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ABSTRACT

This paper introduces a novel approach for sequential esti-
mation of the interferometric phase in the context of long
Synthetic Aperture Radar (SAR) image time series. When
newly acquired data arrive, the data set expands and can be
partitioned into two distinct blocks. One represents the previ-
ous SAR images and the other represents the newly acquired
data. The proposed approach (S-MLE-PL) exploits sequen-
tial maximum likelihood estimation of the covariance matrix
of the whole data set, taking the existing data set as prior in-
formation. This approach facilitates the continuous interfer-
ometric phase estimation by incorporating the new data into
the previous context. In addition, it presents the advantage
of reduced computation time compared to the traditional ap-
proaches, making it a more efficient solution for operational
displacement estimation.

Index Terms— Multi-temporal InSAR, sequential esti-
mation, covariance matrix, phase linking

1. INTRODUCTION

In recent decades, remote sensing community has witnessed
remarkable revolutions in terms of monitoring ground sur-
face deformations over time thanks to the increasing number
of Multi-Temporal Interferometric Synthetic Aperture Radar
(MT-InSAR) analysis [1]. This advancement results from the
evolution of the large amount of available SAR images due to
the growing number of launched SAR satellites. One crucial
family of approach in MT-InSAR analysis is Distributed Scat-
terer Interferometry (DSI) which exploits groups of homo-
geneous scatterers called Distributed Scatterer (DS). Among
the multiple DSI approaches, Phase Linking (PL) exploits all
possible combinations of SAR images. A set of PL algo-
rithms have been developped among which we can mention:

The source code is available on GitHub at the following address:
https://github.com/DanaElhajjar/S-G-MLE-PL

SqueeSAR [2], Eigendecomposition based Maximum like-
lihood estimator of Interferometric phase (EMI) [3], Phase
Linking based on Maximum Likelihood Estimation (MLE-
PL) [4, 5]. The main advantage of these approaches is that
they consider target statistics through the coherence of inter-
ferograms in a rigorous mathematical framework and they al-
low avoiding phase bias induced by short-lived fading signals
present in short temporal baseline interferograms [6].

Thanks to the ongoing and upcoming SAR missions cou-
pled with small revisit cycles (e.g., Sentinel-1 mission 6− 12
days), it becomes possible to acquire unprecedented volumes
of SAR data. Moreover, achieving Near Real Time (NRT)
monitoring has become a promising goal of InSAR applica-
tions, especially for its use in early warnings systems. Tradi-
tional MT-InSAR would be unable to incorporate efficiently
the newly acquired data and may require replaying the algo-
rithm on the whole dataset. The literature has, to the best of
our knowledge, not extensively explored sequential process-
ing of SAR data, as indicated by the limited number of studies
addressing this specific topic exploiting PL approaches. The
most known sequential approach was developed in [7] where
the main idea is to partition the entire stack of SAR images
into m mini-stacks. The algorithm starts by treating the first
mini-stack and then compressing it into a single virtual im-
age through principal component analysis (PCA). The virtual
image obtained is then connected to the next mini-stack, and
so on. This approach requires an extended period to form the
adequate mini-stack and is based on the standard PL.

In this work, we are interested in developing a sequen-
tial approach based on the joint MLE proposed in [4] which
presents better performance and has the ability to deal with
non-Gaussian data distribution. The previous image stack
is taken as prior information, and our approach retrieve the
distribution of the new image conditionally to this previous
stack. The coherence and the phase difference of the new im-
age with respect to the reference are retrieved using a Block
Coordinate Descent (BCD) algorithm. The relevance of the
proposed approach is first assessed on synthetic simulations,



then on 20 Sentinel-1 SAR images acquired between 14 Au-
gust 2019 and 10 April 2020 over Mexico city.

2. SEQUENTIAL PHASE LINKING

We consider a stack of l = p + 1 SAR images, for a given
pixel, we denote {x̃i}ni=1 the local homogeneous spatial
neighborhood of size n, where x̃i ∈ Cl, for all i ∈ [[1, n]],
i.e.,

x̃i = [xi
1, . . . , x

i
p︸ ︷︷ ︸

xi

, xi
l]
T ∈ Cl (1)

where xi ∈ Cp denotes the multivariate pixel of the previous
data (Fig. 1). Each pixel of the local patch is assumed to be
distributed as a zero mean Complex Circular Gaussian (CCG)
[8], i.e., x̃ ∼ CN (0, Σ̃).
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Fig. 1: SAR data representation including both previous and re-
cently obtained images. The local neighborhood of size n is denoted
by gray pixels (sliding window).

2.1. Background

Taking into account the phase closure property of the InSAR
stack, the covariance matrix of SAR images adheres to the
following structure:

Σ̃ = Ψ̃⊙ w̃θw̃
H
θ (2)

where the symbol ⊙ represents the element-wise (Hadamard)
multiplication, the exponent H is the transposed and complex
conjugated operator (Hermitian), Ψ̃ is the real core of the co-
variance matrix and w̃θ denotes the vector of the exponential
of the complex phases (w̃θ = [ejθ0 , . . . , ejθl ]). The main idea
of PL is to estimate Σ̃ which amounts to estimate Ψ̃ and w̃θ

since the covariance matrix is connected to the unknown co-
herence matrix and phases, according to (2). PL algorithms
are summarized in [9] and compared mathematically in [10].
The standard PL consists of 2 steps : i) computing the Sam-
ple Covariance Matrix (SCM) over a local patch of the image

and then ii) considering the plug-in estimate of the coherence
matrix Ψ̃ = |SCM| and solving the following optimization
problem

minimize
w̃θ

L(|SCM| ⊙ w̃θw̃
H
θ ) (3)

where L corresponds to the negative log-likelihood function
of the data following the zero mean CCG distribution. This 2-
step approach relies on the plug-in estimate of the coherence
matrix which renders it non optimal due to the bias associ-
ated with this plug-in. That is why [4, 11] proposed to esti-
mate jointly Ψ̃ and w̃θ. Therefore, the optimization problem
transforms into

minimize
w̃θ

L(Ψ̃⊙ w̃θw̃
H
θ )

subject to Ψ̃ real, w̃θ ∈ Tl, , θ1 = 0
(4)

where Tl =
{
w̃ ∈ Cl| |[w̃]i| = 1,∀i ∈ [1, l]

}
is the l-torus of

phase only complex vectors.

2.2. Covariance matrix structure with new data

The hermitian structured covariance matrix, given in (2), can
be rewritten as

Σ̃ =

 Σ w∗
θl
diag(wθ)γ

T

γdiag(wθ)
Hwθl γl

 (5)

where the exponent ∗ is the conjugated operator, Σ denotes
the previously estimated covariance matrix between the pre-
vious SAR images, γ corresponds to the coherence vector
between the newly acquired data and the previous ones, γl
represents the variance of the newly acquired data, and wθl is
the exponential of the phase of the latest data. We note that 3
parameters associated with the new image are unknown and
the remaining are estimated based on the methodology pre-
sented in [4]. These parameters will be represented by hats to
indicate that they have already been estimated.

2.3. MLE problem

Considering the covariance matrix structure in (5) and as-
suming that {x̃i}ni=1 follows a CCG distribution, the asso-
ciated negative log-likelihood for the entire data set, can be
expressed as:

LG(γ, γl, wθl) = −
n∑

i=1

Li
G(x

i
p+1|xi;γ, γl, wθl) + Li

G(x
i)

(6)
According to [12], xi

p+1|xi ∼ CN (µi
x, σ

2
x) where

µi
x = wθlγdiag(ŵθ)

HΣ̂−1xi

and σ2
x = γl − γdiag(ŵθ)

HΣ̂−1diag(ŵH
θ )γT , and the nega-

tive log-likelihood in (6), can be formulated as

LG(γ, γl, wθl) ∝ n log (v) +

n∑
i=1

yi∗yi

v
. (7)



where yi = xi
l − wθl γ diag(ŵθ)

HΣ̂−1xi

and v = γl − γ diag(ŵθ)
HΣ̂−1diag(ŵθ)γ

T

In this work, we propose to estimate simultaneously the
coherence and the new phase difference using the covariance
matrix structure (5),

min
γ,γl,θl

LG(γ, γl, wθl)

subject to γ, γl real, |wθl | = 1, θ1 = 0
(8)

The optimization of LG, defined in (6), will be addressed in
a unified manner using a BCD algorithm. The main idea of
this algorithm involves estimating each parameter iteratively
while fixing the others. Thus, each update corresponds to an
optimization sub-problem (cf. Algorithm 1).

Update γ

Let us start by updating γ by solving the following sub-
problem

min
γ

LG(γ) s.t. γ real (9)

This optimization can be analytically solved as

γ =
(∑n

i=1 w
∗
θl
xi
lL

i − wθlx
i∗
l Li∗) . (∑n

i=1 M
i +Mi∗)−1

(10)
where Li = xiHΣ̂−1diag(ŵθ) and Mi = LiHLi

Update γl

γl is updated by minimizing LG while fixing γ and wθl

min
γl

LG(γl) s.t. γl real (11)

The variance of the newly acquired data is calculated as

γl =
1
n

∑n
i=1(x

i
l − wθlγL

iH)∗(xi
l − wθlγL

iH) + γNγT

(12)
where N = diag(ŵθ)

HΣ̂−1diag(ŵθ)

Update wθl

The phase difference of the newly acquired SAR image is
obtained by solving the following sub-problem

min
wθl

LG(wθl) s.t. |wθl | = 1, θ1 = 0 (13)

As a result, the phase difference of the newly acquired images
takes the following form

wθl =

((∑n
i=1 x

i
lL

iγT
)
.
(∑n

i=1 γM
iγT

)−1
)

||
((∑n

i=1 x
i
lL

iγT
)
.
(∑n

i=1 γM
iγT

)−1
)
||

(14)

3. SIMULATIONS

3.1. Simulation parameters

We simulate a time series of size l = p + 1 = 20 images.
The real core of the covariance matrix Ψ̃ is simulated as a
Toeplitz matrix i.e., [Ψ̃]ij = ρ|i−j| with a coefficient correla-
tion ρ = 0.7. γ corresponds to the last raw of this matrix and

Algorithm 1 BCD algorithm

1: Input: Samples {x̃i}ni=1, Σ̂, diag(ŵθ)
2: repeat
3: Update of γ with (10)
4: Update of γl with (12)
5: Update of wθl with (14)
6: until convergence
7: Output: γ, γl and wθl

γl the scalar at (l, l) position. Phases differences vary linearly
between 0 and 2 rad, i.e., ∆i,i−1 = θi − θi−1 = 2/l rad.
The covariance matrix is then obtained according to (2) with
which we simulate n independent and identically distributed
(i.i.d) samples according to the CCG, x̃i ∼ N (0, Σ̃). We
compare the results of our approach with those obtained from
other state-of-the-art approaches: 2-pass InSAR designated
hereinafter by 2p-InSAR, which is equivalent to an interfero-
gram between 2 images, standard PL [10] and MLE-PL [11].
Mean Squared Error (MSE) are computed using 1000 Monte
Carlo trials.

3.2. Simulation results
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Fig. 2: MSE on wθl with increasing n, l = 20, ρ = 0.7 using 1000
Monte Carlo trials.

Fig. 2 represents the MSE of the phase difference esti-
mate for the latest SAR image when the size of the patch n
increases. As expected, the MSE decreases as the number of
samples increases.
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Fig. 3: Comparison of computation time among standard PL,
MLE-PL and Sequential Phase Linking based on Maximum Likeli-
hood Estimation (S-MLE-PL).



It is worth noting that the sequential estimation of wθl pro-
vides better results than other considered approaches. At the
core of the sequential approach lies the prior estimation of the
past using [11]. Consequently, predicting future outcomes is
expected to yield superior results. Fig. 3 presents the compu-
tation cost when the length of the time series increases. The
primary factor for the heavy computation time of the PL ap-
proach is the number of involved images. As the number of
images increases, the computational cost also rises due to the
processing of the coherence matrix whose size corresponds to
the number of involved images. Classic approaches deal with
matrices of size (l, l) while our approach treats 2 scalars and
a vector of size p. The complexity of the offline algorithm is
primarily dominated by matrix inversion and Singular Value
Decomposition (SVD), which are performed multiple times
(niter the number of iterations), with a cost of O(niter p

3). In
contrast, the sequential approach requires only one matrix in-
version, which amounts to O(p3).

4. REAL DATA

With a population exceeding 20 million, Mexico city stands
as one of the most dynamic cities in the world, coupled with
the rapid urbanization which led to a huge demand for wa-
ter. The primary source of Mexico City’s water supply is
aquifers, and heavy water pumping is the main factor caus-
ing subsidence and deformation over the city [13]. We use a
stack of 20 SAR images over the Mexico City acquired every
12 days, from 14 August 2019 to 10 April 2020, correspond-
ing to 8 months to assess the performance of the proposed
S-MLE-PL approach. The interferograms estimated by both

(a) MLE-PL

(b) S-MLE-PL

Fig. 4: Close-up view of interferograms (14 August 2019 - 10
April 2020) estimated by (a) MLE-PL, and (b) S-MLE-PL
in case l = 20 and n = 64

the MLE-PL and the proposed S-MLE-PL approach, are il-
lustrated in Fig 4. In both cases, the multi-looking window,
denoted as n = 8 × 8, remains the same. The MLE-PL and
S-MLE-PL methods yield the same results, however the se-

quential approach demonstrates significantly faster execution
time than the MLE-PL when applied to real data.

5. CONCLUSION

This paper presents a novel sequential PL approach that
allows incorporating efficiently new SAR images in interfer-
ometric phase estimation in a PL framework. According to
synthetic simulations and real data applications, the proposed
S-MLE-PL approach presents the same performance and
lower computational cost compared to MLE-PL.
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