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Abstract: Masonry structures, particularly those used in developing countries and in historic build-
ings, typically consist of unreinforced masonry (URM) walls connected by timber or reinforced
concrete elements. This study proposes enhancements to the existing two-dimensional (2D) de-
formable frame model (DFM) to enhance its ability in simulating masonry walls with a specific focus
on accurately predicting the transient dynamic response of three-dimensional (3D) masonry struc-
tures while maintaining a minimal number of degrees of freedom (DOF). For the modeling of URM
walls, the DFM framework employs elastic beams and diagonal struts with nonlinear constitutive
behavior. Structural elements, such as reinforced concrete or timber reinforcements, are represented
using conventional beam finite elements. This paper first reviewed the current DFM configuration,
which primarily addresses the in-plane (IP) behavior of URM structures. It then introduced mod-
ifications tailored for 3D structural analysis. The reliability of the enhanced model was validated
through two approaches. First, a modal analysis compared the results from the updated DFM with
those from a reference 3D model based on cubic finite elements. Second, a shaking table experiment
conducted on a half-scale masonry house was simulated. The findings demonstrate that, despite its
limited number of DOF, the updated DFM effectively captures the main natural vibration modes.
Furthermore, it shows the model’s ability to predict the nonlinear transient dynamic response of 3D
masonry structures with accuracy and limited computational time.

Keywords: 3D macro model; finite element method; unreinforced masonry; modal analysis; nonlinear
transient dynamics analysis; in-plane and out-of-plane loadings

1. Introduction

Analyzing 3D masonry structures under dynamic loads is highly demanding in terms
of time and computational resources, mainly due to the complex dissipative behaviors
of masonry walls. This complexity necessitates 3D nonlinear transient dynamic analyses,
which are both sophisticated and resource-intensive. For instance, Valente conducted, in
2022, 3D nonlinear dynamic analyses on two historical fortified masonry palaces using
455,000 and 345,000 four-node tetrahedral finite elements (FE) [1]. Similarly, in 2023,
Valente performed analyses on two masonry churches with 266,000 and 145,000 FE [2].
These recent studies are notable as they enabled nonlinear dynamic analyses of complex
historical structures; however, the computational demands constrained the refinement
of discretization, and this limitation resulted in a FE size ranging between 20 cm and
40 cm, which is comparable to the characteristic dimensions of the masonry elements.
In addition, these FE analyses were carried out using the software code Abaqus [3], which
requires complex developments to implement constitutive laws specific to masonry in user
subroutines. Consequently, employing a simplified model based on a macro-element with
nonlinear constitutive behavior appears particularly relevant, especially for the seismic
analysis of large complex masonry constructions.
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To address these challenges, researchers have developed various modeling techniques
specifically designed for masonry structures, especially infill walls made of unreinforced
masonry (URM). These innovative methods aim to optimize the analytical process by
preserving critical insights into structural behavior while significantly reducing computa-
tional time.

Among the different proposed strategies, the pier/spandrel partition is the most com-
mon, also known as the equivalent frame model (EFM) [4–9], which is recommended by
international standards such as Eurocode 8 [10] or FEMA 356 [11] (Federal Emergency Man-
agement Agency). Although these models have been used to simulate complex structures,
they mainly focus on determining the in-plane (IP) behavior of the structure. Only a few
studies have proposed the determination of out-of-plane (OOP) behavior [12]; these studies
model the OOP behavior using a strategy similar to that of the IP direction, with adjusted
values for the parameters.

Another significant advancement in 3D URM structural modeling involves the inte-
gration of the rigid body spring model (RBSM) and the rigid element model (REM) [13–16].
These models consist of rigid elements interconnected through a combination of springs
to simulate IP behavior or hinges for OOP behavior. These springs and hinges are char-
acterized by their inelastic behavior, and they are defined by studying a representative
volume. Despite demonstrating impressive results, these models face a limitation; they
cannot comprehensively address both IP and OOP behaviors simultaneously. Consequently,
inertial forces due to perpendicular walls are incorrectly taken into account under dynamic
loads with these models.

To streamline the examination of the 3D URM structures under dynamic loads, with-
out sacrificing crucial insights into their structural behavior, the rigid macro-element
model (RMEM) emerges as a significant advancement [17–19]. This model is adept at
simultaneously analyzing IP and OOP behaviors, employing a system of rigid frames
linked by both normal and tangential springs. These springs facilitate the simulation of
tension/compression and sliding movements within the masonry, while diagonal springs
within the frames mimic shear behavior. To support modal and seismic analyses, the RMEM
incorporates a mass matrix, enhancing its applicability in dynamic scenarios [20]. However,
RMEM encounters challenges in correctly capturing the OOP bending of the wall, which
necessitates a fine mesh and, consequently, increases computation time significantly. More-
over, the inclusion of additional structural elements such as frames in the openings can be
cumbersome [21]. Yet, a version of the RMEM has been proposed to overcome this issue,
albeit leading to a non-negligible increase in the number of degrees-of-freedom (DOF) [22].

In light of the constraints identified in the prevalent models for analyzing 3D URM
structures, this paper introduces an enhanced version of the deformable frame model
(DFM) proposed by Decret et al. [23]. This model was initially tailored to model URM
walls subjected to cyclic IP loads. It is distinguished by its limited number of DOF and
the straightforward incorporation of additional structural components such as reinforced
concrete or timber frame elements.

The main objectives of this paper are as follows: (i) to introduce an enhanced DFM for
the 3D modeling of masonry structures; (ii) to demonstrate that this simplified model, based
on planar macro-elements, can effectively capture the 3D elastic dynamic characteristics of
masonry structures including mode shapes and natural frequencies; and (iii) to validate the
nonlinear constitutive behavior of the macro-elements through transient dynamic analysis.

Section 2 serves as a reminder of the DFM for two-dimensional (2D) modeling. Then,
the definition of the DFM for 3D modeling is proposed. In order to model the URM
structures submitted to dynamic loading, the DFM mass matrix is defined in Section 3.
Finally, in Section 4, modal analysis of two masonry structures and the simulation of a
shake table test conducted on a half-scale masonry house are performed using the DFM.
These numerical simulations demonstrate the model’s suitability for the dynamic analysis
of masonry structures.
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2. The DFM for IP Load

The DFM, as depicted in Figure 1, operates within the FE method framework, repre-
senting a portion of an IP-loaded URM wall, such as, for instance, a masonry infill wall.
The approach to modeling masonry structures with the DFM is direct and efficient, elimi-
nating the need to individually identify wall components such as piers and spandrels like
in the EFM [4–9] and POR methods [24,25]. This is achieved through a meshing technique
that intuitively integrates the presence of openings within the structure. A comparison
of the DFM with existing models and an in-depth discussion of the model design and its
validation against quasi-static loading scenarios are detailed in [23], of which only the main
developments are recalled in this section.

In terms of structure, the DFM is characterized by a minimalistic design, consisting
of only four nodes positioned at each corner. Each node is interconnected via three struts
(Figure 1). The model’s movement is captured through eight DOF, corresponding to two
DOF per node, facilitating a comprehensive simulation of the macro-element’s response to
various types of loads.

The derivation of Equations (1)–(14) is described in detail in [23].

Figure 1. DFM’s schematic representation and its integration into the modeling of a wall for IP
analysis [23].

2.1. Strut Stiffnesses

The determination of the elastic stiffness for each strut of the DFM incorporates the
masonry’s Young modulus Em, the masonry’s shear modulus Gm, the macro-element’s
height hm, the macro-element’s width lm, and the wall thickness tm. The definitions of
the stiffnesses for the vertical struts Kv, horizontal struts Kh, and diagonal struts Kd are
provided by Equations (1)–(3), where θ is the angle, as shown in Figure 1.

Kv = Em · lm.tm

2.hm
− Kd. cos2(θ), (1)

Kh = Em · hm.tm

2.lm
− Kd · sin2(θ), (2)

Kd = Gm · lm.tm

2.hm. sin2(θ)
. (3)

2.2. Shear Strength of the Macro-Element

The ultimate force capacity Fu of the diagonal struts is characterized using two distinct
equations to accurately reflect two failure mechanisms: the diagonal cracking and shear-
sliding of the masonry. For the diagonal cracking failure mode, the formula developed by
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Turnšek and Čačovič [26] is used (Equation (4)). For the shear-sliding failure, the Mohr–
Coulomb’s law, as proposed in [27], is used (Equation (5)).

fv,1 =
ft

b

√
σv

ft
+ 1, (4)

fv,2 = c + µσv. (5)

The parameter b in Equation (4) allows accounting for the slenderness of the macro-
element (it is reminded that hm and lm are the dimensions of the macro element and not of
the wall), where b is defined as

1 ⩽ b = hm/lm ⩽ 1.5. (6)

In Equations (4) and (5), σv represents the vertical stress exerted on the masonry,
and ft denotes the masonry’s tensile strength. For the shear-sliding equation, two addi-
tional parameters were included (as introduced by Mann and Müller [27]): the cohesion
c and the coefficient of friction µ. The values for the cohesion and the coefficient of fric-
tion were derived using Equations (7) and (8), where Hb and Lb are the height and the
width of the bricks, respectively; and c and µ represent the masonry cohesion and friction
coefficient, respectively.

c =
c

1 + 2 · µ · Hb
Lb

, (7)

µ =
µ

1 + 2 · µ · Hb
Lb

. (8)

The ultimate force capacity of the diagonal struts Fu is defined with Equations (4) and (5),
taking into account the cross-section of the macro-element and the angle θ, as shown in
Equation (9).

Fu =
lm · tm · min( fv,1, fv,2)

sin(θ)
. (9)

2.3. Inelastic Behavior

After considering the different failure modes of the masonry and selecting the asso-
ciated ultimate forces, as commonly proposed in the literature, a hysteresis model was
introduced, as shown in this section, to account for the energy dissipation under cyclic
loading, a feature that is particularly important in the case of earthquakes.

The DFM was designed to simulate the behavior of URM structures subjected to
shear loading. All of the dissipative phenomena occurring in the masonry are assumed
to be reproduced by the diagonal struts. The constitutive force–displacement curve of the
diagonal strut is depicted in Figure 2, where the envelope curve is highlighted as a bold
black line. This curve is defined by four key parameters: the initial stiffness of the diagonal
strut Kd, the force at crack initiation Fcr, the maximum strength of the masonry Fu, and the
displacement at maximum strength du. Of these, Kd and Fu are directly derived from the
material and geometric properties of the masonry, as detailed in Equations (3) and (9).

The determination of the remaining parameters is based on the analysis of the cyclic
shear tests conducted on masonry piers. In situations where experimental data are unavail-
able, a simplified approach can be used. This approach represents the constitutive behavior
with a bi-linear envelope curve: an initial elastic phase extending up to du, followed by a
transition to perfectly plastic behavior beyond this point. This simplification helps maintain
the analytical tractability of the model while capturing the essential characteristics of the
masonry behavior under shear loads.
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Figure 2. Force/displacement curve of the diagonal strut [23].

The hysteresis model proposed by Panagiotakos and Fardis [28] is used to represent
the loading–unloading behavior (Figure 2). This model accounts for stiffness and strength
degradation through three parameters: α, β, and γ. These parameters, as well as their
dependence on the dimensions of the macro-element, were identified by Decret et al. [23]
thanks to simulations of quasi-static cyclic shear tests that were performed on masonry
walls. Equations (10)–(12) were used to determine α, β, and γ, respectively.

α = 0.9 +
bdiag − 1
1 + σv/ ft

, (10)

β = 0.2b2
diag + (1 − bdiag)

2, (11)

γ = −0.4 + 2(1 − bdiag). (12)

The parameter bdiag in Equation (10) is analogous to the parameter b used to define the
maximum strength of the diagonal element, and it is determined by Equations (13) and (14).

• if helem > lelem,
1 ⩽ bdiag = helem/lelem ⩽ 1.5; (13)

• if helem < lelem,
1 ⩽ bdiag = lelem/helem ⩽ 1.5. (14)

3. The DFM for OOP Load

To seamlessly incorporate the OOP behavior of the masonry into the DFM without
altering the established nonlinear constitutive behavior of its diagonal struts, the model
adopts a strategy in which the strut elements of the frame are transformed into beam
elements, as proposed by Quagliarini et al. [12] in the SAM approach. Additional DOF are
introduced to capture the OOP bending and torsional behavior of the masonry, while main-
taining the IP behavior of the DFM, thereby preserving the role of the diagonal elements.
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Figure 3 illustrates the kinematics of the DFM for 3D modeling, highlighting the
addition of three new DOF per node. Consequently, the total number of DOF per DFM
element increases to 20, comprising 5 DOF.

Figure 3. The DFM for 3D modeling with kinematics defined in the global orthonormal coordi-
nate system.

The axial stiffness of the frame’s beam elements under axial load was designed to
match that of the original struts. Consequently, the axial elastic modulus of the beams Ex
does not correspond to the Young’s modulus of the masonry Em. Instead, Ex is a unique
modulus of elasticity tailored for axial deformation. It is defined by Equation (15) for
vertical beams and by Equation (16) for horizontal beams, where hin f is the height (and
lin f is, respectively, the width) of the area of influence of the horizontal beam (the same,
respectively, for the vertical beam). They are shown in Figure 4.

Ex,v = Kv
hm

tmlin f
, (15)

Ex,h = Kh
lm

tmhin f
. (16)

Figure 4. Definition of the height and the width of the influence of the DFM beams.

The diagonal elements provide additional rigidity for vertical and horizontal IP ten-
sion/compression loading but offer no rigidity in the OOP direction. Therefore, the bending
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behavior of the beams is characterized by the Young’s modulus of the masonry Em rather
than the elastic modulus Ex.

A DFM frame beam element of length L is depicted in Figure 5 along with its local
coordinate system. This beam is defined with nodes i and j. Let ui (and, respectively,
uj) denote the axial displacement; vi (and, respectively, vj) the vertical displacement; wi
(and, respectively, wj) the OOP displacement; θi (and, respectively, θj) the angle related to
the bending around the vertical local axis; and φi (and, respectively, φj) the torsion angle.
The displacement vector and the internal force vector of the beam are denoted as

U =
{

ui, vi, wi, φi, θi, uj, vj, wj, φj, θj
}T , F =

{
Ni, Ty,i, Tz,i, Mx,i, My,i, Nj, Ty,j, Tz,j, Mx,j, My,j

}T .

The balance Equation (17) defines the relationship between these two vectors through the
stiffness matrix K, which is defined by Equation (18).

F = K.U. (17)

K =



SEx

2L
0 0 0 0 −SEx

2L
0 0 0 0

3Em Iz

2L3 0 0 0 0 −3Em Iz

2L3 0 0 0
3Em Iy

2L3 0 −
3Em Iy

2L2 0 0 −
3Em Iy

2L3 0 −
3Em Iy

2L2
Gm J
2L

0 0 0 0 −Gm J
2L

0
2Em Iy

L
0 0

3Em Iy

2L2 0
Em Iy

L
SEx

2L
0 0 0 0

3Em Iz

2L3 0 0 0

sym
3Em Iy

2L3 0
3Em Iy

2L2
Gm J
2L

0
2Em Iy

L



(18)

The inertia terms in Equation (18), i.e., Iz, Iy, and J, are determined with the dimensions
of the surrounding macro-elements of the DFM. Their values for the vertical and horizontal
beams are provided in Table 1.

Figure 5. Kinematics of the beam elements of the DFM defined in the local orthonormal coordinate system.

Vertical beams located at junctions where two or more walls intersect at right angles
require special consideration. At these corner connections, an IP load on one wall induces
an OOP load on the adjoining perpendicular wall. This dual role complicates the accu-
rate specification of the beam properties as their definition can vary depending on the
model’s mesh size. Standard definitions for beam bending behavior in these cases tend to
overestimate the structural stiffness at corners, regardless of mesh density.
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Table 1. Definition of the inertia terms of the DFM beam elements.

Inertia Term Vertical Beam Horizontal Beam

Iy t3
m.lin f /12 t3

m.hin f /12

Iz tm.l3
in f /12 tm.h3

in f /12

J Iz + Iy Iz + Iy

To address this challenge and prevent the overestimation of the corner stiffness, the mo-
ments of inertia Iy and Iz for the vertical beams at these critical junctions were intentionally set
to zero. This adjustment provides a more realistic representation of the structure’s behavior by
reducing the stiffness contribution of corner beams, aligning the model’s response more closely
with the actual structural performance under complex loading conditions.

To accurately represent the structure’s torsional behavior, it is essential to maintain
a non-zero polar moment of inertia J. Consequently, the standard formula J = Iz + Iy
in Table 1 is not adequate for the vertical beams located at the corners of intersecting
walls. The intersection of two walls is depicted in Figure 6, where L1 (and, respectively,
L2) represents the total length of the vertical strut in the x-direction (and, respectively, the
y-direction). Additionally, L is the length of influence of the element on the left in Direction
1, and the thickness of the wall oriented in Direction 1 is denoted by T1 (and, respectively,
T2 in Direction 2). With these notations, the polar moment of inertia of the vertical beam at
the corner Jcorner is defined by Equation (19).

Jcorner =
1

12
(T1L3

1 + L1T3
1 + T2L3

2 + L2T3
2 ) + L1T1((dx − 0.5L1)

2

+(dy − 0.5T1)
2) + T2L2((dx − (L1 + 0.5T2))

2 + (dy − (T1 + 0.5L2)
2).

(19)

Figure 6. Intersection of two walls: (a) intersection modeled with the DFM; (b) cross-section of the
intersection seen from above.

The distances dx and dy represent the coordinates of the center of gravity G of the
entire domain of influence of the beam in respect to the reference point O, as shown in
Figure 6. These coordinates are defined by Equations (20) and (21).

dx =
(L1.T1.L1/2 + L.L2.T2)

L1.T1 + L2.T2
, (20)
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dy =
(L1.T2

1 + L2.T2.(T1 + L2/2))
L1.T1 + L2.T2

. (21)

It is generally considered that, during an earthquake, the OOP walls slightly contribute
to the seismic resistance of the masonry structure. Therefore, the beam elements of the
DFM are assumed to exhibit purely elastic behavior. With this assumption, the definition
of the DFM for 2D modeling remains unchanged.

4. Mass Matrix of the DFM

The mass matrix of the DFM is defined by lumping the mass at nodal points, considering
each node’s volume of influence. This volume is calculated as the median distance from each
node to the other vertices within the same macro-elements. Two examples of the area of
influence are colored yellow and purple in Figure 7a. The yellow area represents a node fully
surrounded by DFM elements, resulting in a more typical, often rectangular, area of influence.
In contrast, the purple area represents a node located at the periphery of an opening, leading to
an irregular, non-rectangular region shaped by the boundaries of the opening.

Figure 7. Colored areas show the areas of influence for nodes: (a) case when the node is not part of
two perpendicular walls; (b) case when the node is part of two perpendicular walls.

Equation (22) defines the relationship between the mass Mn at node n, its correspond-
ing area of influence An, and the masonry’s density ρm. This mass is assumed to be identical
in all three spacial directions. This approach simplifies the representation of mass distri-
bution by exclusively focusing on the translational mass effects and excluding rotational
degrees of freedom from the DFM’s mass matrix formulation.

Mn = ρm Antm. (22)

While Equation (22) provides the standard approach for calculating the node mass
within the DFM using uniform areas of influence and masonry density, wall intersec-
tions introduce unique geometric configurations that require a tailored approach. In typ-
ical scenarios, the areas of influence are rectangular, as depicted in Figure 7a. However,
at wall intersections, more complex shapes emerge, such as L-shapes, U-shapes, T-shapes,
and cross-shapes, as highlighted in Figure 7b by a blue region.

For each of these cases, the mass at the node is not defined by Equation (22) as this
would lead to an overestimation. For the example in Figure 7b, the lengths of the area of
influence in Direction 1 and 2 are denoted by L1 and L2, respectively, and the thickness
of the corresponding walls t1 and t2, respectively. In this configuration, the area of influ-
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ence associated with the node n, represented by a blue circle in Figure 7b, is defined by
Equation (23). This equation can be adapted to any intersection of walls.

Acorner =


(L1 + 0.5t2)t1 + (L2 + 0.5t1)t2 if L1 > t1 and L2 > t2
L1t1 + L2L1 + (L2 − 0.5t1)t2 if L1 < t1 and L2 > t2
L2t2 + L2L1 + (L1 − 0.5t2)t1 if L1 > t1 and L2 < t2
L1L2 if L1 < t1 and L2 < t2

. (23)

The mass for the nodes at the intersection of perpendicular walls is defined by Equation (24),
where hin f is the height of influence, as defined for the horizontal struts in Figure 4.

Mn,i = ρm Acornerhin f . (24)

5. Numerical Validation of the Model

To evaluate the DFM’s capability in simulating the dynamic behavior of masonry
structures, the model was implemented in ATL4S, which is a FE toolbox in MATLAB [29]
developed by Grange [30].

The validation process begins with a modal analysis of two different URM structures:
a simple square wall and a more complex configuration consisting of five interconnected
walls. This initial phase aims to assess the accuracy of the DFM in predicting the natural
frequencies and mode shapes of these structures, offering valuable insights into its precision
in modeling the dynamic characteristics of URM structures.

Following the modal analysis, the DFM is further tested by simulating a shake table
experiment that was conducted by Yadav et al. [31] on a half-scale masonry house. This
experiment provides a real-world scenario to test the model’s predictive accuracy by
comparing the displacements generated by the DFM with those observed in the physical
tests. Through this comparison, the model’s effectiveness and reliability in capturing the
seismic response of masonry structures are thoroughly evaluated, representing a significant
advancement in validating the DFM for structural engineering and the analysis of masonry
behavior under dynamic loads.

All analyses presented in this paper were conducted on a computer equipped with an
Intel® CoreTM i5-8250U processor running at 1.6–1.8 GHz and 8.0 GB of RAM (Intel, Santa Clara,
CA, USA).

5.1. Modal Analysis

To validate the elastic properties of the DFM and the accuracy of its mass matrix defini-
tion, a modal analysis was conducted on two structures assumed to be perfectly embedded
in their foundations. The objective of this analysis was to compare the results obtained from
a reference 3D numerical analysis with those from the DFM for two simplified, hypothetical
structures composed of URM walls. These structures, which lack roofs and reinforcing
elements, exhibit deformations that are intentionally simplified and somewhat unrealistic.
The selected structures are as follows.

• A square wall: This structure represents a simple yet fundamental form in masonry
architecture. It enables the evaluation of the DFM’s ability to capture basic vibra-
tional modes and ensures that the model accurately reflects the stiffness and mass
distribution of this straightforward structure.

• A five-wall structure with openings: This configuration is designed to test the DFM’s
effectiveness in simulating the dynamic interactions between adjoining walls, resulting
in complex modal behaviors. This structure presents a challenge to the model’s ability
to handle the increased complexity and interactions that are characteristic of real-world
masonry buildings.

The DFM is a simplified model based on macro-elements consisting of beams and struts.
For both structures, the primary vibration modes and associated natural frequencies identified
by the DFM are compared with results from the numerical software Cast3M [32], which utilizes
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a refined mesh of cubic finite elements. This comparison highlights the DFM’s effectiveness in
capturing the primary vibration modes and assesses the impact of varying mesh sizes within
the DFM’s computational framework. Note that a convergence study has been performed to
make sure the results given by the 3D FE model are relevant as reference [33].

The analysis focuses on the five predominant modes, which are selected based on
their associated modal masses, as proposed by Clough et al. [34]. These modes corre-
spond to Modes 1, 5, 10, 23, and 25, which are ordered by increasing natural frequencies.
To evaluate the DFM’s accuracy in estimating natural frequencies, the error is defined as
the absolute relative difference between the natural frequencies predicted by the DFM fmod
and those obtained from the FE reference model, fre f . Mathematically, this is expressed
as Error=|( fre f − fmod)/ fre f |. This metric provides a clear quantitative assessment of the
DFM’s precision in determining natural frequencies.

The mechanical properties of the masonry in the modal analysis were derived from
the quasi-static tests conducted by Yadav [35]. These properties are detailed in Table 2.

Table 2. Material properties of the masonry.

Stiffness
Young’s modulus Em 44 MPa

Shear modulus Gm 22.2 MPa

Shear strength
Tensile strength ft 18.4 kPa

Cohesion c 27 kPa
Friction coefficient µ 0.6

Tri-linear behavior
Cracks initiation Fcr/Fu 0.5

Displacement at maximal
strength du/dcr 6.

Lintel properties
Lintel Young modulus El 9 GPa
Lintel Poisson’s ratio νl 0.2

Lintel section Al 5 × 5 cm2

Lintel density ρl 700 kg·m−3

5.1.1. Square Wall

The analyzed square wall had a width of 2.5 m and a thickness of 0.3 m. For this
wall, the mesh was designated as n × m, where n represents the number of DFM elements
along the wall’s width, and m represents the number of DFM elements along its height.
For instance, a wall modeled with a single DFM element was labeled as 1 × 1. Examples of
the meshes used for each model are illustrated in Figure 8.

The mode shapes for the primary modes are depicted in Figure 9 for both the DFM and
the reference 3D FE model. While minor discrepancies were observed, for instance, in the
displacement at the midpoint of the wall for the second OOP bending mode, the overall
deformed shapes produced by both models were, fundamentally, identical.

The DFM’s estimation of the natural frequencies demonstrated significant accuracy for
all but the coarsest 3 × 3 mesh, which exhibited an error of approximately 12%. The highest
error observed with more refined meshes did not exceed 8%, as shown in Figure 10. This
figure also highlights how the error varies with mesh refinement: while finer meshes enhance
accuracy for certain modes (e.g., Mode 1 and Mode 5), they do not uniformly reduce the error
across all modes. Notably, the error for the first vertical tension/compression mode (Mode 4)
remains consistently around 8%. This persistent error in Mode 4 suggests an inherent limitation
in the DFM’s simplified approach to modeling complex structural behaviors. Nonetheless,
the achieved accuracy is deemed acceptable for the seismic analysis of masonry buildings.
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Figure 8. Examples of the mesh used for the square wall: (a) 8 × 8 mesh with the DFM ; (b) 20 × 30
× 5 mesh with the 3D cubic FE model.

Figure 9. Mode shapes and frequencies for the primary modes computed with the 10 × 10 DFM and
the reference 3D FE model.
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Figure 10. Evolution of error in determining the modes, as depicted in Figure 9, which were analyzed
in relation to the mesh size.

The evolution of the natural frequency of the 3rd mode, as depicted in Figure 11,
highlights the trend in error determination for this mode and explains why the error did
not decrease with finer meshes. Coarser meshes tended to underestimate this frequency,
while finer meshes tended to overestimate it. As a result, the 7 × 7 mesh achieved a more
accurate approximation of this frequency compared to even finer meshes.

Figure 11. Evolution of the natural frequency value of the 3rd mode analyzed in relation to the
mesh size.

This modal analysis of a square wall demonstrated that the DFM accurately captures
the primary mode shapes and their corresponding natural frequencies with good precision,
even with a limited number of DOF.

5.1.2. Five-Wall Structure with Openings

The layout of the five-wall structure, as illustrated in Figure 12, featured a symmetric
design comprising four distinct wall types. One of these, termed the “Window wall”, included
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a centrally positioned window. Additionally, two walls, labeled “Door wall 1” and “Door wall
2”, each featured a centrally positioned door, though with differing dimensions. The fourth
wall, which had no opening, shared the same dimensions as “Door wall 2”.

Figure 12. Schemes of the five-wall structure for the modal analysis.

For the five-wall structure, a different naming convention was used for the discretiza-
tion. All of the meshes consisted of square macro-elements and were identified by a single
number n, which represents the level of mesh refinement. n = 1 corresponds to the
coarsest mesh, where the DFM−1 macro-elements were twice as wide as the DFM−2 macro-
elements.

Figure 13 illustrates the modeling of the structure using the DFM (a) and the refined
3D cubic FE model (b).

Figure 13. Mesh for the five-wall structure with openings: (a) DFM−2; (b) 3D FE model.
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The comparison of mode shapes derived from the DFM and the 3D cubic FE model,
shown in Figure 14, highlights similar dynamic behavior that was predicted by both
methods. However, minor differences in the displacement amplitudes were observed,
particularly in OOP displacements, mirroring the findings from the square wall analysis.

Figure 14. Mode shapes of the five-wall structure with openings.

Figure 15 illustrates the DFM’s ability to predict the natural frequencies of the complete
structure compared to those obtained from the reference model. The results show that the
coarsest mesh provided less accurate predictions, particularly for the first mode, where
the error reached 22%. In contrast, the finer meshes considerably improved the accuracy,
reducing the maximum error to a more acceptable level of 8%.

Figure 15. Evolution of the error for the determination of the primary modes with the mesh size.

This analysis confirms that the DFM, especially when applied with an appropriate
mesh density, can yield satisfactory results in the modal analysis of complex structures.
Despite the inherent simplifications of the DFM, its ability to closely replicate the dynamic
behavior predicted by the reference model underscores its effectiveness as a structural
analysis tool for evaluating the seismic performance of masonry buildings.
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5.2. Dynamic Analysis of a Masonry House
5.2.1. The Studied House

The next phase in validating the DFM for transient dynamic analysis involved the
numerical simulation of a dynamic test performed on a structure. The DFM enables 3D
transient dynamic analysis of various types of masonry structures. For this validation,
the model’s performance was evaluated through the simulation of a unidirectional shake
table test performed on a half-scale masonry house, as performed by Yadav et al. [31]. It
is worth noting that only a few 2D or 3D shake tables exist, and the experimental data
from such tests remain limited. Despite the unidirectional nature of the shake table test,
3D effects may arise within the structure. The DFM has demonstrated its ability to capture
these effects, such as vertical modes, as confirmed by the modal analysis.

To design the half-scale house model, Cauchy’s similitude law was applied, ensuring
an accurate scale-down of the prototype’s properties to those of the model. This relationship
is outlined in Table 3, which illustrates the proportional transformation of the properties of
the model (M) relative to the prototype (P). For this shake table experiment, the selected
similitude parameters were λ = 0.5, e = 1, and ρ = 1.

The model configuration is shown in Figure 16, with specific designations for cardinal
orientation: the south wall was positioned on the left side of the figure, while the east and
west walls were identified as IP-loaded walls. ”Door wall 2” refers to the central partition,
and the north wall is at the opposite end. The model had a symmetrical design.

The house was constructed using mud mortar and extruded adobe bricks (175 mm ×
125 mm × 50 mm). Its dimensions are shown in Figure 16. The total mass of the masonry
structure was about 3.8 tons.

Table 3. Cauchy similitude law.

Quantity Symbol Similitude

Length L LP = λ LM
Modulus of elasticity e EP = e EM

Density ρ ρP = ρ ρM
Area A AP = λ2AM

Volume V VP = λ3VM
Mass m mP = ρ λ3 mM

Velocity v vP = e1/2 ρ−1/2vM
Acceleration a aP = e λ−1ρ−1 aM

Force F FP = e λ2FM
Stress σ σP = e σM
Time t tP = e−1/2 λ ρ1/2 tM

The results presented in this section pertain to a slightly reinforced masonry house.
Figure 17a shows the house during construction, where the only reinforcement consists of
timber frames around the doors and windows. In Figure 17b, a speckle pattern can be seen
painted on the walls for digital image correlation (DIC) techniques.

Two additional tests were conducted on houses with different seismic strengthening
techniques [31]; however, these were not analyzed in the present paper. The focus here was
on the structure that exhibited the most significant damage to validate the nonlinear DFM
model for masonry walls.

The roof truss was built with timber and covered with galvanized iron (GI) sheeting.
It was secured with 10 metal cables—8 along the west and east walls, and 2 along the north
and south walls—which passed through the lintel level and were pre-stressed, as seen in
Figure 17b. The roof’s total mass was approximately 185 kg.
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Figure 16. Schemes of the reduced scale house.

Figure 17. The tested masonry house [31]: (a) house construction; (b) the roof truss and its connection
with masonry house.

5.2.2. Shake Table and Ground Acceleration

The experiment was conducted using the single-axis shake table at the Institut Tech-
nologique FCBA in Bordeaux [36]. This shake table is designed to support a maximum
dead load of 15 tons. Movement is driven by a servo-hydraulic jack capable of exerting up
to 250 kN of force, and it is guided by roller bearings. The shake table’s motion is aligned
along the X-axis, as illustrated in Figure 16.
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The seismic signal used for the experiment is a customized version of the natural
acceleration signal recorded during the 2003 Miyagi earthquake in Japan, as measured at
the K-Net station. This ground acceleration was modified to reflect the characteristics of a
distant subduction earthquake as might be experienced in Guadeloupe, French Caribbean,
based on the methodology proposed by Youngs et al. [37]. This methodology modifies the
ground acceleration of a known signal in order to obtain a response spectrum featured by
the type of soil, earthquake depth, source type, peak ground acceleration, and moment
magnitude. For the considered scenario, the peak ground acceleration was 0.35 g.

The adjusted signal corresponded to a reference return period of 475 years on a Type
B soil in line with Eurocode 8 standards [10], with a 10% probability of exceeding the
reference peak ground acceleration over a span of 50 years. This scenario aligns with the
“no collapse” condition specified in Eurocode 8. The response spectrum of the accelerogram
and the ground acceleration, as shown in Figure 18, were further scaled using Cauchy’s
similitude law, yielding a maximum ground acceleration of 0.7 g.

Figure 18. The frequency and time-based data of the seismic signal: (a) eesponse spectrum of the
accelerogram; (b) ground acceleration of the Guadeloupe seismic signal.

5.2.3. Measurements

During the testing phase, displacement data were recorded using cable sensors placed
at seven locations along the north wall of the house, as shown in Figure 19. To ensure
accuracy and reliability, these measurements were further validated using digital image
correlation (DIC) and stereo vision techniques following the methods developed in [38]
and [39], as described in [35]. The displacement data from Sensors 6 and 7, located at the
top of the east and west walls, served as references for the displacement of the IP-excited
walls, while Sensor 2 measured the OOP displacement.
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Figure 19. Positions of the cable sensors on the north wall of the reduced scale house.

5.2.4. Numerical Modeling

The representation of the house using the DFM is shown in Figure 20. This mesh
corresponds to the DFM−1 mesh used in the modal analysis, consisting of 126 macro-
elements and 840 DOF. In this figure, the beam elements and the mass distribution are
color-coded for clarity.

Figure 20. Modeling of the URM house: (a) the timber frames around openings, and (b) mass distribution.

The roof was treated as a dead load, and it was represented by additional masses at
the nodes atop the east and west walls to simulate its weight and impact on structural
behavior during an earthquake. The timber frames around the openings were modeled as
elastic beams, with their contribution to the overall structural mass calculated using the
standard approach for defining the mass matrix of beam elements.

For this study, it was considered that all the dissipative phenomena that occur during
an earthquake are modeled thanks to the nonlinear constitutive behavior of the DFM. As a
result, there was no additional damping in the dynamic analysis.

The mechanical properties for the numerical analysis are presented in Table 2. These
material properties have been identified from the quasi-static tests conducted by Yadav [35]
on a wall constructed with the same material.

The five primary modes calculated for the X direction of excitation (Figure 16) corre-
spond to the following frequencies and effective masses (the ratio of modal mass to total
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mass): Mode 1 (14.2 Hz, 49.6%); Mode 2 (25.3 Hz, 24.6%); Mode 3 (30.3 Hz, 2.3%); Mode 4
(64.1 Hz, 4%); and Mode 5 (66.3 Hz, 3.1%). Note that Modes 1 and 2 correspond to the OOP
displacements of the walls perpendicular to the excitation direction (Figure 21).

The parameters governing the hysteresis behavior are not included in Table 2 as they
are derived from the material properties listed in the table and empirical relations outlined
in [23]. Their values depend on the location of each macro-element within the structure
and are locally determined using Equations (10)–(12). No DFM material properties were
calibrated using the shake table test results, ensuring that the DFM serves as a fully
predictive model.

Figure 21. (a) Mode 1: 14.2 Hz, effective mass = 49.6%; and (b) Mode 2: 25.3 Hz, effective mass = 24.6%.

The displacement corresponding to the ground acceleration shown in Figure 18 was
applied to the shake table on which the house model was mounted.

Figure 22 displays the average of the measured displacements at Points 6 and 7 along-
side the displacement calculated at Point 6 using the DFM (the calculated displacements
at Points 6 and 7 are identical due to symmetry). Focusing on the time interval between
4 s and 12 s, when displacements reach their peak values, they provide insights into the
numerical model’s performance relative to the actual behavior of the tested house.

Despite the overall accuracy, noticeable deviations exist between the model predictions
and the experimental observations, particularly around the 7 s mark, where the model fails
to accurately capture the measured oscillations. The most significant discrepancy occurs at
the peak displacement at 9 s, where the model underestimates the experimentally recorded
displacement. This limitation can be attributed to the model’s inability to accurately
reproduce the OOP displacement, as shown in Table 4, where the OOP displacement value
is only half of the experimentally measured value.

Furthermore, Table 4 presents the maximum displacements captured by the DFM
alongside those experimentally recorded during the shake table test at Points 6 and 7 (dIP)
and at Point 2 (dOOP). These results highlight the model’s performance in replicating the IP
wall movements in both negative and positive directions, achieving a maximum error of
around 10%. However, the model’s accuracy declined for displacements in the positive
direction, with errors reaching up to 27% at the peak displacement around the 9-second
mark. It is important to emphasize that this peak error does not reflect the overall trend
throughout the testing period. While the model is generally reliable, certain dynamic
responses may occasionally result in deviations from the measured values.



Appl. Sci. 2024, 14, 11080 21 of 25

Figure 22. The experimental and calculated displacement histories of the house at Points 6 and 7.

Table 4. Comparison of the maximum displacements in the positive and negative directions deter-
mined with the DFM and experimentally measured.

dIP,DFM dIP,exp errorIP dOOP,DFM dOOP,exp errorOOP
mm mm % mm mm %

+2.59 +3.54 26.9 +3.74 +7.77 51.9
−2.74 −3.04 10 −3.46 −7.31 52.7

The model’s underestimation of the OOP displacement can be attributed to the simpli-
fications inherent in modeling OOP behavior using an elastic constitutive model. Masonry,
particularly adobe, exhibits nonlinear behavior when subjected to OOP forces, which can
result in cracking, crushing, or other failure modes that a a purely elastic model cannot
fully capture. Yadav et al. [31] presented the shake table test results. Unlike the IP walls,
the OOP walls exhibited no significant damage under the analyzed seismic excitation level,
and the displacements measured at Points 2–5 (Figure 19) linearly varied along the height
of the wall. These observations support the model’s assumption of linear elastic behavior
for OOP walls as a reasonable approximation. Consequently, the authors believe that the
underestimation of OOP displacements has minimal impact on the structural response of
the IP shear walls, which are the primary contributors to the structure’s seismic resistance.

Note that a finer mesh (corresponding to DFM−2) leads to a slightly better accuracy,
as shown in Table 5. However, this accuracy sacrifices the computational time (which is
about four times longer) for a low impact on the IP behavior.

Table 5. Finer mesh: comparison of the maximum displacements in the positive and negative
directions determined with the DFM and experimentally measured.

dIP,DFM dIP,exp errorIP dOOP,DFM dOOP,exp errorOOP
mm mm % mm mm %

+2.72 +3.54 23 +4.90 +7.77 37
−2.77 −3.04 9 −3.84 −7.31 48

The computation time of 4 h and 30 min, as indicated in Figure 22, encompasses
various tasks, including mesh generation, the calculation of the vertical stress applied
to each macro-element, application of static loads, and the execution of the numerical
analysis. This overall computation time was considered quite satisfactory as it allows for a
comprehensive evaluation of the seismic response of an entire masonry structure within
just a few hours.
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6. Conclusions

This paper introduced additional features to the DFM, which is a macro-model de-
signed for any type of masonry walls. The DFM offers a practical and computationally
efficient alternative to complex finite element approaches for analyzing and understanding
the 3D behavior of masonry structures under dynamic loads, such as seismic events. By in-
corporating specialized beam kinematics within the DFM framework, the model effectively
represents the OOP behavior of walls. Walls subjected to IP loads primarily contribute to
the seismic resistance, and the model’s damage prediction for these shear walls facilitates
the evaluation of the seismic vulnerability of masonry structures. Assuming linear elastic
behavior for OOP walls, the model achieves a balance between analytical simplicity and
the accurate representation of essential response characteristics.

Furthermore, the 2D modeling approach with diagonal struts introduced by De-
cret et al. [23] was extended to the new 3D model, ensuring that the constitutive relations
identified for IP loading remain applicable for 3D analysis. The introduction of a 20-DOF
framework for 3D modeling, along with a mass matrix that concentrates mass at the vertices
of the DFM, represents a significant advancement in efficiently modeling complete masonry
structures under seismic excitation while reducing computational demand.

The validation of this approach through modal analysis, via comparing the DFM’s
output against that of a conventional 3D cubic FE model, indicated that, despite the coarse
mesh used in the DFM, it provides a commendable approximation of mode shapes and
natural frequencies. The DFM’s validation also extended to the simulation of a shake table
experiment that was performed on a half-scale house, as conducted by Yadav et al. [31].

These validations underscore the DFM’s utility as a valuable tool in the seismic assess-
ment of masonry structures, balancing computational efficiency with reasonable accuracy
in predicting dynamic responses. However, limitations were observed in accurately esti-
mating the OOP displacements, primarily due to the assumption of elastic behavior in this
direction. Despite this, the model represents a significant advancement in the dynamic
analysis of masonry structures, suggesting areas for future improvement and refinement,
particularly in enhancing the modeling of OOP responses to more accurately reflect the
complexities observed during seismic events.

Efforts have been made to design the DFM to be as user friendly as possible. Now that
it is configured for 3D analysis, the objective is to implement it in widely used software
such as POR2000 [25] or SAP 2000 [40]. This aims to make the model accessible to engineers
worldwide, enabling them to assess seismic fragility and resilience [41] or to simulate local
masonry constructions similar to the projects involving masonry structures with horizontal
inclusions in Nepal, as was conducted by Yadav et al. [31] and Decret [33].
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Nomenclature

List of abbreviations
2D Two-dimensional
3D Three-dimensional
DFM Deformable frame model
DIC Digital image correlation
DOF Degrees of freedom
EFM Equivalent frame model
FE Finite element
FEMA Federal emergency management agency
GI Galvanized iron
IP In-plane
OOP Out-of-plane
RBSM Rigid body spring model
REM Rigid element model
RMEM Rigid macro-element model
SAM Simplified analysis of masonry
URM Unreinforced masonry
List of symbols
An Area of influence at node n
b Parameter accounting for the element slenderness
c Masonry cohesion
c Masonry cohesion (as proposed by Mann and Muller)
dmax Maximum displacement reached in the opposite direction by the DFM

Diagonal strut
du Displacement at the ultimate strength of the DFM diagonal strut
El Lintel Young modulus
Em Masonry Young modulus
Ex,h Axial stiffness of the DFM horizontal beams
Ex,v Axial stiffness of the DFM vertical beams
ft Masonry tensile strength
Fcr Force at crack initiation of the DFM diagonal strut
Fu Ultimate strength of the DFM diagonal strut
fv,1 Masonry shear strength for the diagonal cracking failure
fv,2 Masonry shear strength for shear-sliding failure
Gm Masonry shear modulus
Hb Brick height
hin f Height of the area of influence of a horizontal strut
hm Macro-element height
Kd DFM diagonal strut initial stiffness
Kd,i Initial stiffness of the diagonal strut i
Kh DFM horizontal strut in-plane stiffness
Kv DFM vertical strut in-plane stiffness
Lb Brick length
lin f Width of the area of influence of a vertical strut
lm Macro-element width
Mn Nodal mass at node n
tm Macro-element thickness
α Parameter accounting for the cyclic damage in the masonry
β Parameter accounting for the cyclic shear behavior of masonry
γ Parameter accounting for plasticity in the hysteretic behavior
µ Masonry friction coefficient
µ Masonry friction coefficient as proposed by Mann and Muller
νl Lintel Poisson’s ratio
ρm Masonry density
ρl Lintel density
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σv Vertical stress applied on the macro-element
θ Angle of the macro-element diagonal strut with the vertical axis
ui, vi, wi, φi, θi DOF at node i
Ni, Ty,i, Tz,i, Mx,i, My,i Forces at node i
K Stiffness matrix of DFM beam elements
Iy, Iz,J Inertia terms of DFM beam elements
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