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Yoneda A∞-algebras and lattices of vector
spaces

Estanislao Herscovich ∗

Abstract

Generalizing some clever computations for monomial algebras by J. Chuang
and A. King in an unpublished article, we provide a sufficient criterion that
allows in some cases to explicitly compute the A∞-algebra structure of the
Yoneda algebra Ext•A(K,K) of a nonnegatively graded connected algebra A =
TV/I in the case where theA∞-algebra structure of the Yoneda algebra is given
as the dual of (signed) inclusions appearing in the lattice of submodules of TV
representing the Tor groups TorAp (K,K) for p ∈ N. This includes the case of
monomial algebras A considered by Chuang and King, but also generalized
Koszul algebras, and other nice algebras. The previous nice description of the
A∞-(co)algebra structure is however far from universal. Indeed, we also give
an example of a nonnegatively graded connected algebra A where the A∞-
algebra structure of the Yoneda algebra can never be obtained by dualizing the
(signed) inclusions of the Tor groups.

Mathematics subject classification 2020: 16E45, 18G15
Keywords: A∞-algebras, Yoneda algebras

1 Introduction
It is well known that, given an augmented K-algebra A, where K is a finite prod-
uct of copies of a field k, the Yoneda algebra Ext•A(K,K) has a unique (up to non-
canonical isomorphism) A∞-algebra structure. Explicit computations are typically
performed by using Homological Perturbation Theory (HPT), which is based on
some homotopical information on a projective resolution of the trivial A-module
K and typically requires a good deal of calculations. Under some further assump-
tions on the resolution, one can describe the required homotopical information by
combinatorial data, which improves the computational efficiency, under what is
usually known as Algebraic Discrete Morse Theory (ADMT) (see [17]). A draw-
back of this point of view is that in some cases the resolution one is dealing with
does not naturally verify the extra assumptions of ADMT, and in many situations
the level of computations is still rather high.

The goal of this article is to provide a general –albeit not universal– approach
to the determination of theA∞-algebra on Ext•A(K,K) for a nonnegatively graded
connected algebra A = TV/I based on the lattice structure of TorAp (K,K) when
the latter are realized by subspaces of the tensor algebra TV . More precisely, we
give a sufficient criterion that allows in some cases to explicitly compute the A∞-
algebra structure of the Yoneda algebra Ext•A(K,K), where the latter is given by
the dual of the (signed) inclusions appearing in the lattice of submodules of TV
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representing the Tor groups TorAp (K,K) for p ∈ N (see Theorem 3.13). This can
be considered as the simplest possible case of A∞-algebra structure on the Yoneda
algebra Ext•A(K,K).

Our motivation comes from the unpublished article [5], where the authors
computed the A∞-algebra structure of the Yoneda algebra Ext•A(K,K) for any
monomial K-algebra A by cleverly studying the internal structure of the spaces
involved, but also from the characterization of minimal projective resolutions in
[4]. The aim of this work is to show that the results in that article can be extended
to other families of nonnegatively graded connected algebras. Indeed, this is the
case for N -Koszul algebras A, for which we immediately reobtain the A∞-algebra
structure of Ext•A(K,K) computed in [9]. We also present an example for the case
of an algebra that is neither monomial nor generalized Koszul. The previous nice
description of the A∞-(co)algebra structure of Ext•A(K,K) (resp., TorA• (K,K)) is
however far from universal. Indeed, we provide an example of a nonnegatively
graded connected algebra A where the A∞-algebra structure of the Yoneda alge-
bra can never be obtained by dualizing the (signed) inclusions of the Tor groups.

I would like to express my deep gratitude to Professor Chuang for recently
sharing with me [5].

2 Preliminaries
2.1 Notation
We will denote by N0 (resp., N) the set of nonnegative (resp., positive) integers
{0, 1, 2, . . . } (resp., {1, 2, . . . }), and given n′, n′′ ∈ N0 we denote by Jn′, n′′K the set
{n ∈ N0 : n′ ≤ n ≤ n′′}. If p̄ = (p1, . . . , pi) ∈ Ni0 for i ∈ N, denote |p̄| = p1 + · · ·+ pi.
Given p̄ = (p1, . . . , pi) ∈ Ni for i ∈ N, let o(p̄) = |p̄| + 2 − i. It is clear that
o(p̄) ≥ 2. Given integers 1 ≤ j < k ≤ i, let sj,k : Ni0 → Nk−j+1

0 be the map sending
p̄ = (p1, . . . , pi) ∈ Ni0 to (pj , . . . , pk).

2.2 Graded modules
Let k be a field and K be a k-algebra such that Ke = K ⊗k K

op is semisimple.
By graded module we mean a left module V over Ke endowed with a direct sum
decomposition V = ⊕n∈ZVn of left Ke-modules. Moreover, a homogeneous mor-
phism of graded modules f : V → W of degree d ∈ Z is a morphism of left
Ke-modules such that f(Vn) ⊆ Wn+d for all n ∈ Z. We will denote by Ke Mod
the category of modules with homogeneous morphisms of degree zero, which is
endowed with a natural tensor product ⊗K having the grading whose n-th homo-
geneous component is

(V ⊗K W )n =
⊕
m∈Z

Vm ⊗K Wn−m,

for all n ∈ Z. We will denote the tensor product simply by⊗. The category Ke Mod
endowed with the previous tensor product and the unit given by K concentrated
in degree zero is a symmetric monoidal category.

2.3 Graded submodules of the tensor algebra
From now on we assume that K is a finite product of copies of k, and we fix
a complete set {e1, . . . , e`} of orthogonal idempotents of K. Let V be a posi-
tively graded module. Recall that the tensor algebra TV is the graded module
⊕n∈N0

V ⊗n, with the product given by concatenation and the unit K = V ⊗0 → TV
given by the canonical inclusion. It is clear that TV is a graded algebra with the
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induced grading by that of V . To reduce the notation we will denote the concate-
nation (or tensor) product of TV simply by juxtaposition or a dot.

Let U ⊆ TV be a graded submodule. We recall that U is left (right) tensor-
intersection faithful if (U.W1)∩ (U.W2) = U.(W1 ∩W2) (resp., (W1.U)∩ (W2.U) =
(W1 ∩ W2).U ) for all graded submodules W1,W2 ⊆ T (V ). Moreover, U is said
to be tensor-intersection faithful if it is left and right tensor-intersection faithful.
It is immediate to see that, if {Wi : i ∈ I} is an independent family of graded
submodules of TV (i.e. given elements wi1 ∈ Wi1 , . . . , win ∈ Win , with ij 6= ij′ if
j 6= j′, such that

wi1 + · · ·+ win = 0,

then wi1 = · · · = win = 0) and U ⊆ TV is left (resp., right) tensor-intersection
faithful, then {U.W1, . . . , U.Wn} (resp., {W1.U, . . . ,Wn.U}) is also an independent
family (see [10], Cor. 3.8).

The following simple characterization of tensor-intersection faithfulness was
proved in [12], Prop. 3.3 (see also [10], Prop. 3.2.). We recall first that, given two
families {ui : i ∈ I} and {wi : i ∈ I} of elements of TV , we say that {ui : i ∈ I}
is left (resp., right) composable with respect to {wi : i ∈ I} if, for all i ∈ I and for
all idempotents e ∈ K, ui.e 6= 0 (resp., e.ui 6= 0) holds whenever e.wi 6= 0 (resp.,
wi.e 6= 0).

Proposition 2.1. Let U ⊆ TV be a graded submodule. Then, the following conditions are
equivalent:

(i) U is left (resp., right) tensor-intersection faithful;

(ii) U ∩ (U.(TV )>0) = 0 (resp., U ∩ (TV )>0.U) = 0);

(iii) given a finite set of indices I and a linearly independent set {ui : i ∈ I} ⊆ U (for the
underlying vector space structure of U over k) that is left (resp., right) composable
with respect to a collection of arbitrary wi ∈ TV for i ∈ I , if

∑
i∈I ui ⊗ wi (resp.,∑

i∈I wi ⊗ ui) vanishes, then wi = 0 for all i ∈ I .

As noted in [10], Cor. 3.7, the implication (ii)⇒ (iii) gives the following result.

Corollary 2.2. Let U ⊆ TV be left (resp., right) tensor-intersection faithful. If {Ui}i∈I
is an arbitrary family of independent graded submodules of U , then the family of graded
submodules of the tensor algebra given by {Ui.(TV )}i∈I (resp., {(TV ).Ui}i∈I ) is also
independent.

2.4 Basics on graded algebras
A nonnegatively graded connected algebra over K is a unital associative algebra
(A,µA, ηA) in the monoidal category Ke Mod whose underlying graded module
A = ⊕n∈N0

An is concentrated in nonnegative degrees and A0 = K. The grading of
A and of all the graded modules considered in this subsection is called the Adams
grading. We remark that when considering the Adams grading, the Koszul sign
rule is trivial, i.e. all signs are +1. We call µA : A⊗A→ A the product and ηA : K →
A the unit. As usual, we will denote the nonnegatively graded connected algebra
simply by A and the product of elements of A simply by a dot or juxtaposition.

If A is a nonnegatively graded connected algebra, set A>0 = ⊕n∈NAn. Then,
the graded vector spaceA>0/(A>0 ·A>0) is called the space of generators ofA. Let
s̄ : A>0/(A>0 ·A>0)→ A>0 be a (homogeneous) section of the canonical projection
A>0 → A>0/(A>0 · A>0) and V its image. It is easy to see that the space of gener-
ators is concentrated in positive degrees, i.e. V = ⊕n∈NVn. The inclusion V ⊆ A>0

induces a surjective homogeneous morphism of degree zero π : TV → A and the
kernel I = Ker(π) is included in (TV )>0 · (TV )>0, where (TV )>0 = ⊕n∈NV ⊗n. We
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will assume from now on that the space of generators V = ⊕n∈NVn is locally finite
dimensional over k, i.e. for every n ∈ N the underlying vector space Vn has finite
dimension over k.

The graded module I/((TV )>0 · I + I · (TV )>0) is called the space of relations
of A. Let s̃ : I/((TV )>0 · I + I · (TV )>0) → I be a (homogeneous) section of the
canonical projection I → I/((TV )>0 · I + I · (TV )>0) and R its image. Then, it is
easy to see that I is the ideal generated by R, so TV/〈R〉 ' A.

2.5 Tor and Ext groups of graded algebras
Assume that A = TV/I is a nonnegatively graded connected algebra, where V ⊆
A>0 and I ⊆ (TV )>0 · (TV )>0 are the graded modules introduced in the previ-
ous subsection. Then, K = A/A>0 is a graded A-bimodule and we can consider
TorA• (K,K) as well as Ext•A(K,K), where K is regarded either as a left or right
A-module. We note that for either choice of structure of A-module on K, both
Ext groups coincide, and they are given as the dual of TorA• (K,K), either as a left
K-module or a right K-module (see [13], Prop. 2.13).

Given (q, δ) ∈ N0 × {0, 1} such that (q, δ) 6= (0, 0), we consider the graded
submodules of (TV )>0 given by

Y2q+δ =
(
(TV )δ>0 · Iq

)
∩
(
Iq · (TV )δ>0

)
∩
(
(TV )1−δ

>0 · Iq−1 · (TV )1−δ
>0

)
,

X2q+δ = (TV )>0 · Iq · (TV )δ>0 + (TV )δ>0 · Iq · (TV )>0 + Iq+1,
(2.1)

where (TV )0
>0 = K and (TV )1

>0 = (TV )>0. Note that

Y2q+1 =
(
(TV )>0 · Iq

)
∩
(
Iq · (TV )>0

)
and X2q = (TV )>0 · Iq + Iq · (TV )>0,

since ((TV )>0 · Iq) ∩ (Iq · (TV )>0) ⊆ Iq−1, and Iq+1 ⊆ Iq · (TV )>0, respectively.
Moreover, it is easy to see that Yp+1 ⊆ Xp ⊆ Yp for all p ∈ N. We remark that
Y1 = (TV )>0, X1 = (TV )>0 · (TV )>0, Y2 = I and X2 = (TV )>0 · I + I · (TV )>0.

Furthermore, V. Govorov proved that there are isomorphisms

TorAp (K,K) ' Yp
Xp

of (Adams) graded modules for all p ∈ N (see [6], Lemma 1, or, more generally,
[3], Thm. in Section 1). In particular, this gives the well-known isomorphisms
TorA1 (K,K) ' V and TorA2 (K,K) ' R.

Lemma 2.3. Given p ∈ N, let Tp ⊆ Yp be a graded submodule that is a complement to Xp

inside of Yp. Then,

T2q+δ ⊆
(
(TV )δ>0 · Iq

)
∩
(
Iq · (TV )δ>0

)
⊆ Iq,

and T2q+δ ∩
(
(TV )>0 · Iq · (TV )δ>0 + (TV )δ>0 · Iq · (TV )>0 + Iq+1

)
= 0,

(2.2)

for all q ∈ N0 and δ ∈ {0, 1}. In particular, Tp is a tensor-intersection faithful graded
submodule of TV , for all p ∈ N.

Proof. The identities (2.2) are an immediate consequence of (2.1). The identities
(2.2) for δ = 0 directly imply that T2q is a tensor-intersection faithful graded sub-
module of TV , for all q ∈ N. Moreover, the first inclusion in (2.2) for δ = 1 and the
definition of T2q+1 imply that(

(TV )>0 · T2q+1 + T2q+1 · (TV )>0

)
⊆ (TV )>0 · Iq · (TV )>0 ⊆ Xq+1,

which tells us that

T2q+1 ∩
(
(TV )>0 · T2q+1 + T2q+1 · (TV )>0

)
= 0,

so T2q+1 is tensor-intersection faithful for all q ∈ N0. �
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2.6 A∞-(co)algebras
The following notion was introduced by J. Stasheff in [18]. We recall that a nonuni-
taryA∞-algebra is a (cohomologically) graded moduleE = ⊕n∈ZEn together with
a collection of maps {mn}n∈N, where mn : E⊗n → E is a homogeneous morphism
of degree 2− n, satisfying the equation∑

(r,s,t)∈IN

(−1)r+stmr+1+t ◦ (id⊗rE ⊗ms ⊗ id⊗tE ) = 0, (SI(N))

for all N ∈ N, where IN = {(r, s, t) ∈ N0 ×N×N0 : r+ s+ t = N}. We will denote
by SI(N) the homogeneous morphism of degree 3 − N from E⊗N to E given by
the left hand side of (SI(N)).

We also recall that an A∞-algebra is (strictly) unitary if there exists a distin-
guished homogeneous map ηE : K → E such that ηE is a unit for the product m2,
and mn ◦ (id

⊗(i−1)
E ⊗ ηE ⊗ id

⊗(n−i)
E ) = 0 for all n ∈ N \ {2} and i ∈ J1, nK.

Analogously, a noncounitary A∞-coalgebra is a (homologically) graded mod-
ule T = ⊕n∈ZTn together with a locally finite collection of maps {∆n}n∈N, where
∆n : T → T⊗n is a homogeneous morphism of degree n−2, satisfying the equation∑

(r,s,t)∈IN

(−1)rs+t(id⊗rT ⊗∆s ⊗ id⊗tT ) ◦∆r+1+t = 0, (cSI(N))

for all N ∈ N. We recall that a family of morphisms {fn : W → Wn}n∈N is said to
be locally finite if for every w ∈ W there exists a finite set S ⊆ N such that fn(w)
vanishes if n ∈ N \ S. We will denote by cSI(N) the homogeneous morphism of
degree N − 3 from T to T⊗N given by the left hand side of (cSI(N)).

We finally recall that an A∞-coalgebra T is (strictly) counitary if there exists
a distinguished homogeneous map εT : T → K such that εT is a unit for the
coproduct ∆2, and (id

⊗(i−1)
T ⊗ εT ⊗ id

⊗(n−i)
T ) ◦ ∆n = 0 for all n ∈ N \ {2} and

i ∈ J1, nK. Recall that an A∞-(co)algebra is said to be minimal if m1 (resp., ∆1)
vanishes. For the definitions of (co)augmented A∞-(co)algebras, morphisms of
A∞-(co)algebras, the reader can check for instance [11], Section 2.1.

It is easy to see that the graded dual T# = ⊕n∈ZT ∗n of a (counitary) A∞-
coalgebra is a (unitary) A∞-algebra (see [11], Section 2.3), where we remark the
dual (−)∗ = HomK(−,K) is taken with respect to either the left or rightK-module
structure. As noted in [13], Section 2.4, the previous twoA∞-algebra structures are
strictly isomorphic.

We remark that for the (co)homological grading we apply the usual Koszul
sign rule of homological algebra, i.e. (f ⊗ g)(v ⊗ w) = (−1)|g||v|f(v)⊗ g(w), for all
homogeneous f : V → V ′, g : W → W ′, v ∈ V and w ∈ W , where |x| denotes the
(co)homological degree of a homogeneous element x.

Let T = ⊕n∈N0Tn be a nonnegatively graded module with T0 = K. Let T̄ =
⊕n∈NTn, and η : K → T and ῑ : T̄ → T be the canonical inclusions. Given a
noncounitary A∞-coalgebra structure on T̄ given by {∆̄n}n∈N, then, for n ∈ N,
define the maps ∆n : T → T⊗n as follows. If n 6= 2, let ∆n ◦ η = 0 and ∆n ◦ ῑ =
ῑ⊗n ◦ ∆̄n, and if n = 2, let ∆2 ◦ η = η⊗ η and ∆2 ◦ ῑ = ῑ⊗2 ◦ ∆̄2 + η⊗ ῑ+ ῑ⊗ η. Then,
it is easy to verify that T endowed with the maps {∆n}n∈N is an A∞-coalgebra
with counit εT : T → T0 = K given by the canonical projection. We will call such
counitary A∞-coalgebra T = ⊕n∈N0Tn standard.

Example 2.4. LetA = TV/I be a nonnegatively graded connected algebra and letB+(A)
the augmented bar construction of A, which is a coaugmented dg coalgebra (see [16], Sec-
tions 1.2.2 and 2.3.3). By the dual Merkulov construction (see [14]), the homology of
B+(A), which coincides with TorA• (K,K), has a unique (up to nonunique equivalence)

5



standardA∞-coalgebra structure. Furthermore, the graded dual of the homology ofB+(A)
is quasi-isomorphic to the augmented A∞-algebra Ext•A(K,K), where Ext•A(K,K) is
endowed with a Merkulov model coming from the cohomology of the graded dual of the
augmented bar construction of A.

2.7 A∞-(co)algebras and resolutions

We briefly recall the relation between a A∞-coalgebra structure on TorA• (K,K)
and the minimal projective resolution of the trivial graded A-module K. For more
details on the definitions and notation we refer the reader to [11], Thm. 4.2, that
we present below in our particular setting.

Let T = ⊕n∈N0
Tn be a standard A∞-coalgebra and A = ⊕n∈N0

An nonnega-
tively Adams graded connected algebra. Let εA : A → A0 = K be the canonical
projection and ηT : K = T0 → T be the canonical inclusion. A (generalized or
homotopical) twisting cochain from a T to A is a morphism τ ∈ Hom(C,A) of
cohomological degree 1 and zero Adams degree such that both εA ◦ τ and τ ◦ ηT
vanish, and ∑

i∈N
(−1)i(i+1)/2+1µ

(i)
A ◦ τ

⊗i ◦∆i = 0, (2.3)

where µ(i)
A : A⊗i → A is the iterative application of the product of A, and ∆i : T →

T⊗i is the i-th higher comultiplication of T . Given a twisting cochain τ from T to
A, define the twisted tensor productA⊗τT as the complex with nth-homogeneous
component given by the A-module A⊗τ Tn and the differential

∂τ = idA ⊗∆1 +
∑
i∈N

(−1)
i(i+1)

2 (µ
(i+1)
A ⊗ idT ) ◦ (idA ⊗ τ⊗i ⊗ idT ) ◦ (idA ⊗∆i+1).

We recall the following theorem from [13], that was originally announced by B.
Keller at the X ICRA of Toronto, Canada, in 2002 (see however [15]).

Theorem 2.5. Let T be a minimal (i.e. ∆1 = 0) standard A∞-coalgebra and A be a
nonnegatively (Adams) graded connected algebra, which we regard in zero (co)homological
degree, locally finite dimensional over k. Then, the following are equivalent:

(i) There is a quasi-isomorphism of minimal coaugmented A∞-coalgebras

T → TorA• (K,K).

(ii) There is a twisting cochain τ : T → A such that the twisted tensor product A⊗τ T
is a minimal projective resolution of the trivial graded left A-module K.

3 Main result
3.1 General setting and definitions
All along this subsection, we consider a fixed positively graded module V =
⊕n∈NVn. A family T̄ = {Tp : p ∈ N} of independent tensor-intersection faithful
graded submodules of (TV )>0 is said to be based if, for every p ∈ N, Tp is further
endowed with a direct sum decomposition Tp = ⊕α∈JpTp,α such that Tp,α 6= 0 for
all α ∈ Jp, where Jp is a set of indices. Note that the previous condition means in
particular that Jp = ∅ if Tp = 0. We will also write T̄ = ⊕p∈NTp and pp,α : T̄ → Tp,α
the canonical projection.

Let T̄ be a based family of graded submodules of (TV )>0. Given an integer
i ≥ 2, p̄ = (p1, . . . , pi) ∈ Ni and α ∈ Jo(p̄), define

Kp̄
α =

{
(α1, . . . , αi) ∈ Jp1

× · · · ×Jpi : To(p̄),α ⊆ Tp1,α1
· · ·Tpi,αi

}
,
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where we recall that o(p̄) = |p̄| + 2 − i and we denote the tensor product simply
by a dot.

Lemma 3.1. Let T̄ be a based family of graded submodules of (TV )>0. Given an integer
i ≥ 2 and p̄ = (p1, . . . , pi) ∈ Ni, then{

Tp1,α1
· · ·Tpi,αi

: (α1, . . . , αi) ∈ Jp1
× · · · ×Jpi

}
(3.1)

is an independent family of graded submodules of (TV )>0. In consequence, #(Kp̄
α) ≤ 1.

Proof. Since {Tp1,α1
: α1 ∈ Jp1

} is an independent family of graded submodules
of the tensor-intersection faithful graded submodule Tp1 , Corollary 2.2 tells us that
(3.1) is an independent family. �

Remark 3.2. Lemma 3.1 cannot hold if we further allow p̄ to vary in (3.1). For instance,
the family {V ⊗ R,R ⊗ V } obtained from a Koszul algebra TV/〈R〉 of global dimension
at least 3 is not independent in TV .

Definition 3.3. Recall the notation in Subsection 2.5. A family T̄ = {Tp : p ∈ N} of
graded submodules of (TV )>0 is said to be compatible with a homogeneous ideal I ⊆
(TV )>0 · (TV )>0 of the tensor algebra TV if Tp ⊆ Yp is a complement to Xp inside of Yp,
for all p ∈ N. We will further assume without loss of generality that T1 = V and T2 = R.

Note that, by Lemma 2.3, any family T̄ = {Tp : p ∈ N} of graded submodules of
(TV )>0 compatible with a homogeneous ideal is automatically independent and
every Tp is tensor-intersection faithful.

Example 3.4. Let s ≥ 2 be an integer and A = TV/〈R〉 an s-homogeneous algebra,
i.e. R ⊆ V ⊗s. Recall that φs(2m) = sm and φs(2m + 1) = sm + 1, for all m ∈ N0.
Define the family T̄ = {Tp : p ∈ N} of graded submodules of (TV )>0 by T1 = V and

Tp =

φs(p−2)⋂
i=0

V ⊗i ⊗R⊗ V ⊗
(
φs(p−2)−i

)
for p ≥ 2. Moreover, for p ∈ N, define Jp = {p} if Tp 6= 0. If A is generalized Koszul (or
s-Koszul if we want to emphasize the Adams degree of the relations of A), i.e. the minimal
projective resolution P• of the trivial left A-module K satisfies that Pn is (a graded free left
A-module) generated in degree φs(n), for all n ∈ N0 (see [2, 7]), then T̄ is a based family
compatible with the ideal 〈R〉 (see [2], eq. (2.5)).

Example 3.5. Let V be a module, and let B ⊆ ∪`i,j=1ei.V.ej be a basis of the underlying
vector space over k, which we assume is finite. Recall that a submodule W of (TV )>0 is
said to be monomial (with respect to B) if its underlying vector space over k has a basis
included in ∪n∈NBn. The latter basis is then unique and it is called the monomial basis
of W and their elements are called monomials. Moreover, a nonnegatively graded algebra
A = TV/I is said to be monomial if I is a monomial submodule of (TV )>0.

IfA = TV/I is a monomial algebra, then the submodules in (2.1) are clearly monomial,
since intersections and sums of monomial submodules of (TV )>0 are monomial. Hence,
given p ∈ N, there is a unique family T̄ = {Tp : p ∈ N} of monomial submodules of
(TV )>0 compatible with I . The unique monomial basis V (p−1) of Tp is called the set of
(Anick) (p− 1)-chains of A (see [1]). For p ∈ N, define Jp = V (p−1) and the decomposi-
tion

Tp =
⊕

ω∈V (p−1)

k.ω,

where k.ω has the obvious module structure. Then, T̄ is a based family compatible with I .

7



3.2 Some properties
The two lemmas in this subsection are generalizations of some results in [5].

Lemma 3.6. Let T̄ be a based family of graded submodules of (TV )>0 compatible with a
homogeneous ideal I . Let i ≥ 2 be an integer, p̄ = (p1, . . . , pi) ∈ Ni and α ∈ Jo(p̄) such
that Kp̄

α 6= ∅, where we recall that o(p̄) = |p̄|+2−i. Then, p2, . . . , pi−1 are odd. Moreover,
if we write p̄ = 2q̄ + δ̄, with q̄ = (q1, . . . , qi) ∈ Ni0 and δ̄ = (δ1, . . . , δi) ∈ {0, 1}i, then
o(p̄) has the same parity as o(δ̄) ∈ {0, 1, 2} and the latter is precisely δ1 + δi, the number
of odd entries in (p1, pi).

Proof. Note first that o(δ̄) = |δ̄| + 2 − i ≤ 2 and o(p̄) = 2|p̄| + 2 − i = 2|q̄| + o(δ̄),
so o(p̄) and o(δ̄) have the same parity. Since 0 6= To(p̄),α and Kp̄

α 6= ∅,

0 6= To(p̄),α ⊆ Tp1,α1 · · ·Tpi,αi ⊆ Iq1 · · · Iqi = I |q̄|

where ᾱ = (α1, . . . , αi) ∈ Kp̄
α and the last inclusion follows from the first line in

(2.2). Since T2|q̄|+o(δ̄) ∩ I |q̄| = 0 if o(δ̄) < 0, by the last identity in (2.2), we get
o(δ̄) ∈ {0, 1, 2}. If o(δ̄) = 2, then δ̄ = (1, . . . , 1), i.e. all the entries of p̄ are odd. It
remains to consider the cases o(δ̄) ∈ {0, 1}.

Assume that there exists j ∈ J2, i − 1K such that pj is even. We will show that
this leads to a contradiction. Since o(δ̄) ∈ {0, 1}, then either p1 or pi is odd, so
δ1 + δi ≥ 1. The first inclusion in (2.2) tells us that

0 6= T2|q̄|+o(δ̄),α ⊆ T2q1+δ1,α1
· Tp2,α2

· · ·Tpi−1,αi−1
· T2qi+δi,αi

⊆ (TV )δ1>0 · Iq1 · Iq2 · · · Iqi−1 · Iqi · (TV )δi>0 = (TV )δ1>0 · I |q̄| · (TV )δi>0,

which is absurd by the second identity of (2.2), since o(δ̄) = 1 if δ1 = δi = 1, and
o(δ̄) = 0 if {δ1, δi} = {0, 1}.

Finally, since p2, . . . , pi−1 are odd, o(δ̄) = δ1 + δi, which clearly coincides with
the number of odd entries in (p1, pi). �

Lemma 3.7. Assume the same hypotheses as in Lemma 3.6. Let 1 ≤ j < k ≤ i be integers
with k − j < i− 1 and αj,k ∈ Jo(sj,k(p̄)) such that Ksj,k(p̄)

αj,k 6= ∅. Then,

To(p̄),α ∩
(
Tp1,α1

· · ·Tpj−1,αj−1
· To(sj,k(p̄)),αj,k

· Tpk+1,αk+1
· · ·Tpi,αi

)
= 0. (3.2)

Proof. We will use the same terminology as in Lemma 3.6. Since 1 ≤ j < k ≤ i,
o(sj,k(δ̄)) ∈ {1, 2}, i.e. all the entries of sj,k(p̄) ∈ Nk−j+1 are odd or there is exactly
one entry that is even. In the latter case, either j = 1 and p1 is even, or k = i and pi
is even. Note that the first line of (2.2) tells us that

To(sj,k(p̄)) ⊆
(
(TV )

2−δj,k
>0 · I |sj,k(q̄)|+δj,k−1

)
∩
(
I |sj,k(q̄)|+δj,k−1 · (TV )

2−δj,k
>0

)
, (3.3)

where we have written δj,k = o(sj,k(δ̄)).
Suppose now that o(sj,k(δ̄)) = 2, i.e. the entries of sj,k(p̄) ∈ Nk−j+1 are odd. If

j > 1, then (3.3) implies that

Tp1,α1
· · ·Tpj−1,αj−1

· To(sj,k(p̄)),αj,k
· Tpk+1,αk+1

· · ·Tpi,αi

⊆ (TV )δ1>0 · Iq1 · · · Iqj−1 · I |sj,k(q̄)|+1 · Iqk+1 · · · Iqi ⊆ (TV )δ1>0 · I |q̄|+1,
(3.4)

where we used the first line of (2.2). The analogous argument tells us that, if k < i,
the first member of (3.4) is included in I |q̄|+1 · (TV )δi>0. In either case, the second
identity of (2.2) implies (3.2). Indeed, if o(δ̄) = 2, then (3.2) is an immediate of the
second identity of (2.2), if o(δ̄) = 1 and either j > 1 or k < i then (3.2) follows from
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the second identity of (2.2) and the fact that the left member of (3.4) is included in
I |q̄|+1, and if o(δ̄) = 0 then (3.2) follows from I |q̄|+1 ⊆ I |q̄| · (TV )>0 and the second
identity of (2.2).

Finally, assume that o(sj,k(δ)) = 1, i.e. either j = 1 and p1 is even, or k = i
and pi is even. Note that in this case o(δ̄) ∈ {0, 1}. Then, (3.3) tells us that the left
member of (3.4) is included in (TV )>0 · I |q̄| · (TV )δi>0 if j = 1, and in (TV )δ1>0 · I |q̄| ·
(TV )>0 if k = i. In either case, the second identity of (2.2) implies (3.2). Indeed, if
o(δ̄) = 1 and j > 1 (resp., k < i), then pi (resp., p1) is odd, so the left member of
(3.4) is included in (TV )>0 · I |q̄| · (TV )>0 and (3.2) follows from the second identity
of (2.2). If o(δ̄) = 0, (3.2) follows from the fact that the left member of (3.4) is
included in (TV )>0 · I |q̄| if j = 1 or I |q̄| · (TV )>0 if k = i, together with the second
identity of (2.2). �

3.3 The A∞-coalgebra structure

For the rest of the section T̄ will be a based family of graded submodules of
(TV )>0 compatible with a homogeneous ideal I .

3.3.1 Comultiplications as signed inclusions

Given an integer i ≥ 2, p̄ = (p1, . . . , pi) ∈ Ni, α ∈ Jo(p̄) and ᾱ = (α1, . . . , αi) ∈
Jp1 × · · · ×Jpi , define

∆p̄
α,ᾱ : To(p̄),α −→ Tp1,α1 ⊗ · · · ⊗ Tpi,αi ⊆ T̄⊗i (3.5)

as (−1)i(p1−1) times the inclusion if ᾱ ∈Kp̄
α, and zero else. Note that, given p ∈ N

and α ∈ Jp, the family {
∆p̄
α,ᾱ : p̄ ∈ Ni, i ≥ 2,o(p̄) = p

}
(3.6)

of maps whose domain is Tp,α is locally finite, since each module Tpj ,αj
is con-

centrated in strictly positive degrees. Given an integer i ≥ 2, we finally define
∆i : T̄ → T̄⊗i as

∆i =
∑
p̄∈Ni

∑
α∈Jo(p̄)

∑
ᾱ∈Jp1

×···×Jpi

∆p̄
α,ᾱ. (3.7)

The locally finiteness property of (3.6) tells us that ∆i is well defined.

3.3.2 The Stasheff identities

Let N ≥ 3 be an integer, p̄ ∈ NN and ᾱ ∈ Jp1 × · · · × JpN . Given (r, s, t) ∈ IN ,
consider the maps

(−1)rs+t(pp1,α1
⊗ · · · ⊗ ppN ,αN

) ◦ (id⊗r
T̄
⊗∆s ⊗ id⊗t

T̄
) ◦∆r+1+t,

(pp1,α1 ⊗ · · · ⊗ ppN ,αN
) ◦ cSI(N) : T̄ → Tp1,α1 ⊗ · · · ⊗ TpN ,αN

,
(3.8)

where cSI(N) : T̄ → T̄⊗N is defined by the left member of (cSI(N)). By coho-
mological degree reasons, the restriction of either map in (3.8) to Tq vanishes if
q 6= o(p̄) + 1. Given α ∈ Jo(p̄)+1, define the maps

cSI(N)r,s,tp̄,ᾱ,α, cSI(N)p̄,ᾱ,α : To(p̄)+1,α → Tp1,α1
⊗ · · · ⊗ TpN ,αN

.

as the composition of the inclusion of To(p̄)+1,α inside of T̄ and the corresponding
map in (3.8). Note that

cSI(N)p̄,ᾱ,α =
∑

(r,s,t)∈IN

cSI(N)r,s,tp̄,ᾱ,α, (3.9)
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and ∆s is evaluated at To(sr+1,r+s(p̄)) in the summand cSI(N)r,s,tp̄,ᾱ,α of cSI(N)p̄,ᾱ,α.
We remark for later use that, if cSI(N)r,s,tp̄,ᾱ,α 6= 0, it is the inclusion of To(p̄)+1,α

inside of Tp1,α1 ⊗ · · · ⊗ TpN ,αN
times a sign �r,s,tp̄ ∈ {±1} given by

�r,s,tp̄ =

{
−(−1)(N+1)(p1+ps)+s(ps−1), if r = 0,
−(−1)p1(N−1)+spr+1−r, if r > 0,

(3.10)

where N = r + s+ t. Indeed, if r > 0,

�r,s,tp̄ = (−1)rs+t(−1)s(p1+···+pr)(−1)s(pr+1−1)(−1)(r+1+t)(p1−1)

= (−1)rs+N−s−r(−1)s(p1+r−1)(−1)s(pr+1−1)(−1)(N−s+1)(p1−1)

= −(−1)p1(N+1)+spr+1−r,

where the second sign of the second member comes from the application of the
Koszul sign rule to ∆s, and we have used used that p2, . . . , pr are odd by Lemma
3.6. On the other hand, if r = 0,

�r,s,tp̄ = (−1)N−s(−1)s(p1−1)(−1)(N−s+1)(p1+···+ps+1−s)

= −(−1)N−s+1(−1)s(p1−1)(−1)(N−s+1)(p1+ps+1)

= −(−1)s(p1−1)+(N−s+1)(p1+ps) = −(−1)(N+1)(p1+ps)+s(ps−1),

where we have used that t = N − s and that p2, . . . , ps−1 are odd by Lemma 3.6.
We also note that, putting r = N − s in the second line of (3.10), i.e. if t = 0, we get
that

�r,s,0p̄ = (−1)(p1+1)(N−1)+s(pr+1+1). (3.11)

On the other hand, if t > 0 and pr+s is even, then (3.10) gives

�r,s,tp̄ = −(−1)(p1+1)(N−1)+N−t. (3.12)

for all (r, s, t) ∈ IN , where we used that s+ r = N − t, and that Lemma 3.6 implies
that pr+1 is odd if r > 0.

Using Lemma 3.6 in (3.9) we see that cSI(N)p̄,ᾱ,α trivially vanishes if the set
(p1, . . . , pN ) has at least four different even entries. Moreover, the same result tells
us that, if cSI(N)p̄,ᾱ,α 6= 0, then

(O.1) p1, . . . , pN are odd integers;

(O.2) there exists a unique j ∈ J1, NK such that pj is even;

(O.3) (p1, . . . , pN ) has exactly 2 different even entries, one of which is p1 or pN ;

(O.4) p1 and pN are even, and there is a unique j ∈ J2, N − 1K such that pj is even.

Note that o(p̄) + 1 is odd in cases (O.1) and (O.3), and it is even in cases (O.2) and
(O.4). We will also regroup (O.1)-(O.4) into the following cases:

(GO.1) either (O.1), or (O.2) and j ∈ {1, N}, or (O.3) and p1 and pN are even;

(GO.2) either (O.2) and j ∈ J2, N − 1K, or (O.3) and there is j ∈ J2, N − 1K such that
pj is even, or (O.4).

In short, (GO.1) consists of all (p1, . . . , pN ) ∈ Nn such that p2, . . . , pN−1 are odd,
whereas (GO.2) consists of all (p1, . . . , pN ) ∈ Nn such that (p2, . . . , pN−1) contains
exactly one even entry.

We then have the following direct application of Lemmas 3.6 and 3.7.
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(C.1) In case (GO.1), Lemma 3.6 applied to ∆r+1+s tells us that cSI(N)r,s,tp̄,ᾱ,α 6= 0
implies either r = 0 or t = 0. Moreover, by Lemma 3.7 there exist sl, sr ∈
J2, N − 1K such that cSI(N)0,s′,N−s′

p̄,ᾱ,α = cSI(N)N−s
′′,s′′,0

p̄,ᾱ,α = 0 for all s′, s′′ ∈
J2, N − 1K such that s′ 6= sl and s′′ 6= sr.

(C.2) In case (GO.2), Lemma 3.6 applied to ∆rj+1+sj tells us that cSI(N)
rj ,sj ,tj
p̄,ᾱ,α 6=

0 implies either rj = j − 1 or tj = N − j. Furthermore, Lemma 3.7 tells
us that there exist integers sl ∈ J2, N − j + 1K and sr ∈ J2, jK such that
cSI(N)

rj ,s
′,N−s′−rj

p̄,ᾱ,α = cSI(N)
N−tj−s′′,s′′,tj
p̄,ᾱ,α = 0 for all s′ ∈ J2, N − j + 1K and

s′′ ∈ J2, jK such that s′ 6= sl and s′′ 6= sr.

Definition 3.8. Let T̄ be a based family of graded submodules of (TV )>0 compatible with
a homogeneous ideal I . Using the notation of (C.1) and (C.2), we say that T̄ is balanced
if, for every integer N ≥ 3, p̄ ∈ NN and ᾱ ∈ Jp1

× · · · ×JpN ,

(N.1) there exists sl ∈ J2, N−1K such that cSI(N)0,sl,N−sl
p̄,ᾱ,α 6= 0 if and only if there exists

sr ∈ J2, N − 1K such that cSI(N)N−sr,sr,0p̄,ᾱ,α 6= 0, if p̄ is of type (GO.1);

(N.2) there exists sl ∈ J2, N − j + 1K such that cSI(N)j−1,sl,N−sl−j+1
p̄,ᾱ,α 6= 0 if and only

if there exists sr ∈ J2, jK such that cSI(N)j−sr,sr,N−jp̄,ᾱ,α 6= 0, if p̄ is of type (GO.2)
with parameter j ∈ J2, N − 1K.

Proposition 3.9. Let T̄ be a balanced based family of graded submodules of (TV )>0 com-
patible with a homogeneous ideal I . Then, T̄ = ⊕p∈NTp endowed with the maps {∆i}i≥2

defined in (3.7) is a minimal noncounitary A∞-coalgebra.

Proof. Note first that the family of maps {∆i}i≥2 is locally finite, by degree reasons.
It remains to show that (3.9) vanishes for all integers N ≥ 3 and all N -tuples p̄ =
(p1, . . . , pN ) ∈ NN , ᾱ ∈ Jp1

× · · · ×JpN , and α ∈ Jo(p̄)+1. As noted in the beginning
of this subsubsection, if cSI(N)p̄,ᾱ,α 6= 0, then p̄ is either of type (GO.1) or (GO.2).
By the balanced assumption on T̄ and the definition of the maps {∆i}i≥2 in (3.7),
it suffices to show that

�0,sl,N−sl
p̄ = −�N−sr,sr,0p̄

in case (N.1), and
�rj ,sl,N−sl−rjp̄ = −�N−tj−sr,sr,tjp̄

in case (N.2). Following the notation explained in (C.1), we see that the first line of
(3.10) and (3.11) yield

�0,sl,N−sl
p̄ = −(−1)(N+1)(p1+1) = −�N−sr,sr,0p̄

in case (GO.1), since psl and pN−sr+1 are odd by assumption. On the other hand,
following the notation explained in (C.2), the second line of (3.10) and (3.12) also
tell us that

�rj ,sl,N−sl−rjp̄ = (−1)j+p1(N+1) = −�N−tj−sr,sr,tjp̄

in case (GO.2), since prj+1 = pj is even and prj+1 = pj is even by assumption. The
proposition is thus proved. �

3.4 A resolution associated with the A∞-coalgebra structure

Definition 3.10. We say that a based family T̄ = {Tp : p ∈ N} is left resolutive, if,
given p ∈ N and α ∈ Jp, there exists an integer i ≥ 2 such that

K(1,...,1,p−1)
α 6= ∅,

with (1, . . . , 1, p− 1) ∈ Ni0. The right resolutive condition is defined analogously.
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Theorem 3.11. Assume the same hypotheses as in Proposition 3.9. Let A = TV/I ,
T = K ⊕ T̄ be the standard counitary A∞-coalgebra obtained from the A∞-coalgebra
structure on T̄ as explained in the last paragraph of Subsection 2.6, and let τ : T → A be
the map given as minus the composition of the canonical projection T → T1 = V and the
inclusion V → A.

If T̄ is left resolutive, then τ is a twisting cochain. Moreover, the twisted tensor product
A⊗τT is a minimal projective resolution of the trivial graded leftA-moduleK. Conversely,
if there is a twisting cochain τ : T → A such thatA⊗τ T is a minimal projective resolution
of the trivial graded left A-module K, then T̄ is left resolutive.

Proof. We will prove the first implication of the statement. We first note that, by
cohomological degree reasons, (2.3) is trivially verified if the left member of (2.3) is
evaluated at an element of Ti for i 6= 2. It suffices to show that (2.3) holds when the
left member is restricted to T2. By the left resolutive assumption of T̄ , given any
α ∈ J2, there is an integer j ≥ 2 such that T2,α ⊆ V ⊗j . Since T2 ⊆ I , we conclude
that the left member of (2.3) restricted to T2,α vanishes, as was to be shown. Let us
now prove the second part of the first implication. Note that the complex A ⊗τ T
is minimal since idK ⊗A∂τ vanishes. It suffices to show that it is exact. We further
notice that A ⊗τ T is exact up to homological degree 1, since it coincides with the
usual expression of the minimal projective resolution of the trivial graded left A-
module K up to homological degree 2. Moreover, we also note that, since T̄ is
compatible with I , (2.1) immediately implies that I ·Wk ⊆ Zk and I · Yk ⊆ Xk+1

for all k ∈ N, which in turn tells us that Tp ∩ I · Tp+1 = 0, for all k ∈ N. As a
consequence, the restriction to the submodule K ⊗ Tp,α ' Tp,α of A ⊗ Tp,α of the
differential ∂τ , which is induced by the inclusion Tp,α ⊆ (TV )>0⊗Tp−1, is injective.
Assume that A ⊗τ T is exact up to homological degree p ∈ N, i.e. the kernel of
∂τi : A ⊗ Ti → A ⊗ Ti−1 coincides with the image of ∂τi+1 : A ⊗ Ti+1 → A ⊗ Ti for
all i ∈ J1, pK. We will prove it is exact in homological degree p+ 1. The expression
of the differential ∂τ gives us the canonical isomorphism

Ker(∂τi ) '
(
TV · Ti ∩ I · Ti−1

)
+ I · Ti

I · Ti
,

which in turn gives us the isomorphism

K ⊗A Ker(∂τi ) '
(
TV · Ti ∩ I · Ti−1

)
+ I · Ti

(TV )>0 ·
(
TV · Ti ∩ I · Ti−1

)
+ (TV )>0 · I · Ti

,

for all i ∈ N. Note moreover that

(TV )>0 ·
(
TV ·Ti∩I ·Ti−1

)
+(TV )>0 ·I ·Ti ⊆ (TV )>0 ·I ·Ti−1+(TV )>0 ·I ·Ti, (3.13)

for all i ∈ N. We claim that the intersection of Tp+1 and the right member of (3.13)
is trivial. Indeed, if we write p = 2q+ δ with δ ∈ {0, 1}, the first line in (2.2) tells us
that the right member of (3.13) is included in

(TV )>0 · Iq+δ · (TV )1−δ
>0 + (TV )>0 · Iq+1,

which has trivial intersection with Tp+1 by the second identity of (2.2). Since the
intersection of Tp+1 and the right member of (3.13) is trivial, the composition of
∂τp+1|K⊗Tp+1

and the canonical projection Ker(∂τp) → K ⊗A Ker(∂τp) is injective.
Since both Tp+1 andK⊗AKer(∂τp) ' TorAp+1(K,K) have the same Hilbert series as
Adams graded vector spaces over k, by the recursive assumption on the exactness
of A ⊗τ T , the previous composition map is an isomorphism, which tells us that
A⊗τ T is exact in homological degree p.
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We finally prove the converse. By cohomological and Adams degree reasons,
we see that τ : T → A is the composition of the canonical projection T → T1, a map
τ̄ : T1 → V and the minus canonical inclusion V → A. Since A⊗τ T is the minimal
projective resolution of the trivial graded left A-module K, by comparing it with
the standard description of the minimal projective resolution of the trivial graded
left A-module K up to homological degree 2, we conclude that τ̄ is injective, so
bijective since both spaces have the same Hilbert series as Adams graded vector
spaces over k. Since ∆n|R : R→ V ⊗n is the inclusion for n ≥ 2, µA◦ τ̄⊗n◦∆n|R = 0
is then tantamount to τ̄⊗n(R) ⊆ R, which means that the unique isomorphism of
algebras TV → TV induced by τ̄ gives an isomorphism of algebras gτ : A→ A. As
a consequence, by composing with g−1

τ , we may assume without loss of generality
that τ̄ is the canonical inclusion of V inside of A. Now, the fact that A ⊗τ T is
the minimal projective resolution of the trivial graded left A-module K implies in
particular that the restriction to the submodule K ⊗ Tp,α ' Tp,α of A ⊗ Tp,α of
the differential ∂τ , which is induced by the inclusion Tp,α ⊆ (TV )>0 ⊗ Tp−1, is
injective. This implies that T̄ is left resolutive, as was to be shown. The theorem is
thus proved. �

The following result follows immediately from Theorem 3.13 by replacingA by
its opposite algebra.

Corollary 3.12. Let T̄ be a balanced based family of graded submodules of (TV )>0 com-
patible with a homogeneous ideal I and letA = TV/I . Then T̄ is left resolutive if and only
if it is right resolutive.

Combining Theorem 2.5, Proposition 3.9 and Theorem 3.11, we directly obtain
the main result of this article.

Theorem 3.13. Let T̄ be a left resolutive balanced based family of graded submodules
of (TV )>0 compatible with a homogeneous ideal I and let A = TV/I . Then, the A∞-
coalgebra T = K ⊕ T̄ considered in Proposition 3.9 is quasi-isomorphic to the A∞-
coalgebra TorA• (K,K). As a consequence, the corresponding A∞-algebra structure on
the graded dual T# of T is quasi-isomorphic to the augmented A∞-algebra Ext•A(K,K).

4 Some examples
Finally, as an application, we show how the results of the previous section allow
to easily compute (and in many cases reobtain) the A∞-(co)algebra of Ext•A(K,K)
(resp., TorA• (K,K)) for several classes of nonnegatively graded connected algebras
A.

4.1 Generalized Koszul algebras
We continue here with the assumptions of Example 3.4, where A is an s-Koszul
algebra for s ≥ 2. We will show that the based family of graded submodules of
(TV )>0 considered there is balanced and left resolutive. This follows easily from
the definitions but we explain it for the reader’s convenience. The left resolutive
condition is trivially verified, provided the balanced condition holds, since T2q ⊆
V ⊗(s−1) ⊗ T2q−1 and T2q+1 ⊆ V ⊗ T2q for all q ∈ N.

Let us finally verify that the family T̄ is balanced. Since the indices α ∈ Jp are
trivial in this case, we will omit them. Note first that the Adams degree of Tp is
φs(p). Using this and a direct Adams degree argument, a nonzero map ∆p̄

α,ᾱ of the
form (3.5) preserving the Adams degree exists only for i ∈ {2, s}. Moreover, using
again the Adams degree of the graded submodules of the family T̄ , we conclude
that
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(K.1) (pp1
⊗ pp2

) ◦∆2|Tp
= 0 if p = p1 + p2 is even and p1, p2 ∈ N are odd;

(K.2) (pp1
⊗ · · · ⊗ pps) ◦∆N |To(p̄)

= 0 unless all entries of p̄ = (p1, . . . , ps) are odd.

Note that o(p̄) is even if all entries of p̄ = (p1, . . . , ps) are odd. This implies in
particular that, if N ∈ N \ {3, s + 1}, every term of the Stasheff identity cSI(N)
trivially vanishes. Hence, it suffices to show that cSI(N) vanishes forN ∈ {3, s+1}.
The caseN = 3 is immediate, since ∆2 is the usual inclusion, which also concludes
the case s = 2.

It remains to consider N = s+ 1 > 3, for which the only possible cases among
(O.1)-(O.4) are (O.1) and (O.2), by properties (K.1) and (K.2). In case (O.1), with
p̄ = (p1, . . . , ps+1) having odd entries, we clearly have cSI(s + 1)0,s,1

p̄ 6= 0 and
cSI(s+1)1,s,0

p̄ 6= 0 for (N.1), i.e. sl = sr = s in (N.1). In case (O.2), all the entries p̄ =
(p1, . . . , ps+1) are odd except for pj which is even, with j ∈ J1, s+1K. If j = 1 (resp.,
N ), we clearly have cSI(N)0,2,s−1

p̄ 6= 0 (resp., cSI(N)0,s,1
p̄ 6= 0) and cSI(N)1,s,0

p̄ 6= 0

(resp., cSI(N)s−1,2,0
p̄ 6= 0) for (N.1), i.e. sl = 2 (resp., sl = s) and sr = s (resp.,

sr = 2) in (N.1). Finally, if j ∈ J2, sK, we clearly have cSI(N)j−1,2,s−j
p̄ 6= 0 and

cSI(N)j−2,2,s+1−j
p̄ 6= 0 for (N.2), i.e. sl = sr = 2 in (N.2). As a consequence, the

family T̄ is balanced.
By applying Theorem 3.13 we reobtain the A∞-coalgebra TorA• (K,K) men-

tioned in [11], Section 4.3, and the A∞-algebra structure on Ext•A(K,K) obtained
in [9], Thm. 6.5.

4.2 Monomial algebras
We continue here with the assumptions of Example 3.5, where A = TV/I is a
monomial algebra. In the unpublished article [5], the authors essentially proved
that the based family T̄ of Example 3.5 is balanced. We will explain the results of
[5], proving that T̄ is balanced. In this case, the definition of Anick chains directly
implies that T̄ is left resolutive, so Theorem 3.13 gives the A∞-coalgebra structure
on TorA• (K,K) and the corresponding A∞-algebra structure on Ext•A(K,K).

Note first that, if u ∈ Tp is a monomial element, the index α ∈ Jp such that
u ∈ Tp,α is given by the same monomial element u. For this reason, we will omit
the indices α in what follows.

First, remark the following nice property. Let p̄ = (p1, . . . , pn) = 2q̄ + δ̄, with
q̄ = (q1, . . . , qn) ∈ Nn0 and δ̄ = (δ1, . . . , δn) ∈ {0, 1}n, be such that p2, . . . , pn−1 are
odd. If the monomials ui ∈ Tpi for i ∈ J1, nK satisfy that

u = u1 . . . un ∈ (TV )1−δ1
>0 · I |q̄|−1+o(δ̄) · (TV )1−δn

>0 (4.1)

and that ui . . . uj /∈ To(si,j(p̄)) for all 1 ≤ i < j ≤ n such that j − i < n − 1,
then u ∈ To(p̄). To prove this, note that the first line of (2.2) tells us that u ∈
(TV>0)δ1 · I |q| · (TV>0)δn , which together with (4.1) implies that u ∈ Yo(p̄), by
(2.1). The last assumption and a recursive argument show that ul = u1 . . . un−1 /∈
(TV>0)1−δ1 ·I |s1,n−1(q̄)|+δ1 and ur = u2 . . . un /∈ I |s2,n(q̄)|+δn ·(TV>0)1−δn . Combining
this with u1 /∈ (TV )δ1>0 · Iq1 and un /∈ Iqn · (TV )δn>0, which follow from u1 ∈ Jp1 and
un ∈ Jpn together with (2.2), we get that

u /∈
(
(TV )1−δ1

>0 · I |q̄|+δ1 · (TV )δn>0

)
∪
(
(TV )δ1>0 · I |q̄|+δn · (TV )1−δn

>0

)
. (4.2)

Using that u is a monomial and comparing (4.2) with the second identity of (2.1),
we see that u /∈ Xo(p̄), which implies that u ∈ To(p̄).

Let us finally show that T̄ is balanced. We will use the previous terminology.
Let p̄ = (p1, . . . , pN ) ∈ NN be such that (p2, . . . , pN−1) has at most one even entry,
and let ui ∈ Tpi be monomials for i ∈ J1, NK such that u = u1 . . . uN ∈ To(p̄)+1.
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(1) If p̄ is of type (GO.1), then

u ∈ Yo(p̄)+1 ⊆
(
(TV>0)1−δ1 · I |q̄|+δ1 · (TV>0)δN

)
∩
(
(TV )δ1>0 · I |q̄|+δN · (TV )1−δN

>0

)
,

so ul = u1 . . . uN−1 ∈ (TV>0)1−δ1 ·I |s1,N−1(q̄)|+δ1 and ur = u2 . . . uN ∈ I |s2,N (q̄)|+δN ·
(TV )1−δN

>0 . Applying the result in the previous paragraph to ul and ur we deduce
that there exist sl, sr ∈ J2, N−1K such that cSI(N)0,sl,N−sl

p̄,ᾱ,α 6= 0 and cSI(N)N−sr,sr,0p̄,ᾱ,α 6=
0, proving (N.1).

(2) If p̄ is of type (GO.2), let j ∈ J2, N − 1K be such that pj is even. Then,

u ∈ Yo(p̄)+1 ⊆ (TV>0)|δN−δ1| · I |q̄|+δ1δN · (TV>0)|δN−δ1|. (4.3)

By (C.2), we know that u1 . . . uj−k /∈ To(s1,j−k(p̄)) and uj+k . . . uN /∈ To(sj+k,N (p̄))

for any k ≥ 1, so the result in the previous paragraph implies that

u′l = u1 . . . uj−1 /∈ (TV>0)|δN−δ1| · I |s1,j−1(q̄)|+δ1δN ,

u′r = uj+1 . . . uN /∈ I |sj+1,N (q̄)|+δ1δN · (TV>0)|δN−δ1|.
(4.4)

Hence, (4.3) and (4.4) give ul = u′luj ∈ (TV>0)|δN−δ1| · I |s1,j(q̄)|+δ1δN · (TV )>0 and
ur = uju

′
l ∈ (TV )>0 · I |sj,N (q̄)|+δ1δN · (TV>0)|δN−δ1|. Applying the result in the

previous paragraph to ul and ur we deduce that there exist sl ∈ J2, N − j + 1K
and sr ∈ J2, jK such that cSI(N)j−1,sl,N−sl−j+1

p̄,ᾱ,α 6= 0 and cSI(N)j−sr,sr,N−jp̄,ᾱ,α 6= 0,
proving (N.2).

4.3 Another example
To illustrate other possible uses of Theorem 3.13, we will also utilize it to com-
pute the A∞-coalgebra structure on TorA• (K,K) for an algebra A which is neither
generalized Koszul nor monomial.

Consider the quiver Q given by

4•

1• 2• 3• 6• 7• 8•

5•

a b

c e

g h

d f

the ring K given by the product of 8 copies of the base field k, identified with the
vertices ofQ, and the module V generated by the arrows B1 ofQ, so kQ = TV . Let
A = kQ/I , where I is the ideal generated by the submodule R ⊆ TV generated
by B2 = {abc, abd, egh, fgh, ce − df}. Let T1 = V , T2 = R, T3 ⊆ TV be the
submodule generated by B3 = {β38 = (ce − df)gh, β16 = ab(ce − df)}, T4 ⊆ TV
be the submodule generated by B4 = {β18 = ab(ce − df)gh} and Tp = 0 if p ≥ 5.
It is easy to verify that (see [8]) that Tp ' TorAp (K,K) for all p ∈ N, and thus
T̄ = {Tp : p ∈ N} is a family compatible with I . We will consider that it is based for
Jp = Bp and the direct sum decomposition induced by the latter bases. Applying
the definitions in Subsection 3.3, we get that ∆n = 0 for n ≥ 4, ∆3(xyz) = x⊗ y⊗ z
and ∆2(xyz) = 0 for all xyz ∈ {abc, abd, egh, fgh}, ∆2(ce− df) = c⊗ e− d⊗ f and
∆3(ce− df) = 0, as well as

∆2(β16) = abc⊗ e− abd⊗ f, ∆2(β38) = c⊗ egh− d⊗ fgh,
∆2(β18) = abc⊗ egh− abd⊗ fgh, ∆3(β16) = a⊗ b⊗ (ce− df),

∆3(β38) = −(ce− df)⊗ g ⊗ h, ∆3(β18) = a⊗ b⊗ (ce− df)gh+ ab(ce− df)⊗ g ⊗ h.
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It is easy to verify that T̄ is balanced and left resolutive, so Theorem 3.13 implies
that the previous structure is quasi-isomorphic to the A∞-coalgebra TorA• (K,K),
so its dual gives a an A∞-algebra quasi-isomorphic to Ext•A(K,K).

4.4 A non-example
We give here a rather simple example of algebra for which the A∞-algebra struc-
ture on the Yoneda algebra Ext•A(K,K) cannot be given as the dual of the lattice
of inclusions for any choice of submodules of TV representing the Tor groups.
Consider the quiver Q given by

3•

1• 2• 5• 6• 7•

4•

a

b d

f

c e

g

the ring K given by the product of 7 copies of the base field k, identified with the
vertices of Q, and the module V generated by the arrows B1 of Q, so kQ = TV .
LetA = kQ/I , where I is the ideal generated by the submoduleR ⊆ TV generated
by B2 = {ac, df, efg, bd− ce}. Let T1 = V and T2 = R.

Given λ = (λ1 : λ2) in P1(k), let Tλ3 ⊆ TV be the submodule generated by
Bλ

3 = {βλ = λ1acef + λ2abdf, (bd − ce)fg}. It is straightforward to verify that,
given any family T̄ = {Tp : p ∈ N} compatible with I , then T3 = Tλ0

3 for some
λ0 = (λ0

1 : λ0
2) 6= (1 : −1), since a(ce − bd)f ∈ (TV )>0 · I · (TV )>0 and this is

impossible if T3 is part of a compatible family, by (2.2). Assume that the family T̄
is based and let α ∈ J3 such that βλ0 ∈ T3,α. It is easy to see that the maps ∆n

defined in Subsection 3.3 for all integers n ≥ 2 satisfy ∆n(βλ0
) = 0 for all n 6= 3,

by degree reasons. Moreover, ∆3(βλ0) ∈ V ⊗ V ⊗R if and only if λ0
1 = 0, whereas

∆3(βλ0) ∈ R⊗V ⊗V if and only if λ0
2 = 0. This implies that T̄ is either left or right

resolutive, but not both. By Corollary 3.12, the maps ∆n defined in Subsection 3.3
can never give a A∞-coalgebra structure quasi-isomorphic to TorA• (K,K).
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