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Abstract

Easily accessible sensors, like drones with diverse on-
board sensors, have greatly expanded studying animal be-
havior in natural environments. Yet, analyzing vast, un-
labeled video data, often spanning hours, remains a chal-
lenge for machine learning, especially in computer vision.
Existing approaches often analyze only a few frames. Our
focus is on long-term animal behavior analysis. To address
this challenge, we utilize classical probabilistic methods for
state estimation, such as particle filtering. By incorporat-
ing recent advancements in semantic object segmentation,
we enable continuous tracking of rapidly evolving object
formations, even in scenarios with limited data availability.
Particle filters offer a provably optimal algorithmic struc-
ture for recursively adding new incoming information. We
propose a novel approach for tracking schools of fish in the
open ocean from drone videos. Our framework not only per-
forms classical object tracking in 2D, instead it tracks the
position and spatial expansion of the fish school in world
coordinates by fusing video data and the drone’s on board
sensor information (GPS and IMU). The presented frame-
work for the first time allows researchers to study collective
behavior of fish schools in its natural social and environ-
mental context in a non-invasive and scalable way.

1. Introduction
Schools of fish, flocks or birds or herds of sheep - in nature,
collectives exhibit remarkable behaviors as they seemingly
synchronize their movements within the group. Flexibly the
collective changes their formation, density, speed and may
even change their formation completely by smoothly divid-
ing or merging [1]. These phenomena lead to marvellous
visual spectacles that we can observe in the sky or in water.
Both - aerial and marine environments, allow researchers to
study collective behavior and the interaction between mul-
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Figure 1. Swarm Dynamics from Above (SwDA), a framework
for tracking collective behavior from drone videos. The recursive
architecture of a particle filter, coupled with frame-by-frame se-
mantic segmentation allows tracking over long time horizons.

tiple collectives in natural environments that are minimally
influenced by constraints imposed by the terrestrial struc-
ture. Therefore these ecological environments present an
unique opportunity to study behavior of animal groups con-
sisting of several thousand individuals [12]. The complex-
ity of such group-motions go far beyond patterns that can
be described with traditional representations like skeletons,
key-points or bounding boxes mimicking the spatial config-
uration of an object [18]. Latest research mostly focused on
tracking behavior of one or more individuals [10, 13, 21–
23, 25, 27, 28, 30]. In this work, we tackle the problem
of tracking collective behavior. The analysis of collective
behavior shifts the perspective from previously specific ob-
servations of individual behavior to a global view encom-
passing group dynamics involving multiple individuals, of-
ten of the same species. Our specific goal is to track a
school of fish as a cohesive group, capturing key features
like position, spatial extent, and shape of the entire collec-
tive. We propose a method that leverages classical proba-
bilistic state estimation via particle filtering by integrating
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Method Object (Animal) Animal Group Moving 2D 3D Temporal Tracking
Tracker Representation Camera Trajectory Trajectory Scope Environmnent

DeepLabCut [23] Point/Skeleton multiple individuals ✓ ✓ ✗ long-term terrestrial/marine
Particle Video [13] Point - ✓ ✓ ✗ short-term terrestrial
Follow Anything [22] Point/Shape - ✓ ✓ ✗ long-term terrestrial/marine
Quantifying Behavior with a Drone [21] Point/Bounding Box multiple individuals ✓ ✓ ✓ long-term terrestrial
Swarm Dynamics from Above (SwDA) Point/Shape swarm ✓ ✓ ✓ long-term marine

Table 1. Literature review on approaches for tracking animal behavior captured by a moving camera. Methods deviate in their object
representation (point/skeleton/bounding box), non of existing methods directly track a pixel accurate object shape over long time horizons.
SwAD is the only method designed for marine environments.

advances in semantic object segmentation. The particle fil-
ter allows for recursively adding new incoming information
over long time horizons. We continuously track the fish
school while integrating learned segmentation masks and
the drone’s movement (GPS and IMU). Our contributions
can be summarized as follows:

i. For the first time, an approach is introduced that en-
ables the analysis of animal behavior in real-world co-
ordinates, even in demanding environments lacking ge-
ographical structures or unique landmarks.

ii. The proposed methodology combines learning-based
approaches for semantic segmentation with recursive
Bayesian filtering, resulting in high performance even
in low-data regimes.

iii. Its temporal robustness is demonstrated in the tasks of
trajectory and shape estimation. Both of which are
evaluated over extended time periods (∼5 minutes).

iv. Code and the new dataset for tracking collective animal
behavior will be released a long an extended version of
this workshop paper.

2. Related Work

Algorithms have been developed for tracking animal behav-
ior in well-controlled laboratory experiments using station-
ary cameras [5, 23], but also for handling challenging field
experiments [19, 21, 22, 26]. While the ultimate goal is
to analyze movements of single animals or groups in the
wild, the natural environment significantly determines the
capability of extracting accurate information about the ani-
mal’s movement. Table 1 provides an exemplary overview
of the diversity of existing techniques and their applications.
Techniques range from high-precision tracking in structured
environments to more adaptable methods suited for the
complex and variable conditions like marine environments.
In terrestrial environments well-identifiable landmarks help
to reconstruct the 3D trajectory from video sources [11, 21].
The ability to extract 3D behavioral trajectories signifi-
cantly degrades with the opportunity of identifying high-
quality landmarks. Estimating 3D trajectories in marine en-
vironments has not been widely addressed [22, 24]. The
primary reasons are the lack of geometric structure needed
to reconstruct 3D movement trajectories, making it a chal-

lenging vision and robotics problem. Additionally, the ac-
cessibility of animals found far off the coast makes the use
of technical communication devices that rely on a fixed base
(receiver) impractical. This work for the first time processes
visual data (videos) and GPS/IMU information recorded by
a drone to extract real world trajectories of a fish school in
the Pacific Ocean 10-30 km offshore Baja California Sur.

3. Visual Tracking of Swarm Dynamics
We present a novel framework for tracking swarm dynam-
ics from drone recordings. In Section 3.1 we introduce the
recursive structure of the particle filter that unifies accurate
frame-wise object detections and the drone’s sensor data.
Building upon the algorithmic stracture of the particle filter,
Section 3.2 introduces Swarm Dynamics from Above.

3.1. Background: Particle Filter

We examine the task of inferring a hidden state s from a
sequence of observations o and performed actions a, i.e.
the probability distribution of p(st|o0:t, a0:t) = bel

(
st
)
. In

other words, we wish to localize the object in world coor-
dinates from frame-wise object detections and the drone’s
pose provided by its GPS and IMU data. Following the
principle of Bayesian filtering, a belief over the object’s lo-
cation evolves over time through two sequential steps that
iterativly track the object’s location: 1) prediction using ac-
tion at and 2) update using observation ot:

bel
(
st
)
=

∫
p
(
st|st−1, at

)
bel

(
st−1

)
dst−1 (1)

bel
(
st
)
= ηp

(
ot|st

)
bel

(
st
)

(2)

The Bayes filter computes bel
(
st
)

recursively from
bel

(
st−1

)
while incorporating the new information con-

tained in at and ot. How to represent this believe? Par-
ticle filters are a way to efficiently represent an arbitrary
(non-Gaussian) distribution. In case of a particle filter a set
of particles s[0]t , ..., s

[N ]
t and weights w[0]

t , ..., w
[N ]
t serve as

an approximation to the probability distribution to be es-
timated. More specifically particles are iteratively moved,
weighted and resampled. The particle filter implements
the prediction step by moving each particle stochastically,



which is achieved by sampling from a generative motion
model, s[i]t ∼ p(s

[i]
t |at, s[i]t−1). During the measurement up-

date the weight of each particle i is set to the observation
likelihood, w

[i]
t = p(ot|s[i]t ) and particles are resampled

accordingly. Following the underlying recursive structure
of the particle filter we introduce Swarm Dynamics from
Above, a model that allows robust tracking of animal be-
havior in real world-coordinates, even in demanding en-
vironments that lack geometric structures or unique land-
marks. In these highly demanding environments any classi-
cal tracking algorithms that solely rely on motion estimates
through optical flow are typically prone to errors [7, 15].

3.2. Tracking of Swarm Dynamics in Drone Videos

The drone is equipped with a high resolution camera, gim-
bal for image stabilization and on board sensors - IMU and
GPS, that provide the absolute drone pose (in geographic
coordinates), its translational velocity measured in m/s and
its rotation (pitch, yaw and roll) in degree. Measurements
are converted into cartesian coordinates with its origin being
at the position of the drone projected onto the ground. The
camera’s pose is determined from provided sensor measure-
ments using a standard Kalman filtering approach. Given
an accurate estimate of the drone’s pose the following para-
graphs outline the particle tracking framework with its mo-
tion model and measurement model that keep track over the
objects position on the image plane over long time hori-
zons. At time t = 0 the particle filter is initialized with a
uniformly distributed set of P particles. Section 3.2.1 sum-
marizes the conversion of the 2D trajectory into a global
motion trajectory. It’s worth noting that 2D tracking en-
compasses information about the drone’s movement.

Motion Model. The complex open ocean environment,
lacking clear geometrical structures and often featuring sun
reflections due to wind or animal movements near the wa-
ter surface, hinders direct motion estimation from optical
flow. Optical flow relies on the brightness consistency as-
sumption [16], which doesn’t hold aforementioned cases.
Instead of estimating particle movement from video frames,
we infer the particle movement induced by the camera’s
motion. Let the camera rotation be defined by [A,B,C] and
its translation by [U, V, W], following rules of perspective
projection the flow can be geometrically determined via:

v⃗ =
1

z

[
−fU + xW
−fV + yW

]
+

[
A
f
xy −Bf − B

f
x2 + Cy

Af + A
f
y2 − B

f
xy − Cx

]
, (3)

here f is the camera’s focal length in pixels and z the cam-
era’s height (distance to the captured scene) [15]. Each par-
ticle is displaced by v⃗, and Gaussian noise is introduced
by resampling from a Gaussian distribution with the mean
equal to the updated particle position (Fig. 2).

Measurement Model. Incoming new observations ot
continuously update the belief over the object’s pose us-
ing Bayes’ rule. We estimate soft segmentation masks ot

ACTION

OBSERVATION

Perspective Projection

Measurements

Motion

Global Motion Trajectory

drone's motion direction

particle motion

Figure 2. Illustration of the motion model. Each particle is dis-
placed by the induced motion vector due to the drone’s movement

by first training DeeplabV3 [4] with a MobileNet back-
bone architecture [17] on the new dataset for swarm track-
ing. For training we minimize the binary cross-entropy
loss, which is equivalent to maximizing the likelihood of
the data. This process yields soft segmentation masks ob-
tained during network inference. Particles are weighted
according to estimated segmentation masks and resampled
accordingly. We utilize roulette wheel sampling for parti-
cle resampling, a technique that incorporates elements from
evolutionary computation methodologies [9].

Starting from initially uniformly distributed particles,
particles quickly adapt to the swarm’s shape and are capa-
ble to capture its dynamics - displacement and shape defor-
mation. To achieve this goal, we introduced a model that
iteratively conducts prediction by considering the drone’s
actions and then updates the prediction using learned object
segmentation masks (Fig. 1). This improves tracking accu-
racy, particularly in low data regimes, a prevalent challenge
frequently encountered in animal behavior research.

3.2.1 Estimating the Global Movement Trajectories

Global movement trajectories are computed following the
physical principles of image formation. Given the camera’s
pose, the camera’s extrinsic parameters R and t determining
the 3D camera motion can be determined. Intrinsic camera
parameters K such as focal length and principle point off-
set are known. Therefore the global movement trajectory
can be obtained as follows: p = K[R|t]P , where P de-
notes the world point and p denotes its projection onto the
image plane [14]. We define the origin of the global coordi-
nate system to be at the initial drone pose projected onto the
ground. Furthermore it is assumed that the camera’s height
is equal to the distance to the object being tracked, implying
that the swarm is situated at the water surface.

4. Experiments
We present novel data for tracking the dynamics of a school
of fish being pursued by predators. The strong interac-
tion between predator and prey results in highly expressive
and unique swarm dynamics. We include an overview of
the experimental setup, evaluation metrics covering track-



Num Training Samples 400 16

Method S = 30 S = 20 S = 10 S = 30 S = 20 S = 10

Follow Anything [22] 37.96 32.76 20.33 38.37 33.10 20.42
DeepLabV3 69.31 63.65 45.06 31.63 16.81 6.61
SwDA 84.40 77.93 50.31 76.66 69.78 40.22

Table 2. Tracking Accuracy. We compare the quality of esti-
mated 2D trajectories with Follow Anything, a tracker that sim-
ilarly tracks an object from a moving drone and DeepLabV3.
DeepLabV3 segments each frame in a sequence (such as a video)
independently of the others, resulting in instantaneous segmenta-
tion masks. The mean point of each mask is tracked.

ing, shape segmentation accuracy, and the reconstruction of
world coordinates from image detections.

Implementation Details. Data was recorded with the
drone DJI Phantom 4. For Network training we utilized
DeeplabV3 pretrained on ImageNet [6] and further train us-
ing the BCEWithLogitLoss and AdamW optimizer. The
networks learning rate was set to 1e-3. The network was
trained for 50 epochs and the model that reaches lowest er-
ror on validation set was chosen. During particle tracking
the objects shape was approximated with 1000 particles.

Data. Recordings picture highly dynamic predator and
prey interactions in the Pacific Ocean 10-30 km offshore
Baja California Sur. Data is captured by a DJI Phantom 4
pro drone at 60fps. Videos show a schooling prey during
group hunts of striped marlins. Prey fish schools typically
consist of populations ranging from approximately 100 to
over 3000 individuals. Each video shows a different school
of fish during predator attack. This wide range not only af-
fects the school’s appearance in terms of its size but also has
a significant impact on the school’s dynamics and behavior,
especially in response to predatory attacks. Examples are
shown in Figure 4. Each video file is accompanied with ac-
curately synchronized sensor measurements of the drones
on board sensors. In total 40min of video data is provided
- 8 videos of 5min each. The videos are split into 4-folds.
Per fold 4 videos are used for training, 2 videos are used for
validation and testing respectively. Per video 100 frames
distributed over the full duration of each video are anno-
tated with pixel accurate segmentation masks outlining the
fish school’s shape, resulting in a total of 800 segmentation
masks - per k-fold 400 samples are used for training, 200 for
validation and 200 for testing. The fish school’s movement
is tracked throughout the full video sequence with ground
truth point annotations. Data will be made available for fur-
ther analysis and research purposes.

4.1. Evaluation

This section evaluates and discusses multiple aspects of our
tracking framework: estimation of movement trajectories,
tracking of shape and localisation in world coordinates.

Figure 3. Tracking Accuracy. Evaluation of the Tracking Ac-
curacy for different amount of labeled training data. Accuracy is
measured via the successful detection rate (SDR). Results for two
different precision ranges are shown: SDR within a radius of 30
pixels (blue), SDR within a radius of 20 pixels (purple).

Method Intersection over Union Precision Recall F1-measure

Follow Anything [22] 42.5 52.0 51.1 49.8
DeepLabV3 73.8 83.1 77.4 78.9
SwDA 71.4 76.2 85.4 78.9

Table 3. Shape Segmentation Accuracy. To compare the quality
of the swarm’s shape, we convert the set of tracked particles to
segmentation masks. Reconstructing the shape of a 2D point cloud
on the plane is inferred through its corresponding α-shape.

Movement Trajectories An often used measure to as-
sess the 2D tracking accuracy is the average trajectory er-
ror [32]. A significant drawback of this measure however
becomes apparent when the tracker loses the target, the out-
put location can be random and the average error value may
not measure the tracking performance correctly [2, 31]. In-
stead, a widely accepted measure is the successful detec-
tion rate (SDR), a measure that reports the percentage of
accurate detections within a predefined precision range. We
compare our approach SwDA with Follow Anything and
DeepLabV3. Follow Anything leverages foundation mod-
els like CLIP [29], DINO [3], and SAM [20] to compute
segmentation masks that best align with the queried ob-
jects, therefore its performance is independent upon the
amount of training data as one can see in Table 2. The
queried object is identified using ground truth segmenta-
tion masks. DeepLabV3 relies frame-wise estimates - not
exploiting temporal consistency. We follow a similar pro-
tocol as introduced in DeepLabCut [23] to extract trajecto-
ries from frame-wise segmentation masks. Fig 3 shows the
tracking accuracy averaged over all four training folds and
for different amounts of training data. SwDA - our parti-
cle set tracker, shows significantly stronger tracking perfor-
mance also in low-data regimes. While the accuracy of a
pure learning based approach drops to 31.6% and 38.4% re-
spectively (precision range of S=30px) when trained with
only 16 training samples, the particle tracker only slightly



(a) Original frame (b) SwDA - 2D particle tracking (c) 3D motion trajectory (birds-eye view)

Figure 4. Qualitative Results of three different videos are shown: (a) Original frame, (b) Swarm detection via particle tracking and (c)
Global movement trajectory of the swarm, 10m/grid cell, color visualises time. The overall video length is ∼5min. Full videos are provided
in the accompanying suppl. material.

reduces performance compared to training with all available
training data. We improve upon recent advancements in
semantic object segmentation by integrating particle filter-
based tracking. This approach leverages physical regular-
ities such as temporal consistency commonly found in be-
havioral animal data.

Tracking of Collective Formation Patterns. Shape
segmentation accuracy is evaluated using four distinct ac-
curacy metrics: intersection over union, precision, recall,
and the F1-measure. In SwDA, soft segmentation masks
from DeepLabV3 serve as frame-wise observations ot, and
particles are resampled accordingly. It is anticipated that
this process will roughly maintain the segmentation qual-
ity expected from DeepLabV3. Given a set of particles, we
approximate pixelwise segmentation masks by computing
its corresponding α-shape [8]. This leads to a slightly more
spatially expanded segmentation regions, which can be seen
in the higher recall of SwDA (Tab. 3).

3D Tracking and Localization. Based solely on mar-
itime drone recordings without unique landmarks it is im-
possible to achieve a good estimate of the algorithms abil-
ity to extract real-world coordinates from 2D trajectories
on the image plane. Therefor we record aerial video data
capturing a simple terrestrial environment, with clear and
easy to identify markers. The ground truth 3D position of
markers are measured using real-time kinematic position-
ing (RTK). Eight markers are located at different positions
and recorded by a moving drone. While the detection of the

Method absolute error [in m] standard deviation

GPS 0.41 0.28
IMU 0.96 0.65
IMU+GPS (Kalman filter) 0.32 0.21

Table 4. Tracking Accuracy in 3D. We compare different local-
ization approaches via GPS, IMU or their combination. SwDA
integrates sensor measurements from IMU and GPS via Kalman
filtering. The relative distances between markers is evaluated. Ab-
solut distances of markers vary between 14m and 23m.

target position is meant to be kept as simple as possible, the
goal of this experiment is to evaluate the algorithms abil-
ity to retrieve accurate relative distances between detected
makers. The accuracy of reconstructing a 3D position of a
static landmark is reported in Tab. 4. The drone’s sensor
measurements are fused to estimate the drone’s pose.

5. Conclusion

This work unifies learning and probabilistic modeling
within a coherent algorithmic structure. By exploiting tem-
poral consistency which can be found in behavioral data,
our proposed method can handle challenging training sce-
narios where not much annotated training data is available.
Furthermore since tracking relies on both visual appearance
features and measurements of physical sensors the proposed
algorithm is capable to tracking animal behavior in highly
demanding environments, such as the open ocean.
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