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Abstract

Event cameras provide a natural and data efficient
representation of visual information, motivating novel
computational strategies towards extracting visual in-
formation. Inspired by the biological vision system,
we propose a behavior driven approach for object-wise
distance estimation from event camera data. This
behavior-driven method mimics how biological systems,
like the human eye, stabilize their view based on ob-
ject distance: distant objects require minimal compen-
satory rotation to stay in focus, while nearby objects de-
mand greater adjustments to maintain alignment. This
adaptive strategy leverages natural stabilization behav-
iors to estimate relative distances effectively. Unlike
traditional vision algorithms that estimate depth across
the entire image, our approach targets local depth esti-
mation within a specific region of interest. By aligning
events within a small region, we estimate the angu-
lar velocity required to stabilize the image motion. We
demonstrate that, under certain assumptions, the com-
pensatory rotational flow is inversely proportional to
the object’s distance. The proposed approach achieves
new state-of-the-art accuracy in distance estimation - a
performance gain of 16% on EVIMO2. EVIMO2 event
sequences comprise complex camera motion and sub-
stantial variance in depth of static real world scenes.

1. Introduction
Event cameras mimic certain biological features of

the human visual system. Instead of recording RGB
frames at a fixed frequency, they record brightness
changes as events asynchronously and at high temporal
resolution. This offers great potential for high-speed
automation [18], robotics [22] and microscopic anal-
ysis [9], where capturing motion is crucial. Current
vision algorithms struggle to efficiently process and in-
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Figure 1. Akin to gaze stabilization, local event alignment
stabilizes a local image region by applying a rotation that
counteracts the camera’s motion. This rotation leads to lo-
cally well aligned events as pictured in (d). The relative
distance between two objects can then be inferred by com-
paring their compensatory rotations.

terpret asynchronous event data. In this work, we pro-
pose to combine the biologically inspired visual acqui-
sition with natural behavioral strategies to enhance the
interpretation of event data. Rather than passively an-
alyzing incoming event data at each pixel location, we
induce a movement that stabilizes image motion within
a targeted region. Similar to eye movements, we intro-
duce rotational adjustments to counterbalance transla-
tional camera motion.

What are the benefits of stabilization? From an eco-
logical perspective, stabilization reduces the number of
brightness changes detected by the eye’s photorecep-
tors. As photoreceptors (“light sensors” of the human
eye) are slow and capture only a small part of the scene
briefly, fast body movements can significantly degrade
vision unless counteracted by eye movements [28]. By
doing so stabilization conveys relevant scene-specific in-
formation, such as relative distances between objects.
This paper proposes a novel method for distance esti-
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mation by local event alignment. To stabilize incoming
visual information within a specific area of the cam-
era’s sensor, we introduce rotational motion that com-
pensates for the observer’s movement. Under certain
assumptions that are discussed in this paper, the com-
pensatory rotational flow is inversely proportional to
the object’s distance. An example is shown in Fig. 1.
Intuitively speaking, the farther away an object the less
compensatory motion is needed for stabilization on the
camera sensor. Thus the amount of compensatory mo-
tion needed to stabilize an object bears strong cues for
3D object localization.

We propose a novel alignment strategy, that unlike
prior work does not aim at reconstructing the camera’s
motion. Instead, it determines the rotational veloc-
ity that leads to best event alignment across a set of
small image regions, from which the object’s relative
distances are inferred. Without computing explicit cor-
respondences between events and without knowledge
about the camera’s pose, we measure the degree to
which a set of events are jointly aligned. The quality
of the joint event alignment is assessed by calculating
pixelwise entropy, leveraging redundant information to
achieve a more effective representation [3, 4, 14].
Contributions. We propose a novel approach for
relative distance estimation through object-wise event
alignment. Our two step optimization strategy for
event alignment robustly estimates a compensatory ro-
tation that is directionally consistent but varies in ve-
locity across the image. Relative depth is then com-
puted by comparing the compensatory rotations of the
object and the reference region. Notably, our method
relies only on relative camera motion, not absolute
camera poses. The approach is supported by new state-
of-the-art results on a de facto benchmark - EVIMO2
for relative object-wise depth estimation. The ap-
proach aligns with object-centered visual representa-
tions, which are beneficial for various tasks [2, 29,35].
Code will be made publicly available.

2. Related Work
Previous work on distance estimation using event

cameras does not focus on behavioral strategies to ex-
tract information about the scene’s structure - like rela-
tive distances among objects. We review general active
perception methods (not necessarily relying on event
data) and common depth estimation approaches using
single or stereo event cameras.

Active perception. Active perception assumes the
observer to be active - “The purpose of the activity is
to manipulate the constraints underlying the observed

phenomena in order to improve the quality of the per-
ceptual results” [1]. The constraints of fixation and
tracking have been studied in [12,13]. Following similar
principles, Burner et al. [8], for the first time, provides
a closed-form solution for the estimation of the distance
from a sliding-window of time-to-contact and inertial
measurements (IMU). Their closed-form solution relies
on non-constant acceleration during the time interval
of computation. In contrast, our approach computes
nearly instantaneous depth estimates over small time
intervals, requiring only translational motion and no
acceleration constraints. Battaje et al. [5] address dis-
tance estimation with RGB cameras by pre-selecting
a region and introducing an action to enhance visual
processing. Similarly, we exploit the dynamic nature
of event-based vision sensors for distance estimation
through active vision.

Event based distance estimation Distance esti-
mation has been a long-standing challenge for event
cameras. We review distance estimation methods us-
ing Multi-View Stereo, Deep Learning, Neuromorphic
Processing, and Active Vision.

Multi-View Stereo. Depth estimation with stereo
event cameras relies on the epipolar constraint and the
assumption that events occur simultaneously on both
cameras. Zhou et al. propose an event based SLAM ap-
proach [41]. In particular, they reformulate temporal
coincidence of events using the compact representation
of space-time provided by time surfaces [27]. Inspired
by [34], Ghosh et al. [19] circumvent the challenge of
accurate event association by leveraging the sparsity
of events and by exploiting the continuity of camera
viewpoints. Using Space Sweeping, it builds ray den-
sity Disparity Space Images (DSIs) from each camera
data and fuses them into one DSI [10]. A small set
of work exploits Multi-View with only a single event
camera. Here, event correspondences across time are
established via alignment [16, 17] and under the lim-
iting assumptions that the camera pose is known and
the scene is static. Rebecq et al. [34] similarly re-
lies on knowledge about the camera’s absolute motion
trajectory. A depth value is associated to each event
resulting in a semi-dense depth map.

Deep Learning. Hidalgo-Carrio et al. [23] introduced
the first supervised method to learn dense monocu-
lar depth from event data, followed by various self-
supervised methods for dense depth estimation. Zhu et
al. [43] exploit cross-modal consistency between frames
and aligned events, while Zhu et al. [42] predict egomo-
tion and depth by minimizing motion blur when events
are projected onto the image plane. The supervision
signal in the latter comes from motion compensation
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Method Algorithmic Monocular Input Data Absolute Relative Data Structure of Freq.
Approach Camera Cam. Pose Cam. Motion Estimated Depth [in Hz]

E2Depth [23] Deep Learning ✓ Events ✗ ✗ Pixel-wise Depth 20
EMVS [34] Multi-View Stereo ✓ Events ✓ ✓ Event-wise Depth 1
Ours Active Vision ✓ Events ✗ ✓ Object-wise Depth 20

Table 1. Literature review on event-based depth estimation approaches. We characterize each algorithm that was used for
our evaluation according to its properties: algorithmic approach, monocular vs. stereo camera setup, input data, required
additional sensor information such as absolute camera pose or relative camera motion, the format of the algorithm’s depth
estimates as well as its frequency it was evaluated on.

through event alignment. A different line of work by
Rudnev et al. [36] and Hwang et al. [25] investigates
how NeRFs could be reconstructed from event data.

3. Distance Estimation via Region-wise
Event Alignment

We present our approach for distance estimation
from event data. We start with revising key as-
pects of the probabilistic model “the Spatio-Temporal
Poisson Point Process for event alignment” from Gu
et al. [21] and propose small - yet effective changes
that increase robustness with respect to variations in
speed and scene structure. This framework is ap-
plied to object-wise event alignment, detailed in Sec-
tion 3.1.1. Different from classical event alignment ap-
proaches [15, 17, 33, 38], our goal is not to recover the
camera’s motion. Instead, we introduce a novel com-
pensatory rotational motion that stabilizes the motion
within a region of interest. While other approaches for
event alignment could be adopted for local alignment,
we build on [21], as this algorithm is currently best
performing and methodological consistent with ideas
introduced in this work. More specifically, events are
aligned by minimizing the pixel-wise entropy result-
ing in reduced brightness changes per pixel. This im-
plements an ecological principle that aims at reducing
perceived brightness changes on the human eye’s retina
though gaze stabilization [3, 14, 28]. In Section 3.2 we
introduce a novel formulation, that relates a rotational
velocity estimated by local event alignment to object
distance. Intuitively speaking, the smaller the rota-
tional motion is to align a specific object-region, the
farther the object-region away (see Figure 1). This
approach for the first time allows distance estimation,
without computing explicit event-to-event correspon-
dences or knowledge of the camera’s absolute pose.

3.1. Event Alignment

Event alignment describes the process of finding a
transformation Tω that maps events triggered by the
same world point to the same pixel location of the cam-

era sensor. We define

O = [o1, o2, . . . , oN ], (1)

to be a set of N = |O| events, where each element
oi = (ox

i , ot
i, op

i ) comprises a pixel location ox
i , times-

tamp ot
i at which the event occurs and a polarity op

determining the direction in brightness change. Most
commonly, event alignment is formulated as an opti-
mization problem over rotational camera motion pa-
rameters ω and translational parameters v,

ω̂, v̂ = arg max
ω,v

p
(
Tω,v(O)

)
. (2)

While there have been proposed a number of different
loss functions for solving this optimization problem, we
implement the loss by Gu et al. In their method, Gu et
al [21]. model an aligned event stream at a particular
pixel location as a Poisson Point Process. Based on
this model, a maximum likelihood approach is devel-
oped to register events that are initially unaligned. We
find the transformations T of the observed events O
that make them as likely as possible under the model:

p
(
Tω,v(O)

)
=

∏
x∈X

N B
(
kx(Tω,v)

)
. (3)

Here, kx denotes the number of events occurring at
a location x and is modeled with a negative binomial
distribution N B(·)1. In Gu et al., O is defined as a
set of N discrete events. In contrast, we redefine O as
a set of events occurring within a fixed time interval
∆T . This modification aligns with the classical Pois-
son Point Process definition, better capturing event dy-
namics. Its effectiveness is demonstrated in Sec. 4.

3.1.1 Object-wise Event Alignment

Events arise by the relative motion of the camera and
the scene. The events recorded at a single sensor loca-

1The negative binomial distribution arises as a mixture of
Poisson distributions where the Poisson rate parameter itself fol-
lows a gamma distribution. In other words, we can view the
negative binomial as a Poisson(λ) distribution, where λ is itself
a random variable, distributed as a gamma distribution.
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Figure 2. Overview of our algorithm. We estimate relative object-wise-distance from active event alignment. Given a set of
events, we process alignment in a object-wise fashion. Object regions maybe determined by a provided object segmentation
mask or a default segmentation mask (e.g honeycomb) without semantic information. The obtained relation between
different angular velocities within the image plane determine the respective object-wise relative depth.

tion seldom correspond to the same world point. Clas-
sical event alignment algorithms aim to register events
triggered by the same world point through estimating
the camera’s motion. Opposed to classical event align-
ment, we do not aim at recovering the camera’s motion
through event alignment, instead we wish to find a ro-
tational velocity w that locally leads to accurate event
alignment. Although the estimated rotational veloc-
ity does not relate to the true camera motion, that
triggered the observed events, we will show in Sec. 3.2
that this rotation carries valuable information about
relative distances across different image regions.

The rotational velocity w is estimated via region-
wise event alignment, that is:

ω̂ = arg max
ω

p
(
Tω(OS)

)
, (4)

S denotes the local image region. This optimization
leverages the concept that, for rigid camera motion and
fronto-parallel planar scene regions, a camera transla-
tion2 can be well approximated by a camera rotation,
and vice versa [30]. Limiting the transformation T
to rotation only motions, comes with the benefit of a
significantly reduced amount of parameters to be esti-
mated, on the other hand if the optimization is confined
to a small image region only, this may lead in unsta-
ble rotation estimates, that do not serve as a surrogate
of the true camera translation. We propose a strat-
egy to perform object-wise alignment in two steps: (1)
we determine a global velocity direction that performs
alignment across all objects present in the scene and
(2) we determine the velocity’s magnitude that aligns
the events of a specific object. This strategy takes the
best of both worlds - it determines the global velocity
direction across a large image region while assessing

2In case of additional camera rotation, IMU information is
used to remove the rotational motion part.

velocity’s magnitude in specific, potentially smaller re-
gions, thereby preserving robust rotation estimates.

Estimation of the global velocity’s direction.
According to physical rules of perspective geometry, a
local motion direction is independent upon the scene
depth in case of pure camera translation [6]. Thus
for planar scenes the motion direction can be well ap-
proximated via a rotational camera motion [30]. In
scenes with significant depth variations, objects that
are closer tend to exhibit larger motion magnitudes,
while those that are farther away show smaller motion
magnitudes on the image plane. One option to deal
with unknown depth is to estimate pixel-wise depth
values through maximum likelihood estimation along-
side ω. This would drastically increase the number of
parameters to be estimated. Instead, we adopt a par-
tially Bayesian approach by maximizing the marginal
likelihood of kx under the velocity’s magnitude m. The
angular velocity is expressed in polar form ω = (m, ϕ).
Consequently, the direction ϕ can be determined by
integrating over the unknown magnitude m:

p
(
Tω(Ox)

)
=

∫
m

p(kx(m, ϕ)|m) · p(m) dm (5)

=
∫

m

N Br,q

(
kx(m, ϕ)

)
· U[0,mmax] dm (6)

=
∫

m

N Br,q

(
kx(m, ϕ)

)
dm (7)

An estimate of the velocity’s direction ϕ is obtained by
maximizing the probability of aligned events:

ϕ̂ = arg max
ϕ

p
(
Tω(O)

)
= arg max

ϕ

∏
x∈X

p
(
Tω(Ox)

)
.

(8)
The maximization is applied across all pixel locations
x ∈ X on the image plane. Afterwards, depth dis-
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continuities are handled by calculating the velocity’s
magnitude (speed) for each object.

Estimation of the velocity’s magnitude. Given
the estimate of the velocity’s direction ϕ̂, the object’s
magnitude is estimated in a similar fashion:

m̂ = arg max
m

p
(
Tω(OS)

)
. (9)

The maximization is applied across all pixel locations
x ∈ S on within an object region. The advantage of
sequential alignment is two-fold. First, obtaining an
estimate of the velocity’s direction across the image in-
troduces an additional geometric constraint. Second,
this approach significantly reduces the number of pa-
rameters that need to be optimized.

3.2. Relative Distance Estimation

The estimated rotational velocity ω counteracts the
camera’s translational movement, stabilizing the im-
age within a specific region S. If the object region is
distant, stabilization requires minimal compensatory
rotational movement. In contrast, if the object region
is nearby, greater compensatory rotation is needed for
accurate alignment. Mathematically, we can express
this stabilization in terms of optical flow3. To formal-
ize this, we make the following model assumptions:

i) Fronto-parallel planar object regions
ii) Zero translational motion along depth axis

1
z

vt
i),ii)= −vr (10)

z = −v+
r vt. (11)

Numbers over equality signs give the assumption that
is invoked. Object-wise alignment results in zero local
flow. More specifically, the rotational flow vr com-
pensates the translational flow vt leading to zero local
flow, which is indicated by Eq (10). This concept en-
ables a behavior-driven approach to estimating relative
distances from event camera data. By relating the two
rotational flow vectors, the relative distance d between
two objects can be inferred:

d = z

zref
ii)= vref

r v+
r , (12)

where v+
r is the pseudo-inverse of the estimated rota-

tional flow vector, and vref
r is the rotational flow vec-

tor estimated for the reference object. The reference
object is defined as the largest region in the scene. As-
sumption ii) renders the translational flow invariant to
the object’s position. Consequently, the division can
be simplified by canceling out translational flow.

3Optical flow v represents the camera’s projected motion onto
the image plane. Given the camera’s motion, Horn et al. [24] pro-
vide equations to determine the flow at a specific pixel location.
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Figure 3. Qualitative results of object-wise relative
depth estimation over time. Top: The line plot shows
the relative depth estimation of the object with ID 24
(highlighted with a green circle) of the event sequence
scene 03 00 000000.

3.2.1 Recursive Bayesian Filtering

To maintain temporal consistency despite varying cam-
era motions and occlusions, we employ Bayesian filter-
ing. The recursive nature of Bayes filters enables con-
tinuous processing of measurements as they arrive [40].
A belief over the relative distance is propagated over
time in two steps: 1) prediction and 2) update using
new observation ot.

p
(
dt|ot−1

)
=

∫
p
(
dt|dt−1

)
p
(
dt−1|ot−1

)
ddt−1 (13)

p
(
dt|ot

)
= ηp

(
ot|dt

)
p
(
dt|ot−1

)
(14)

This notation highlights the recursive nature: the pos-
terior from the previous step p(dt−1|ot−1) is used to
predict the current posterior at time t, which is then
updated in Eq. (14) using the latest observation. The
estimated relative distance is treated as a Gaussian dis-
tribution, and a 1D Kalman filter is used to track the
distance and its variance over time. The variance is
modeled as σ2 = 1

|vr|2 , depending on the magnitude of
the compensatory rotational motion vr. Further im-
plementation details are in suppl. material.

4. Experiments
We present results for monocular distance estima-

tion on the EVIMO2 [7], and improvements in cam-
era velocity estimation on the DAVIS 240C [31]. We
describe the datasets, experimental setup, evaluation
metrics, and discuss our findings on event-based dis-
tance estimation via object-wise alignment.
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EVIMO2 [7] is a widely used dataset for evaluating
event-based algorithms on depth estimation and object
segmentation. The sequences feature the objects on a
board, under different lighting conditions. The record-
ing setup of EVIMO2 includes three VGA-resolution
event-based cameras, namely, a Samsung DVS Gen3 in
the middle, two Prophesee cameras on the left and right
side. Additionally, a Flea3 frame-based RGB camera
is also mounted. In this work, we use the data from
the Samsung DVS Gen3 event camera and from the
IMU embedded in the Prophesee camera. EVIMO2
has various types of sequences for different event-based
vision tasks under different conditions. In our exper-
iments, we adopt the ones for structure from motion,
where the GT camera poses (not used), object segmen-
tation and scene depth are available. To showcase event
cameras’ capabilities in varying lighting, we use ten se-
quences recorded in normal light and two out of five
under low-light conditions, totaling 147s and 82s, re-
spectively. Only two low-light sequences include IMU
sensor data and object masks.

The DAVIS 240C dataset [32] includes four 60-
second sequences that showcase rotational motion:
shapes, poster, boxes, and dynamic. Initially, the cam-
era rotates around each axis at increasing speeds, fol-
lowed by free rotation in 3 degrees of freedom (3-DOF).
The shapes, poster, boxes sequence capture static in-
door scenes with varying levels of texture complexity,
generating approximately 20 to 200 million events. The
dynamic sequence, features a dynamic scene and pro-
duces around 70 million events.

Evaluation metrics. Following the commonly
used evaluation protocols of event-based and frame-
based depth estimation in literature [20, 26, 37], four
error metrics are employed: RMSE (linear), RMSE
(log), squared relative distance (SRD) and absolute rel-
ative distance. The explicit mathematical formulation
of each utilized measurement can be found in [11]. Ac-
curacy is measured using three thresholds that deter-
mine the percentage of estimates with relative accuracy
δ below each threshold. If δ = 1, the estimate matches
the ground truth perfectly. The higher the threshold
the more values fall into the bin of relative accuracy
lower than the provided threshold.

Implementation details. We use a fixed ∆T of
0.05 seconds (20Hz) for all our experiments. All model
parameters required for alignment remain consistent
with those from Gu et al. [21], but we reduce the max-
imum iterations from 250 to 50 to speed up event align-
ment. The process noise’s standard deviation σ of the
Kalman filter is set to 0.1.

(a) (b) (c) (d) (e)

Figure 4. Qualitative results of depth estimation on the
EVIMO2 dataset, with framewise results on four exemplary
video sequences: (a) Events and segmentation mask. (b)
Ground truth. (c) E2Depth [23]. (d) EMVS [34]. (e) Ours.

4.1. Results

We evaluate our approach using the publicly avail-
able EVIMO2 dataset. We present the results and an
ablation study to demonstrate our method for distance
estimation from event camera data. Our approach uti-
lizes event data, rotational velocity from the IMU to
compensate for camera rotation, and object segmenta-
tion masks to identify regions of local alignment. Abla-
tion studies show that while object segmentation masks
can be beneficial, the proposed algorithm effectively es-
timates scene depth even with arbitrary masks.
Object-wise distance estimation. All monocular
depth estimation methods, including ours, rely solely
on visual information from events without using frame-
based data. Unlike traditional multi-view stereo meth-
ods requiring known camera viewpoints, EMVS [34] es-
timates semi-dense 3D structures from event cameras
using known motion trajectories.Traditional methods
require absolute positional information, such as trajec-
tories or camera poses. In contrast, our approach only
needs relative camera motion, specifically angular ve-
locity, which is readily available from on-board IMU
sensors, unlike absolute camera pose that needs exter-
nal systems like Motion Capture. Hidalgo-Carrió et. al
use only events to learn a dense depth map. Unlike ear-
lier learning-based methods, they propose a recurrent
network architecture to maintain temporal consistency.

Qualitative results for object-wise relative depth es-
timation are presented in Fig. 3. We present relative
depth estimation results at two distinct timestamps:
11.5s and 13.5s, respectively. The GT relative depth is
shown and compared to three different approaches that

6



Error ↓ Accuracy ↑

Method Freq. [Hz] RMSE (linear) RMSE (log) ARD SRD δ < 1.25 [%] δ < 1.252 [%] δ < 1.253 [%]

sfm E2Depth [23] 20 1.042 0.667 0.428 0.606 35.791 54.284 71.035
(10 Seq.) EMVS [34] 1 0.871 0.621 0.401 0.496 40.775 59.460 70.369

Ours 20 0.725 0.448 0.273 0.293 56.308 80.786 90.540
sfm E2Depth [23] 20 1.034 0.567 0.414 0.609 47.276 64.790 79.701
(low light) EMVS [34] 1 0.928 0.630 0.404 0.424 39.860 61.111 71.018
(2 Seq.) Ours 20 0.883 0.930 0.414 0.420 41.077 56.728 68.168

Table 2. Relative object-wise depth estimation of static scenes with multiple objects. Accuracy comparison on event
sequences from EVIMO2 [7] - sfm and sfm (low light).

perform monocular depth estimation from an event
stream: E2Depth [23], EMVS [34] and Ours. While
each method yields depth estimates in various formats
- dense depth, sparse depth, and object-wise depth -
we unify results into a common format for consistent
evaluation. In addition, more comparisons are shown
in Fig. 4, where our method (column d) reports the
closest results to GT (column e) while E2depth and
EMVS deviate a lot (column b-c).

Table 2 shows the quantitative comparison of accu-
racy on all test sequences of the structure-from-motion
(sfm) and the structure-from-motion split in low light
conditions (sfm low light) of EVIMO2. On smf, our
approach improves RMSE (linear) by over 16%. On
sfm low light, it achieves a 5% improvement. In terms
of RMSE (log), E2Depth outperforms all other meth-
ods. The performance gain on the smf split is less pro-
nounced in low light conditions. We identified two rea-
sons for this lower performance. First, low light condi-
tions cause significantly higher event sparsity. Second,
the ratio of hot pixels to informative events deterio-
rates. Hot pixels are sensor failures that consistently
“fire” regardless of camera or scene motion. Compared
to EMVS and E2Depth, our approach, which relies on
local event alignment, can be affected by pixel failures
in the dynamic vision sensor. Although hot pixels, be-
ing locally stable, can hinder event alignment, our re-
markable 16% performance gain highlights the efficacy
of combining dynamic vision systems like event cam-
eras with active vision approaches.

Object-wise event alignment utilises a modified
version of the original Spatio-Temporal Poisson Point
Process for distance estimation. While the original ver-
sion performs event alignment given a fixed number of
events - typically 30K events [16, 16, 21, 33], we per-
form event alignment of all events within a fixed time
interval ∆T . Table 3 shows, that defining the Pois-
son Point Process for a fixed time interval not only
improves performance, also it is consistent with the
original definition of the Poisson Point Process [39].

4.2. Ablation Study

In Sec. 4.1 we discussed our results on object-wise
relative distance estimation. These results are based on
two key assumptions: (1) the presence of fronto-parallel
planar object regions, and (2) zero translational motion
along the depth axis (refer to Sec. 3.2). Here we ask,
How sensitive is our algorithm to the quality of prede-
fined object regions? and How does z-motion affect the
accuracy of relative depth estimates? To address these
questions, we first present qualitative results of rela-
tive depth estimation using segmentation masks that
are entirely object-independent. Then, we examine our
algorithm’s performance, with respect to its sensitivity
to camera motion, with a particular focus on z-motion.
Object regions. Fig. 5 qualitatively shows region-
wise depth estimation results of our algorithm. To
avoid relying on informative object masks, that may

Method ewx ewy ewz σew RMS RMS%

bo
xe

s

CMax [16] 7.38 6.66 6.03 9.04 9.08 0.66
AEMin [33] 6.75 5.19 5.78 7.77 7.81 0.56
EMin [33] 6.55 4.40 5.00 7.00 7.06 0.51
Ours (Ne = 30K) 6.72 3.93 4.55 6.64 6.73 0.49
Ours (∆T = 0.015) 5.68 3.81 3.92 6.32 6.34 0.46

po
st

er

CMax [16] 13.45 9.87 5.56 13.39 13.45 0.74
AEMin [33] 12.57 7.89 5.63 12.35 12.36 0.68
EMin [33] 11.83 7.31 4.37 10.85 10.86 0.60
Ours (Ne = 30K) 11.78 6.33 3.67 10.30 10.37 0.57
Ours (∆T = 0.015) 9.37 5.77 3.49 9.15 9.21 0.51

dy
na

m
ic

CMax [16] 4.93 4.82 4.95 7.11 7.13 0.71
AEMin [33] 5.02 3.88 4.55 6.16 6.19 0.62
EMin [33] 4.78 3.72 3.73 5.33 5.39 0.54
Ours (Ne = 30K) 4.42 3.61 3.49 5.15 5.19 0.52
Ours (∆T = 0.015) 4.29 3.60 3.97 5.27 5.33 0.53

sh
ap

es

CMax [16] 31.19 26.83 38.98 55.86 55.87 3.94
AEMin [33] 22.22 18.78 35.41 55.43 55.44 3.91
EMin [33] 21.22 15.87 25.57 42.22 42.22 2.98
Ours (Ne = 30K) 20.73 13.95 17.69 25.88 25.89 1.83
Ours (∆T = 0.015) 10.32 5.61 4.68 10.15 10.16 0.69

Table 3. Comparison of angular velocity accuracy on the
rotation sequences from DAVIS 240C [31].
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(a) (b) (c) (d) (e)

Figure 5. Qualitative evaluation of region-wise distance es-
timation w/o object masks. We use a honeycomb grid to
define pixel regions for depth estimation. Relative distances
and confidence maps are shown in grayscale (white = low
confidence, black = high confidence). (a) Events and seg-
mentation masks. (b) Original ground truth. (c) Ground
truth using honeycomb regions. (d) Our method using hon-
eycomb regions. (e) ±3σ confidence interval.

provide strong priors in terms of depth consistency
within a particular region, we employed a honeycomb
grid to define pixel regions independent of any object
or scene information. We show that even without prop-
erly defined image regions we can determine the rela-
tive depth reasonably well. To the best of our knowl-
edge our algorithm for the first time models the esti-
mate’s confidence plus tracks the confidence over time.
The ±3σ confidence interval is shown in Fig. 5e. It
nicely captures deviating estimates from the GT. The
resolution of the acquired depth estimates is undoubt-
edly influenced by the grid size of the masks. How-
ever, prior work emphasizes that region-wise estimates
are crucial for distance estimation, while precise object
boundaries are not essential [2, 29].
Zero translational motion along depth axis. The
assumption of zero linear velocity along the z-axis (no
forward/backward camera motion) allows the approx-
imation of a camera translation with a rotation. How-
ever, the EVIMO2 dataset includes event sequences
with arbitrary camera movement, meaning our as-
sumption of W = 0 holds only in very few cases. Fig. 6
evaluates distance estimation via local alignment de-
pendent upon the amount of linear velocity along the
z-axis. As expected, error decreases with lower z-axis
velocity, aligning better with our assumption.

Failure case analysis. Relative distance is esti-
mated between two static objects. If one object is
moving, the distance cannot be accurately inferred.
Interestingly, relative depth estimates between neigh-
boring static objects remain unaffected. This suggests
potential new research directions, such as detecting

Figure 6. Evaluation of distance estimates based on the
camera’s z-motion: low, normal, and high speed.

object motion by analyzing discontinuities in relative
distances between multiple objects. Specifically, given
three objects, we can compute their relative distances.
If these distances remain constant, none of the object is
moving. Conversely, if the relative distances change, at
least one of the objects is in motion. Fig. 7 shows that,
in the presence of object motion, the relative depth es-
timates of neighboring static objects remain unaffected,
while the estimated relative distance of the moving ob-
ject diverges from the ground truth.

(a) RGB frame bla
bla

(b) Estimated rela-
tive depth dt

(c) Ground truth
relative depth dt

Figure 7. Failure case: Relative distance estimation fails
for moving objects, as illustrated by the flying drone.

5. Conclusion
Inspired by visual ecology, we propose the first

event-based approach for relative distance estimation
that combines dynamic vision sensors with a behavioral
strategy to infer relative distances between objects.
Firstly, we introduce a novel optimization pipeline
that estimates a rotational motion aimed at achieving
object-wise event alignment. This rotation does not re-
cover the actual camera motion but is rather a virtual
adjustment designed to align events locally. Secondly,
object-wise relative distance is determined by compar-
ing the corresponding rotational flow vectors.

Compared to frame-based cameras event cameras
capture visual information efficiently by reducing re-
dundant data. However, processing methods are still
developing. Local alignment, which computes compen-
satory rotational movements to extract visual data like
depth, bear a high potential for novel, efficient vision
algorithms. Our approach reduces computational load
by using behavioral strategies, such as gaze stabiliza-
tion, to streamline sensory input processing.
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