objects of MonogrzT and A def
“ ATa, B def

“ AT b. It is trivial that AT is faithful.

AT is full. For any ST -homomorphism h : AÑ B, let f : EAÑ EB be the function defined by fpxq
def
“ hapxqpxq for all x P EA. Let

e “ apxq so that x P Ae, since hepxq P Be “ b´1res then b˝fpxq “ bphepxqq “ e, hence b˝f “ a and |fpxq| “ |bpfpxqq| “ |apxq| “ |x|.
For all ι ă |x| we have apxιq “ apxqι “ eι and since h is an ST -homomorphism then

fpxιq “ heιp[e¨ι]
A
pxqq “ [e¨ι]Bphepxqq “ fpxqι

hence f : aÑ b is a morphism. Since pAT fqepxq “ f |BeAepxq “ hepxq for all e P ET and all x P Ae, then AT f “ h.
AT is isomorphism-dense. For any ST -algebra C, let

EC
def
“

ď

ePET

Ce ˆ teu and pCpx, eqqι
def
“ p[e¨ι]Cpxq, eιq

for all px, eq P EC and ι ă |e|. Since Rngp[e¨ι]q “ eι then [e¨ι]Cpxq P Ceι hence pCpx, eqqι P EC, so that C is a monograph such

that |px, eq| “ |e|. Let c : EC Ñ ET be defined by cpx, eq
def
“ e, we have

cppx, eqιq “ cp[e¨ι]Cpxq, eιq “ eι “ pcpx, eqqι,

hence c : C Ñ T is a morphism. For all e P ET we have pAT cqe “ c´1res “ Ce ˆ teu, and we let he : Ce Ñ pAT cqe be defined by

hepxq
def
“ px, eq for all x P Ce. The functions he are bijective and h

def
“ pheqePET is an ST -homomorphism since

[e¨ι]AT c ˝ hepxq “ [e¨ι]AT cpx, eq “ px, eqι “ p[e¨ι]
C
pxq, eιq “ heι ˝ [e¨ι]

C
pxq,

for all [e¨ι] P ΩT and x P Ce, hence C » AT c.

It is easy to see that for any two signatures Σ and Σ1, if Σ » Σ1 then Σ-Alg » Σ1-Alg. We conclude that all graph structured
algebras can be represented as typed monographs.

Corollary 6.9. For every graph structure Γ there exists a monograph T such that Γ -Alg « MonogrzT .

Proof. By Lemma 6.3 there exists T such that Γ » ST , hence MonogrzT « ST -Alg » Γ -Alg.

It is worth mentioning that the categories Γ -Alg are equivalent to presheaf toposes, i.e., functor categories of the form SetC for
small categories C. Indeed, it is easy to see that SetC « Γ -Alg if Γ is the underlying graph of C, and similarly if C is the category
freely generated by the graph Γ . Hence the categories of typed monographs are the presheaf toposes.

Example 6.10. Following [11], an 8-graph G is given by a diagram of sets

G0

s0

t0
G1

s1

t1
¨ ¨ ¨

sn´1

tn´1

Gn
sn

tn
Gn`1

sn`1

tn`1

¨ ¨ ¨

such that, for every n P ω, the following equations hold:

sn ˝ sn`1 “ sn ˝ tn`1, tn ˝ sn`1 “ tn ˝ tn`1.

This means that every element x of Gn`2 is an edge whose source x0 and target x1 are edges of Gn that are parallel, i.e., that have
same source px0q0 “ px1q0 and same target px0q1 “ px1q1. Graphically:

px0q0 px1q1

x0

x1

x
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This is known as the globular condition. We consider the type monograph T8 defined by ET8 “ ω,T8p0q “ ε and T8pn` 1q “ nn
for all n P ω. This is an infinite non-standard t0, 2u-monograph that can be pictured as

¨ ¨ ¨

We express the globular condition on typed monographs g : GÑ T8 as:

for all x P EG, if gpxq ě 2 then Gpx0q “ Gpx1q.

We rapidly check that this is equivalent to the globular condition on the ST8-algebra G “ AT8g. The set of sorts of ST8 is ω

and its operator names are [n` 1¨0] and [n` 1¨1] with domain sort n` 1 and range sort n, for all n P ω. We let sn
def
“ [n` 1¨0]G

and tn
def
“ [n` 1¨1]G , that are functions from Gn`1 to Gn as in the diagram of 8-graphs.

By Definition 6.7 we have for all x P Gn`2 “ g´1rn` 2s and all i, j P 2 that

[n` 1¨j]G ˝ [n` 2¨i]Gpxq “ [n` 1¨j]Gpxiq “ pxiqj

hence

Gpx0q “ Gpx1q iff px0q0 “ px1q0 and px0q1 “ px1q1

iff [n` 1¨0]G ˝ [n` 2¨0]Gpxq “ [n` 1¨0]G ˝ [n` 2¨1]Gpxq

and [n` 1¨1]G ˝ [n` 2¨0]Gpxq “ [n` 1¨1]G ˝ [n` 2¨1]Gpxq

iff sn ˝ sn`1pxq “ sn ˝ tn`1pxq and tn ˝ sn`1pxq “ tn ˝ tn`1pxq.

Example 6.11. The signature Γh of hypergraphs (see [3, Example 3.4]) is defined by the set of sorts Sh
def
“ tVu Y tHn,m | n,m P ωu

and for all n,m P ω by n operator names src
n,m
i and m operator names tgt

n,m
j with domain sort Hn,m and range sort V for all

1 ď i ď n and 1 ď j ď m. Hence there are n`m operator names of domain Hn,m, and pn`mq! bijections from the ordinal n`m
to this set of operator names. But since they all have the same range sort V, the type monograph Th does not depend on these
bijections (one for every pair pn,mq). It is defined by ETh

def
“ Sh and

ThpVq “ ε

ThpHn,mq “ VÒpn`mq for all n,m P ω.

This is a standard ω-monograph. It is easy to see that any standard ω-monograph can by typed by Th, though not in a unique
way. Every edge of length l ą 0 can be typed by any sort Hn,m such that n`m “ l, and every node can be typed by V (or by H0,0

if it is not adjacent to any edge). To any such typing corresponds an STh-algebra by the equivalence ATh
, and thus a hypergraph

(a Γh-algebra) since Γh » STh.
But to know which hypergraph H corresponds exactly to a typed monograph we need to be more specific, since there are infinitely

many isomorphisms between Γh and STh. The natural isomorphism stems from the obvious orderings src
n,m
1 ă ¨ ¨ ¨ ă srcn,mn ă

tgt
n,m
1 ă ¨ ¨ ¨ ă tgtn,mm for all n,m P ω. In this isomorphism the canonical operator name [Hn,m¨i] for all i ă n `m corresponds

to src
n,m
i`1 if i ă n, and to tgt

n,m
i`1´n if i ě n. Thus an edge x, say of length 3 typed by H2,1, must be interpreted as an hyperedge

x P HH2,1 with psrc2,1
1 qHpxq “ x0, psrc2,1

2 qHpxq “ x1, ptgt2,1
1 qHpxq “ x2 and x0, x1, x2 P HV.

The results of this section apply in particular to typed graphs. It is easy to see that S˝M is an isomorphism-dense embedding of
Graph into the full subcategory of graph structures Γ : Ω Ñ Săω such that for every operator name o P Ω we have |ΩDompoq| “ 2
and ΩRngpoq “ ∅. Hence for every such Γ there exists a graph G such that GraphzG « MonogrzMG « Γ -Alg. The type graph
G is determined only up to the orientation of its edges.

7 Submonographs and Partial Morphisms

Graph structures have been characterized in [3] as the signatures that allow the transformation of the corresponding algebras by the
single pushout method. This method is based on the construction of pushouts in categories of partial homomorphisms, defined as
standard homomorphisms from subalgebras of their domain algebra, just as partial functions are standard functions from subsets
of their domain (in the categorical theoretic sense of the word domain). The results of Section 6 suggest that a similar approach
can be followed with monographs. We first need a notion of submonograph, their (inverse) image by morphisms and restrictions of
morphisms to submonographs.

Definition 7.1 (submonographs, (inverse) images, restrictions). A monograph A is a submonograph of a monograph M if A ĎM .

For any monograph N and morphism f : M Ñ N , let fpAq
def
“ tpfpxq, N ˝ fpxqq | x P EAu. For any submonograph C Ď N , let

f´1pCq
def
“ tpx,Mpxqq | x P f´1rECsu. If fpAq Ď C, let f |CA : AÑ C be the morphism whose underlying function is f |ECEA.
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In the sequel we will use the following obvious facts without explicit reference. fpAq and f´1pCq are submonographs of N and
M respectively. If A and B are submonographs of M then so are A Y B and A X B. We have fpA Y Bq “ fpAq Y fpBq thus
A Ď B entails fpAq Ď fpBq. If C and D are submonographs of N we have similarly f´1pC YDq “ f´1pCq Y f´1pDq and C Ď D
entails f´1pCq Ď f´1pDq. We also have A Ď f´1pfpAqq and fpf´1pCqq “ C X fpMq. For any g : N Ñ P and submonograph
E of P , pg ˝ fq´1pEq “ f´1pg´1pEqq. If pA ` B,µ1, µ2q is the coproduct of pA,Bq and C is a submonograph of A ` B then
C “ µ´1

1 pCq ` µ´1
2 pCq.

We may now define the notion of partial morphisms of monographs, with a special notation in order to distinguish them from
standard morphisms, and their composition.

Definition 7.2 (partial morphisms rf s). A partial morphism rf s : AÑ B is a morphism f : A1 Ñ B where A1 is a submonograph
of A. f is called the underlying morphism of rf s. If the domain of f is not otherwise specified, we write rf s : A Ðâ A1 Ñ B. If
the domain A1 of f is specified but not the domain of rf s then they are assumed to be identical, i.e., rf s : A1 Ðâ A1 Ñ B. For any
rgs : B Ðâ B1 Ñ C we define the composition of partial morphisms as

rgs ˝ rf s
def
“

Q

g ˝ f |B
1

f´1pB1q

U

: AÐâ f´1pB1q Ñ C.

This composition is similar to the composition of partial maps in [12] in the sense that pf´1pB1q, f |B
1

f´1pB1q : f´1pB1q Ñ B1, j1 :

f´1pB1q ãÑ A1q is a pullback of pj : B1 ãÑ B, f : A1 Ñ B, Bq (or inverse image of j along f), except that partial maps are taken
modulo isomorphic variations of subobjects, while we consider only the (unique) inverse image with an inclusion morphism. This
choice corresponds to [3] and to the standard notion of partial function in Computer Science.

It is obvious that the identities for this composition are the partial morphisms r1As : AÑ A.

Lemma 7.3. Composition of partial morphisms is associative.

Proof. Let rf s and rgs as in Definition 7.2, rhs : C Ðâ C 1 Ñ D and k
def
“ g ˝ f |B

1

f´1pB1q : f´1pB1q Ñ C, so that

rhs ˝ prgs ˝ rf sq “ rhs ˝ rks “
Q

h ˝ k|C
1

k´1pC1q

U

: AÐâ k´1pC 1q Ñ D.

We also have

prhs ˝ rgsq ˝ rf s “

Q

h ˝ g|C
1

g´1pC1q

U

˝ rf s

“

Q

h ˝ g|C
1

g´1pC1q ˝ f |
g´1

pC1q
f´1pg´1pC1qq

U

: AÐâ f´1pg´1pC 1qq Ñ D.

The functions k and g ˝ f have the same images and codomain but their domain is respectively f´1pB1q and A1. Since g : B1 Ñ C
and f : A1 Ñ B then obviously g´1pC 1q Ď B1 and pg ˝ fq´1pC 1q “ f´1pg´1pC 1qq Ď f´1pB1q Ď A1, hence k´1pC 1q “ pg ˝ fq´1pC 1q.

This proves that the functions h˝k|C
1

k´1pC1q and h˝g|C
1

g´1pC1q ˝f |
g´1

pC1q
f´1pg´1pC1qq

have the same domain, and since they also have the same

codomain and images, they are equal.

Definition 7.4 (categories of partial morphisms of monographs). Let MonogrP be the category of monographs and partial
morphisms composed as in Definition 7.2. Let SMonogrP be its full subcategory of standard monographs. For any set O of
ordinals, let O-MonogrP (resp. O-SMonogrP) be its full subcategory of O-monographs (resp. standard O-monographs). Let
FMonogrP be its full subcategory of finite ω-monographs.

We now see how these inverse images allow to formulate a sufficient condition ensuring that restrictions of coequalizers are again
coequalizers.

Lemma 7.5 (coequalizer restriction). Let A1 and B1 be submonographs of A and B respectively and f, g : A Ñ B be parallel
morphisms such that

f´1pB1q “ A1 “ g´1pB1q

(i.e., the two left squares below are pullbacks), if pQ, cq is a coequalizer of pf, gq then pQ1, c1q is a coequalizer of pf |B
1

A1 , g|
B1

A1 q, where

Q1 “ cpB1q, c1 “ c|Q
1

B1 and c´1pQ1q “ B1 (the right square below is also a pullback).
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A B Q

f

g

c

A1 B1 Q1

f |B
1

A1

g|B
1

A1

c1

Proof. We assume w.l.o.g. that pQ, cq is the coequalizer of pf, gq constructed in Lemma 4.2 with „ being the equivalence relation
generated by R “ tpfpxq, gpxqq | x P EAu, and we let pQ1, c1q be the coequalizer of pf |B

1

A1 , g|
B1

A1 q constructed similarly with the

equivalence relation « generated by R1 “ tpf |B
1

A1 pxq, g|
B1

A1 pxqq | x P EA
1u. By the properties of f and g we have that

fpxq P EB1 iff x P f´1rEB1s iff x P EA1 iff x P g´1rEB1s iff gpxq P EB1

for all x P EA, hence for all y, y1 P EB we have that y R1 y1 iff y R y1 and at least one of y, y1 is in EB1. By an easy induction we
see that y « y1 iff y „ y1 and y1 P EB1, hence the «-classes are the „-classes of the elements of EB1, i.e., EQ1 “ crEB1s. It follows

trivially that Q1 “ cpB1q, c1 “ c|Q
1

B1 and c´1pQ1q “ B1.

It is then easy to obtain a similar result on pushouts.

Lemma 7.6 (pushout restriction). Let A1, B1, C 1 be submonographs of A, B, C respectively and f : A Ñ B, g : A Ñ C be
morphisms such that

f´1pB1q “ A1 “ g´1pC 1q

(the two left faces below are pullbacks), if ph, k,Qq is a pushout of pA, f, gq then ph|Q
1

B1 , k|
Q1

C1 , Q
1q is a pushout of pA1, f |B

1

A1 , g|
C1

A1 q where
Q1 “ hpB1q Y kpC 1q, h´1pQ1q “ B1 and k´1pQ1q “ C 1 (the two right faces are pullbacks).

A1

C 1

B1

B1 ` C 1

A

C

B

B ` C Q

Q1

f |B
1

A1

c1

h|Q
1

B1

k|Q
1

C1
g|C

1

A1

f

g

µ1
µ2

µ11
µ12

h

k

c

Proof. We assume w.l.o.g. that ph, k,Qq is obtained by the canonical construction of pushouts, i.e., that h “ c ˝ µ1 and k “ c ˝ µ2

where pQ, cq is a coequalizer of pµ1 ˝ f, µ2 ˝ gq and pB`C, µ1, µ2q is the coproduct of pB,Cq. Let pB1`C 1, µ11, µ
1
2q be the coproduct

of pB1, C 1q, then obviously B1 ` C 1 Ď B ` C, µ11 “ µ1|
B1`C1

B1 and µ12 “ µ2|
B1`C1

C1 . Since

pµ1 ˝ fq
´1pB1 ` C 1q “ f´1pB1q “ A1 “ g´1pC 1q “ pµ2 ˝ gq

´1pB1 ` C 1q

then by Lemma 7.5 pQ1, c1q is a coequalizer of

ppµ1 ˝ fq|
B1`C1

A1 , pµ2 ˝ gq|
B1`C1

A1 q “ pµ11 ˝ f |
B1

A1 , µ
1
2 ˝ g|

C1

A1 q

where Q1 “ cpB1 ` C 1q, c1 “ c|Q
1

B1`C1 and c´1pQ1q “ B1 ` C 1. We thus have h´1pQ1q “ pc ˝ µ1q
´1pQ1q “ µ´1

1 pB1 ` C 1q “ B1 and

similarly k´1pQ1q “ C 1. We also have h|Q
1

B1 “ pc ˝ µ1q|
Q1

B1 “ c1 ˝ µ11 and k|Q
1

C1 “ pc ˝ µ2q|
Q1

C1 “ c1 ˝ µ12, hence ph|Q
1

B1 , k|
Q1

C1 , Q
1q is the

canonical pushout of pA1, f |B
1

A1 , g|
B1

A1 q, and therefore Q1 “ h|Q
1

B1pB
1q Y k|Q

1

C1pC
1q “ hpB1q Y kpC 1q.

Note that the top face in the diagram above may not be a van Kampen square, because this property is only established for our
special pullbacks with inclusion morphisms (and only in one direction). Besides, we could not use adhesivity since neither f nor g
are assumed to be injective.

17



We can now show that categories of partial morphisms of monographs have pushouts. The following construction is inspired by
[3, Construction 2.6, Theorem 2.7] though the proof uses pushout restriction.

Theorem 7.7. The categories of Definition 7.4 have pushouts.

Proof. Let rf s : A Ðâ A1 Ñ B and rgs : A Ðâ A2 Ñ C. The set of submonographs J Ď A1 X A2 such that f´1pfpJqq “ J and
g´1pgpJqq “ J contains ∅ and is closed under union, hence has a greatest element denoted I. There is also a greatest submonograph
X Ď B such that f´1pXq Ď I, that must therefore be greater than fpIq, i.e., we have fpIq Ď X hence f´1pfpIqq Ď f´1pXq and this
yields f´1pXq “ I. Similarly, there is a greatest submonograph Y Ď C such that g´1pY q Ď I, so that gpIq Ď Y and g´1pY q “ I.

J

I

A A1

A2

B

C

X

Y Q

B1

C 1 Q1

U

f

g

f 1

g1

k

h

k|Q
1

C1

h|Q
1

B1

w

v

f |B
1

J

g|C
1

J

u

Let f 1 “ f |XI , g1 “ g|YI and ph, k,Qq be a pushout of pI, f 1, g1q in Monogr, we claim that prhs , rks , Qq is a pushout of pA, rf s , rgsq
in MonogrP, where obviously rhs : B Ðâ X Ñ Q and rks : C Ðâ Y Ñ Q. We first see that

rhs ˝ rf s “
Q

h ˝ f |Xf´1pXq

U

“
P

h ˝ f 1
T

“
P

k ˝ g1
T

“

Q

k ˝ g|Yg´1pY q

U

“ rks ˝ rgs .

We now consider any pair of partial morphisms rvs : B Ðâ B1 Ñ U and rws : C Ðâ C 1 Ñ U such that rvs ˝ rf s “ rws ˝ rgs, hence

v ˝ f |B
1

J “ w ˝ g|C
1

J where J
def
“ f´1pB1q “ g´1pC 1q. Since fpJq “ fpf´1pB1qq Ď B1 then J Ď f´1pfpJqq Ď f´1pB1q “ J , hence

f´1pfpJqq “ J and similarly g´1pgpJqq “ J , so that J Ď I. This can be written f´1pB1q Ď I and thus entails B1 Ď X and similarly
C 1 Ď Y , hence f 1´1pB1q “ J “ g1´1pC 1q.

We can therefore apply Lemma 7.6 and get that ph|Q
1

B1 , k|
Q1

C1 , Q
1q is a pushout of pJ, f 1|B

1

J , g
1|C

1

J q where Q1 “ hpB1q Y kpC 1q,

h´1pQ1q “ B1 and k´1pQ1q “ C 1. Since v ˝ f 1|B
1

J “ v ˝ f |B
1

J “ w ˝ g|C
1

J “ w ˝ g1|C
1

J there exists a unique u : Q1 Ñ U such that

u ˝ h|Q
1

B1 “ v and w “ u ˝ k|Q
1

C1 . We thus have a partial morphism rus : QÐâ Q1 Ñ U such that

rus ˝ rhs “
Q

u ˝ h|Q
1

h´1pQ1q

U

“

Q

u ˝ h|Q
1

B1

U

“ rvs

and similarly rus ˝ rks “ rws.
Suppose there is a ru1s : Q Ðâ D Ñ U such that ru1s ˝ rhs “ rvs and ru1s ˝ rks “ rws, then u1 ˝ h|Dh´1pDq “ v hence h´1pDq “ B1

and similarly k´1pDq “ C 1. Since D Ď Q “ hpXq Y kpY q then

D “ pD X hpXqq Y pD X kpY qq “ hph´1pDqq Y kpk´1pDqq “ hpB1q Y kpC 1q “ Q1

and we get ru1s “ rus by the unicity of u.
If B and C are finite (resp. standard, resp. O-monographs) then so are X and Y , hence so is Q by Theorem 4.4.

One important feature of this construction is illustrated below.
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Example 7.8. Suppose there are edges x of A1XA2 and y P EA2zEA1 such that gpxq “ gpyq. If x is an edge of I “ g´1pgpIqq then
so is y, which is impossible since I Ď A1 X A2. Hence x is not an edge of I “ f´1pXq and therefore fpxq R EX. Since y is not an
edge of I “ g´1pY q then similarly gpxq “ gpyq R EY . This means that even though x has images by both f and g, none of these has
an image (by h or k) in Q, i.e., they are “deleted” from the pushout.

The result of the present section can be replicated by replacing every monograph, say A, by a typed monograph with a fixed
type T , say a : AÑ T . But then expressions like A Ď B are replaced by a Ď b, which ought to be interpreted as A Ď B and a “ b|A,
so that ATa is then a subalgebra of AT b. In this way the results of [3] on categories of partial homomorphisms could be deduced
from Corollary 6.9. They cannot be obtained directly from Theorem 7.7.

8 Algebraic Transformations of Monographs

Rule-based transformations of graphs are conceived as substitutions of subgraphs (image of a left hand side of a rule) by subgraphs
(image of its right hand side). Substitutions are themselves designed as an operation of deletion (of nodes or edges) followed by
an operation of addition. This last operation is conveniently represented as a pushout, especially when edges are added between
existing nodes (otherwise a coproduct would be sufficient).

The operation of deletion is however more difficult to represent in category theory, since there is no categorical notion of a
complement. This is a central and active issue in the field of Algebraic Graph Transformation, and many definitions have been
proposed, see [13, 14, 15, 16]. The most common and natural one, known as the double pushout method [17, 18, 19], assumes the
operation of deletion as the inverse of the operation of addition.

More precisely, in the following pushout diagram

M

KL

D

l

km

f

we understand M as the result of adding edges to D as specified by l and k. Images of edges of K are present in both D and L,
and therefore also in M , without duplications (since f ˝ k “ m ˝ l). The edges that are added to D are therefore the images by m
of the edges of L that do not occur in lpKq. We may then inverse this operation and understand D as the result of removing these
edges from M . The monograph M and the morphisms m, l then appear as the input of the operation, and the monograph D and
morphisms k, f as its output. The problem of course is that the pushout operation is not generally bijective, hence it cannot always
be inverted. We first analyze the conditions of existence of D.

Definition 8.1 (pushout complement, gluing condition). A pushout complement of morphisms l : K Ñ L and m : L Ñ M is a
monograph D and a pair of morphisms k : K Ñ D and f : D ÑM such that pm, f,Mq is a pushout of pK, l, kq.

The morphisms l : K Ñ L and m : LÑM satisfy the gluing condition (GCpl,mq for short) if, for L1 “ ELzlrEKs,

(1) for all x, x1 P EL, mpxq “ mpx1q and x P L1 entail x “ x1, and

(2) for all e, e1 P EM , e |Mpe1q and e P mrL1s entail e1 P mrL1s.

The edges of M that should be removed from M to obtain D are the elements of mrL1s. We may say that an edge mpxq of M
is marked for removal if x P L1 and marked for preservation if x P lrEKs. Condition (1) of the gluing condition states that the
restriction of m to m´1rmrL1ss should be injective, or in other words that an edge can be deleted if it is marked for removal once,
and not marked for preservation. Condition (2) states that an edge can be deleted only if all the edges that are adjacent to it are
also deleted (otherwise these edges would be adjacent to a non-existent edge). It is obvious that this gluing condition reduces to
the standard one known on graphs, when applied to standard t0, 2u-monographs. We now prove that it characterizes the existence
of pushout complements (note that l is not assumed to be injective).

Lemma 8.2. The morphisms l : K Ñ L and m : LÑM have a pushout complement iff they satisfy the gluing condition.

Proof. Necessary condition. We assume w.l.o.g. that the pushout pm, f,Mq of pK, l, kq is obtained by canonical construction, i.e.,
let pL`D,µ1, µ2q be the coproduct of pL,Dq, pM, cq be the coequalizer of pµ1 ˝ l, µ2 ˝ kq, m “ c ˝ µ1 and f “ c ˝ µ2. Thus EM is
the quotient of EL ` ED by the equivalence relation „ generated by R “ tpµ1 ˝ lpzq, µ2 ˝ kpzqq | z P EKu. Let L1 “ ELzlrEKs, we
first prove (1) and then (2).
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L`D

KL

D

l

km

µ1

µ2

f

c

For all x, x1 P EL, if x P L1 then x R lrEKs, hence µ1pxq is not related by R to any element and is therefore alone in its „-class.
Hence2 if mpxq “ mpx1q then µ1pxq „ µ1px

1q and therefore x “ x1.
For all e, e1 P EM such that e | Mpe1q and e P mrL1s, let x P L1 such that e “ mpxq. Suppose that e1 “ fpy1q for some y1 P ED

then Mpe1q “ făα ˝ Dpy1q hence there is a y | Dpy1q such that e “ fpyq, hence mpxq P f rEDs which is impossible by note 2.
Since M “ fpDq Y mpLq there must be a x1 P EL such that e1 “ mpx1q. Suppose now that x1 “ lpzq for some z P EK then
e1 “ mplpzqq “ fpkpzqq P f rEDs, and we have seen this is impossible. Hence x1 R lrEKs and therefore e1 P mrL1s.

Sufficient condition. We assume (1) and (2), let α be an ordinal for M , ED
def
“ EMzmrL1s and Dpeq

def
“ Mpeq for all e P ED; by

(2) this is an ED-sequence, hence D is a submonograph of M and the inclusion function f : D ãÑM is a morphism. By (1) we have

mrL1s Xm ˝ lrEKs “ ∅, hence m ˝ lrEKs Ď ED and we let k
def
“ pm ˝ lq|EDEK so that f ˝ k “ m ˝ l. We have

kăα ˝K “ măα ˝ lăα ˝K “ măα ˝ L ˝ l “M ˝m ˝ l “ D ˝ k

hence k : K Ñ D is a morphism.

M

M 1

KL

D

l

km

f
m1

f 1

h

To prove that pm, f,Mq is a pushout of pK, l, kq, let m1 : L Ñ M 1 and f 1 : D Ñ M 1 be morphisms such that m1 ˝ l “ f 1 ˝ k.
Since EM “ ED ZmrL1s we define h : EM Ñ EM 1 as

hpeq
def
“

"

f 1peq if e P ED
m1pxq if x P L1 and e “ mpxq

since x is unique by (1). For all x P EL, if x P L1 then h ˝mpxq “ m1pxq, otherwise there is a z P EK such that x “ lpzq and then

h ˝mpxq “ h ˝m ˝ lpzq “ h ˝ f ˝ kpzq “ f 1 ˝ kpzq “ m1 ˝ lpzq “ m1pxq,

hence h ˝m “ m1. It is obvious that h ˝ f “ f 1 and that these two equations uniquely determine h. Proving that h : M ÑM 1 is a
morphism is straightforward.

Note that D is finite whenever M is finite. This proves that this gluing condition is also valid in FMonogr, and it is obviously
also the case in SMonogr, O-Monogr and O-SMonogr for every set O of ordinals. It therefore characterizes the existence of D,
but by no means its unicity.

Example 8.3. In the category Set (equivalent to 1-Monogr), let l be the unique function from ordinal 2 to ordinal 1, the reader
can easily check that

1
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2Another consequence is that µ1pxq is not related by „ to any element of µ2rEDs, hence that mpxq R f rEDs.
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are both pushouts. Only the left one is constructed in the proof of Lemma 8.2 (sufficient condition). The right one can be built as
a final pullback complement, see [13]. Note that final pullback complements also exist when the gluing condition is not met (in this
case they are obviously not pushout complements).

We will therefore need some restrictions in order to ensure some form of determinism, i.e., that the result of double pushout
transformations be determined (up to isomorphism) by the matching m. For this it is useful to observe in the proof of Lemma 8.2
(necessary condition) that f rEDs is invariant (whatever D).

Corollary 8.4. If D, k : K Ñ D, f : D ÑM is a pushout complement of l : K Ñ L, m : LÑM then f rEDs “ EMzmrL1s, where
L1 “ ELzlrEKs.

Proof. Since mrELszpm ˝ lqrEKs Ď mrL1s then

mrELszmrL1s Ď pm ˝ lqrEKs “ pf ˝ kqrEKs Ď f rEDs.

By property of pushouts we have EM “ f rEDs YmrELs, and by note 2 we have mrL1s X f rEDs “ ∅, hence

EMzmrL1s “ pf rEDszmrL1sq Y pmrELszmrL1sq “ f rEDs.

One way of ensuring the unicity of D (up to isomorphism) is to assume that l is injective: this is a well-known consequence of
Theorem 4.17 (see [8]). However, an analysis of the construction of D in the proof of Lemma 8.2 (sufficient condition) shows that we
can always build D as a submonograph of M , hence we may as well assume that f is an inclusion morphism and avoid restrictions
on l (though both will appear as equivalent, see Corollary 8.9 below). We therefore adopt the following restricted notion of double
pushout transformation.

Definition 8.5 (span rules pl, rq, matching m, relation
pl,rq
ùñm). A span rule is a pair pl, rq of morphisms l : K Ñ L, r : K Ñ R with

the same domain K. A matching of pl, rq in an object M is a morphism m : L Ñ M . For any object N we write M
pl,rq
ùñm N if

there exists a double-pushout diagram

M

RKL

D N

l

km

r

gf

n

where f is an inclusion morphism.

We easily see that the relation
pl,rq
ùñm is deterministic up to isomorphism.

Corollary 8.6. M
pl,rq
ùñm N and M

pl,rq
ùñm N 1 entail N » N 1.

Proof. We have two pushout complements k : K Ñ D, f : D ãÑM and k1 : K Ñ D1, f 1 : D1 ãÑM of m, l, hence by Corollary 8.4

ED “ f rEDs “ EMzmrL1s “ f 1rED1s “ ED1

hence D “ D1, f “ f 1, k “ pf ˝ kq|DK “ pm ˝ lq|
D1

K “ pf 1 ˝ k1q|D
1

K “ k1, and therefore N » N 1 by general property of pushouts.

It is obvious by Theorem 4.4 and by the construction of D in Lemma 8.2 that, in the categories of Definition 3.5, there exists a

N such that M
pl,rq
ùñm N if and only if l and m satisfy the gluing condition. This means in particular that an edge e of M may be

deleted only if it is explicitly marked for removal, i.e., if there is an edge x P L1 such that mpxq “ e. All edges that are not marked
for removal are guaranteed to be preserved. This conservative semantics for transformation rules is extremely safe but imposes a
discipline of programming that may be tedious.

As noted in Example 7.8, pushout of partial morphisms have a potential of removing edges. Since such pushouts always exist,
they can be used to define transformations that are not restricted by the gluing condition. This is the idea of the single pushout
method, that was initiated in [20] and fully developed in [21, 3].
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Definition 8.7 (partial rules rrs, rl, rs, span rule spprrsq, relation
rrs
ùñm). A partial rule is a partial morphism rrs : L Ðâ K Ñ R,

to which is associated the span rule spprrsq
def
“ pl, rq where l : K ãÑ L is the inclusion morphism. A matching of rrs in a monograph

M is a morphism m : L Ñ M . For any monograph N we write M
rrs
ùñm N if there exist partial morphisms rgs and rns such that

prns , rgs , Nq is a pushout of pL, rrs , rmsq.

To any span rule pl, rq where l : K Ñ L, r : K Ñ R we associate a partial rule rl, rs
def
“ rr1s : LÐâ lpKq Ñ R1 such that pq, r1, R1q

is a pushout of pK, r, l1q where l1
def
“ l|

lpKq
K .

L

RKL

lpKq R1

pl, rq

rl, rs

l

l11L

r

r1

q

The relation
rrs
ùñm is also deterministic up to isomorphism since N is obtained as a pushout. Obviously a morphism m is a

matching of pl, rq in M iff it is a matching of rl, rs in M . The partial rule rl, rs is designed to perform the same transformation as
the span rule pl, rq. We prove that this is indeed the case when the gluing condition holds.

Theorem 8.8. For any span rule pl, rq, monographs M , N and matching m of pl, rq in M , we have

M
pl,rq
ùñm N iff M

rl,rs
ùñm N and GCpl,mq.

Proof. Let R1, l1, q and r1 be as in Definition 8.7. We first compute the pushout of rl, rs and rms according to the construction in
Lemma 7.7, by assuming the gluing condition GCpl,mq and that D ĎM , k : K Ñ D, f : D ãÑM is a pushout complement of l, m.

K R

lpKq

L lpKq

L

R1

M

R1

D N

r1

m

r1

m1

g

n1

r

l1 q

nk

f

Let I be the greatest submonograph of lpKq X L such that r1´1pr1pIqq “ I and m´1pmpIqq “ I. By GCpl,mq (1) we have for
all x P EL that mpxq P mrlrEKss entails x R L1 “ ELzlrEKs, i.e., x P lrEKs, hence m´1pmplpKqqq Ď lpKq and since the reverse
inclusion is always true we get I “ lpKq. Hence the greatest monograph X Ď R1 such that r1´1pXq Ď I is R1.

Let Y be the greatest submonograph of M such that m´1pY q Ď lpKq, this entails m´1rEY s X L1 “ ∅, hence EY XmrL1s “ ∅
and by Corollary 8.4 Y Ď fpDq “ D. Conversely, for all x P m´1rEDs “ m´1rEMzmrL1ss we have mpxq R mrL1s, hence by GCpl,mq
(1) x R L1 and thus x P lrEKs, so that m´1pDq Ď lpKq. Hence D Ď Y and we get Y “ D.

The pushout of rl, rs and rms is therefore obtained from the pushout of r1 and m1
def
“ m|DlpKq. Besides, we have m1˝ l1 “ pm˝ lq|DK “

pf ˝ kq|DK “ k.

Sufficient condition. We assume M
pl,rq
ùñm N and the diagram in Definition 8.5. By Lemma 8.2 we have GCpl,mq. By the above

we get pg ˝m1q ˝ l1 “ g ˝ k “ n ˝ r, and since pq, r1, R1q is a pushout of pK, r, l1q then there exists a unique n1 : R1 Ñ N such that
n1 ˝ r1 “ g ˝m1 and n1 ˝ q “ n. Since pn, g,Nq is a pushout of pK, r, kq then by pushout decomposition pn1, g,Nq is a pushout of

plpKq, r1,m1q, hence M
rl,rs
ùñm N .

Necessary condition. By GCpl,mq and Lemma 8.2 we can build a pushout complement D ĎM , k : K Ñ D, f : D ãÑM of l, m.

By M
rl,rs
ùñm N and the above there is a pushout pn1, g,Nq of plpKq, r1,m1q, hence by pushout composition pN,n1 ˝ q, gq is a pushout

of pK, r, kq, hence M
pl,rq
ùñm N .
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It is easy to see that r , s is a left inverse to sp, i.e., rspprrsqs “ rrs for any partial rule rrs. Besides, GCpl,mq is equivalent to
GCpi,mq, where i : lpKq ãÑ L. We conclude that, with respect to double pushout transformations, any span rule can be mimicked
by a rule with an inclusion morphism on the left.

Corollary 8.9. M
pl,rq
ùñm N iff M

spprl,rsq
ùñ m N .

In other words, it is equivalent (on monographs) to restrict f or l to inclusion morphisms (or simply to monomorphisms).
When the gluing condition holds, single and double pushout transformations are therefore equivalent. Single pushout transfor-

mations are more expressive since they also apply when the gluing condition does not hold, as illustrated in the following example.

Example 8.10. We consider the following “loop removing” rule:

L K R
l r

and try to apply it to monograph T8 from Example 6.10. There is a unique morphism m : L Ñ T8 but it does not satisfy the
gluing condition. Indeed, we see that condition (2) is breached since 1 | T8p2q and 1 P mrL1s and yet 2 R mrL1s. Hence the only
way to apply the rule to T8 is through a single pushout transformation.

For this we first compute the rule rl, rs. Since l is the inclusion morphism of lpKq “ K into L, then r1 “ r (and R1 “ R “ K)
and hence rl, rs “ rrs : LÐâ K Ñ R. The monograph D is the greatest one such that D Ď T8 and m´1pDq Ď lpKq, hence obviously
D “ tp0, εqu. Since lpKq and R are both isomorphic to D then so is the result of the transformation, i.e.,

¨ ¨ ¨
rl,rs
ùñm

Hence removing the edge 1 from T8 silently removes the edges n for all n ą 1.

We therefore see that single pushouts implement a semantics where edges can be silently removed, but minimally so for a
monograph to be obtained. This may remove edges in a cascade, a feature that does not appear on graphs. Note that item (1) of
the gluing condition may also be breached when an edge is marked more than once for removal, in which case it is deleted, but
also when an edge is marked both for removal and for preservation. Example 7.8 shows that in such cases the edge is also removed.
All edges marked for removal are guaranteed to be deleted, and the other edges are preserved only if this does not conflict with
deletions. This semantics of transformation rules is thus dual to the previous one, and should be more appealing to the daring (or
lazy) programmer.

9 Attributed Typed Monographs

The notion of E-graph has been designed in [2] in order to obtain an adhesive category of graphs with attributed nodes and edges.
This follows from a line of studies on Typed Attributed Graph Transformations, see [22, 23, 24]. The attributes are taken in a data
type algebra and may be of different sorts (booleans, integers, strings, etc.). In the case of E-graphs only the nodes of sort values

represent such attributes. But they are also typed by E-graphs, and in the type E-graphs each node of sort values represent a
sort of the data type algebra. This should recall the constructions of Section 6 that we now use in order to generalize the notion of
typed attributed graphs given in [2]. The idea is similarly to impose that the edges typed by a sort of a data type algebra are the
elements of the corresponding carrier set.

Definition 9.1 (categories ATMpT,Σq). For any monograph T and signature Σ : Ω Ñ Săω, an attributed typed monograph (ATM
for short) over T , Σ is a pair pa,Aq of an object a : A Ñ T in MonogrzT and a Σ-algebra A such that As “ pATaqs for all
s P S X ET .

A morphism m from pa,Aq to an ATM pb,Bq over T , Σ is a pair p~m, 9mq of a morphism ~m : a Ñ b in MonogrzT and a
Σ-homomorphism 9m : AÑ B such that 9ms “ pAT ~mqs for all s P S X ET .

Let 1pa,Aq
def
“ p1a, 1Aq and for any morphism m1 : pb,Bq Ñ pc, Cq let m1 ˝m

def
“ p~m1 ˝ ~m, 9m1 ˝ 9mq that is a morphism from pa,Aq to

pc, Cq. Let ATMpT,Σq be the category of ATMs over T , Σ and their morphisms.

The edges that are considered as attributes are not the nodes of a specific sort as in E-graphs; they are characterized by the
fact that they are typed by an edge of T that happens to be also a sort of the data type signature Σ, i.e., an element of S. This is
consistent with the typed attributed E-graphs of [2].

We therefore see that the signatures ST and Σ share sorts but we shall consider them as otherwise distinct, in particular w.r.t.
operator names. To account for this property we need the following construction.
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Definition 9.2 (signature Σ `Σ1). Given two signatures Σ : Ω Ñ Săω and Σ1 : Ω1 Ñ S1ăω, let pΩ `Ω1, µ1, µ2q be the coproduct
of pΩ,Ω1q in Set and j, j1 be the inclusion functions of S, S1 respectively into S Y S1, let Σ ` Σ1 : Ω ` Ω1 Ñ pS Y S1qăω be the
unique function such that pΣ `Σ1q ˝ µ1 “ jăω ˝Σ and pΣ `Σ1q ˝ µ2 “ j1ăω ˝Σ1.

Ω `Ω1 pS Y S1qăω

Ω

Ω1

Săω

S1ăω

µ1

µ2

Σ

Σ1

jăω

j1ăω

Σ ` Σ1

We leave it to the reader to check that this construction defines a coproduct in the category Sigsrt and therefore that Σ1 9» Σ2

and Σ11 9» Σ12 entail Σ1`Σ
1
1 9» Σ2`Σ

1
2. For the sake of simplicity we will assume in the sequel that ST and Σ have no operator name

in common, thus assimilate ΩT `Ω to ΩT YΩ and omit the inclusion functions, so that ST “ pST`Σq|
pET qăω

ΩT
and Σ “ pST`Σq|S

ăω

Ω .

Definition 9.3 (functor D : ATMpT,Σq Ñ pST ` Σq-Alg). For every signature Σ : Ω Ñ Săω and monograph T such that

ΩT X Ω “ ∅, let Σ1
def
“ ST ` Σ and D : ATMpT,Σq Ñ Σ1-Alg be the functor defined as follows: for every object pa,Aq of

ATMpT,Σq let Dpa,Aq be the Σ1-algebra A1 defined by

• A1s
def
“ As for all s P S and A1e

def
“ pATaqe for all e P ET ,

• oA
1 def
“ oA for all o P Ω and [e¨ι]A

1 def
“ [e¨ι]AT a for all [e¨ι] P ΩT .

For every morphism m : pa,Aq Ñ pb,Bq, let pDmqs
def
“ 9ms for all s P S and pDmqe

def
“ pAT ~mqe for all e P ET .

It is straightforward to check that Dm is a Σ1-homomorphism from Dpa,Aq to Dpb,Bq, and hence that D is a functor.

Theorem 9.4. D is an equivalence from ATMpT,Σq to pST `Σq-Alg.

Proof. It is easy to see that D is full and faithful by the same property of AT .
We prove that D is isomorphism-dense. For any Σ1-algebra B1, let B (resp. C) be its restriction to Σ (resp. ST ). Since AT

is isomorphism-dense by Theorem 6.8, there exist an object a : A Ñ T in MonogrzT and an ST -isomorphism h : ATa Ñ C. We

define simultaneously a set As and a function ks : As Ñ Bs for all s P S by taking As
def
“ Bs and ks

def
“ 1As if s P SzET , and

As
def
“ pATaqs and ks

def
“ hs if s P S X ET (in this case we have Cs “ B1s “ Bs). We then define for every o P Ω the function

oA
def
“ k´1

Rngpoq ˝ o
B ˝ kDompoq : ADompoq Ñ ARngpoq, and the Σ-algebra A def

“
`

pAsqsPS , po
AqoPΩ

˘

. By construction pa,Aq is obviously

an ATM over T,Σ and k
def
“ pksqsPS is a Σ-isomorphism k : AÑ B.

AΣ B

ATaST C

Σ1 A1 B1

k

h

Let A1 def
“ Dpa,Aq, h1s

def
“ ks : A1s Ñ B1s for all s P S and h1e

def
“ he : A1e Ñ B1e for all e P ET , since hs “ ks for all s P S X ET then

h1
def
“ ph1sqsPSYET is well-defined. It is then easy to see that h1 : A1 Ñ B1 is a Σ1-isomorphism, so that Dpa,Aq » B1.

Theorem 9.4 generalizes3 [2, Theorem 11.3] that establishes an isomorphism between the category of attributed E-graphs typed
by an attributed E-graph ATG and the category of algebras of a signature denoted AGSIGpATGq. In particular Theorem 11.3 of

3Our proof is also much shorter than the 6 pages taken by the corresponding result on attributed typed E-graphs. This is due partly to our use of AT

(Definition 6.7) and of Theorem 6.8, but also to the simplicity of monographs compared to the 5 sorts and 6 operator names of E-graphs.
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[2] requires the hypothesis that AGSIGpATGq should be well-structured, which means that if there is an operator name of ST whose
domain sort is s then s is not a sort of the data type signature Σ. Obviously this is equivalent to requiring that only nodes of T can
be considered as sorts of Σ and is linked to the fact that only values nodes of E-graphs are supposed to hold attributes. Since we
are not restricted to E-graphs there is no need to require that attributes should only be nodes. This has an interesting consequence:

Corollary 9.5. For every signatures Σ, Σ1 and graph structure Γ such that Σ1 “ Γ ` Σ there exists a monograph T such that
Σ1-Alg « ATMpT,Σq.

Proof. By Lemma 6.3 there exists a monograph T such that ST 9» Γ , hence ST ` Σ 9» Γ ` Σ “ Σ1 and therefore Σ1-Alg »
pST `Σq-Alg « ATMpT,Σq.

Obviously, any signature Σ1 can be decomposed as Γ ` Σ by putting some of its monadic operators (and the sorts involved in
these) in Γ and all other operators in Σ. And then any Σ1-algebra can be represented as an ATM over T,Σ, where ST 9» Γ . This
opens the way to applying graph transformations to these algebras, but this requires some care since it is not generally possible to
remove or add elements to a Σ1-algebra and obtain a Σ1-algebra as a result.

The approach adopted in [2, Definition 11.5] is to restrict the morphisms used in span rules to a class of monomorphisms that
are extensions of Σ-isomorphisms to pΓ ` Σq-homomorphisms. It is then possible to show [2, Theorem 11.11] that categories of
typed attributed E-graphs are adhesive HLR categories (a notion that generalizes Definition 4.13, see [25]) w.r.t. this class of
monomorphisms.

A similar result holds on categories of ATMs. For the sake of simplicity, and since rule-based graph transformations are
unlikely to modify attributes such as booleans, integers or strings (and if they do they should probably not be considered as graph
transformations), we will only consider morphisms that leave the data type algebra unchanged, element by element. This leaves the
possibility to transform the edges whose sort is in Γ but not in Σ.

Definition 9.6 (categories ATMpT,Aq, functor U, f stabilizes A). For any Σ-algebra A let ATMpT,Aq be the subcategory of
ATMpT,Σq restricted to objects pa,Aq and morphisms pf, 1Aq.

The forgetful functor U : ATMpT,Aq Ñ Set is defined by Upa,Aq def
“ EA, where a : AÑ T and Upf, 1Aq

def
“ Ef (usually denoted

f).
By abuse of notation we write A for the set

Ť

sPSXET As. A function f stabilizes A if f´1rxs “ txu for all x P A.

The proof that the categories ATMpT,Aq are adhesive will only be sketched below. The key point is the following lemma.

Lemma 9.7. For all objects pa,Aq, pb,Aq of ATMpT,Aq and morphism f : aÑ b of MonogrzT , we have

pf, 1Aq : pa,Aq Ñ pb,Aq is a morphism in ATMpT,Aq iff f stabilizes A.

Proof. For all s P SXET we have As “ pATaqs “ a´1rss and As “ b´1rss. Since b˝f “ a then f´1rAss “ f´1rb´1rsss “ a´1rss “ As,
hence f´1rAs “ A. Thus f stabilizes A iff fpxq “ x for all x P A iff pAT fqs “ f |AsAs “ IdAs “ p1Aqs for all s P S X ET iff pf, 1Aq is
a morphism in ATMpT,Aq.

Hence the property of stabilization characterizes the difference between morphisms in MonogrzT and morphisms in ATMpT,Aq.
Besides, it is well-known how pushouts and pullbacks in MonogrzT can be constructed from those in Monogr, and we have seen
that these can be constructed from those in Set.

But then it is quite obvious that in Set, starting from a span of functions that stabilize A, it is always possible to find as pushout
a cospan of functions that stabilize A. Hence not only does ATMpT,Aq have pushouts, but these are preserved by the functor U. A
similar result holds for pullbacks, and a construction similar to Corollary 4.7 yields that U also preserves monomorphisms. Finally,
we see that U reflects isomorphisms since f´1 stabilizes A whenever f does. We conclude as in Theorem 4.17.

Theorem 9.8. ATMpT,Aq is adhesive.

This result does not mean that all edges that are not attributes can be freely transformed. Their adjacencies to or from attributes
may impose constraints that only few morphisms are able to satisfy.

Example 9.9. Let Σ be the signature with no operation name and one sort s, and A be the Σ-algebra defined by As “ ta, bu. We
consider the type monograph T “ tpe, sq, ps, equ. A monograph typed by T has any number (but at least one) of edges typed by e
that must be adjacent either to a or b, and two edges typed by s, namely a and b, that must be adjacent to either the same edge x
typed by e, which yields two classes of monographs
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a b

x

a b

x

(to which may be added any number of edges typed by e and adjacent to either a or b), or a and b are adjacent to y and z respectively,
and we get four more classes:

a

y

b

z

a

y

b

z

a

y

b

z

a

y

b

z

The function y, z ÞÑ x is a morphism from these last two monographs to the two monographs above (respectively). There are no
other morphisms between monographs from distinct classes. We therefore see that in the category ATMpT,Aq it is possible to add
or remove edges typed by e to which a or b are not adjacent, but there is no way to remove the edges y and z (because this would
require a rule with a left morphism from an ATM without y and z to an ATM with y and z, and there is no such morphism), though
they are not attributes.

Besides, we see that this category has no initial object, no terminal object, no products nor coproducts.

10 Conclusion

Monographs generalize standard notions of directed graphs by allowing edges of any length with free adjacencies. An edge of length
zero represents a node, and if it has greater length it can be adjacent to any edge, including itself. In “monograph” the prefix
mono- is justified by this unified view of nodes as edges and of edges with unrestricted adjacencies that provide formal conciseness
(morphisms are functions characterized by a single equation); the suffix -graph is justified by the correspondence (up to isomorphism)
between finite ω-monographs and their drawings.

Monographs are universal with respect to graph structures and the corresponding algebras, in the sense that monographs are
equivalent to graph structures extended with suitable ordering conventions on their operator names, and that categories of typed
monographs are equivalent to the corresponding categories of algebras (i.e., to the presheaf toposes). Since many standard or exotic
notions of directed graphs can be represented as monadic algebras, they can also be represented as typed monographs, but these
have two advantages over graph structures: they provide an orientation of edges and they (consequently) dispense with operator
names.

Algebraic transformations of monographs are similar to those of standard graphs. Typed monographs may therefore be simpler
to handle than graph structured algebras, as illustrated by the results of Section 9. The representation of oriented edges as sequences
seems more natural than their standard representation as unstructured objects that have images by a bunch of functions. Thus
type monographs emerge as a natural way of specifying graph structures.
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