
HAL Id: hal-04764696
https://hal.univ-grenoble-alpes.fr/hal-04764696v1

Submitted on 4 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SibylSat: Using SAT as an Oracle to Perform a Greedy
Search on TOHTN Planning

Gaspard Quenard, Damier Pellier, Humbert Fiorino

To cite this version:
Gaspard Quenard, Damier Pellier, Humbert Fiorino. SibylSat: Using SAT as an Oracle to Perform a
Greedy Search on TOHTN Planning. ECAI 2024, Oct 2024, Santiago de Compostela, Spain. pp.4157
- 4164, �10.3233/FAIA240987�. �hal-04764696�

https://hal.univ-grenoble-alpes.fr/hal-04764696v1
https://hal.archives-ouvertes.fr


SibylSat: Using SAT as an oracle to perform a greedy
search on TOHTN Planning

Gaspard Quenarda,*, Damier Pelliera and Humbert Fiorinoa

a University Grenoble Alpes, LIG, F-38000 Grenoble, France

Abstract. This paper presents SibylSat, a novel SAT-based method
designed to efficiently solve totally-ordered HTN problems (TO-
HTN). In contrast to prevailing SAT-based HTN planners that em-
ploy a breadth-first search strategy, SibylSat adopts a greedy search
approach, enabling it to identify promising decompositions for ex-
pansion. The selection process is facilitated by a heuristic derived
from solving a relaxed problem, which is also expressed as a SAT
problem. Our experimental evaluations demonstrate that SibylSat
outperforms existing SAT-based TOHTN approaches in terms of
both runtime and plan quality on most of the IPC benchmarks, while
also solving a larger number of problems.

1 Introduction

Hierarchical Task Network (HTN) planning [9] is a field of Artificial
Intelligence dedicated to decomposing complex tasks into simpler
subtasks. This hierarchical approach improves planning speed and
scalability, especially in practical applications [12]. Unlike classical
planning, HTN planning introduces abstract tasks representing com-
plex, non-executable actions, and decomposition methods that break
down abstract tasks into partially ordered sets of primitive actions
and abstract tasks. The main goal of an HTN planner is to determine
how an initial abstract task can be decomposed into a plan i.e., an
executable sequence of primitive tasks.

In this paper, we focus our investigation on a highly popular sub-
class of HTN problems where the decomposition methods specify a
totally-ordered list of primitive actions and abstract tasks to be ex-
ecuted in order to achieve an abstract task, namely Totally-Ordered
HTN (TOHTN) planning. The prevalent approaches to TOHTN plan-
ning are either to use heuristic search, e.g., [13, 14, 15], to encode
planning problems into STRIPS problems in order to benefit from
the constant improvements of the classical planners, e.g., [1, 2, 8], or
to encode them into propositional logic, e.g., [5, 23, 4, 21] and use
highly optimized solvers. The latter has attracted renewed interest
over the last few years, especially with planners performing particu-
larly well in recent International Planning Competitions (IPC). The
work presented in this paper aligns with this trend.

In the realm of TOHTN planning, the prevailing strategy among
current SAT planners is to employ a "breadth-first search" approach,
bounded by the number of decompositions of the initial abstract task.
Specifically, for a given bound k, the logical encoding considers
plans where the initial task can be decomposed at most k times. If
no solution is found within this bound, k is increased, broadening

∗ Corresponding Author. Email: gaspard.quenard@univ-grenoble-alpes.fr.

the solution search to include more intricate decompositions. This it-
erative process continues until a satisfactory solution is discovered or
until a predefined maximum limit for k is reached.

While this breadth-first search technique ensures completeness,
guaranteeing that a solution, if it exists, will eventually be found,
it operates as a blind search and can be particularly inefficient when
dealing with large search spaces or complex problem instances. Un-
like many planning techniques that utilize heuristic information to
guide the solution search towards promising areas of the search
space, the current SAT-based approaches to TOHTN planning do not
build on heuristic search.

In this paper, we introduce SibylSat, a novel SAT-based approach
that employs a greedy best-first search strategy. This strategy in-
volves selectively expanding search areas based on a heuristic de-
rived from solving a relaxed version of the planning problem, al-
lowing the identification of promising decompositions. Unlike ex-
isting SAT-based TOHTN planners, SibylSat does not automatically
expand all the pending decompositions when no solution is found.
Instead, it intelligently determines which decompositions should be
developed further based on this heuristic. Our approach consider-
ably reduces the search space and lays the groundwork for the de-
velopment of new heuristics and techniques to solve HTN problems
by SAT encodings. Experimentally, we demonstrate that our greedy
search approach, coupled with a heuristic function, improves perfor-
mance on most IPC benchmarks compared to state-of-the-art SAT
TOHTN approaches.

The article unfolds as follows: first, we introduce the concept of
TOHTN planning. Next, we describe our planner, SibylSat. Finally,
we compare SibylSat with other SAT-based TOHTN planners.

2 HTN Planning Problem
This paper adopts a description of TOHTN planning inspired by the
formulation presented in [5, 4], which is an adaptation of the HTN
planning description outlined in [11] tailored to totally ordered plan-
ning.

2.1 Task, Action, Methods, and Task Networks

The central concept in HTN Planning is the notion of tasks. A task
is characterized by a name and a list of parameters. There are two
types of tasks: primitive tasks and abstract tasks. While primitive
tasks directly affect the state of the world, abstract tasks do not; how-
ever, they must be decomposed into primitive tasks via decomposi-
tion methods before they can be executed. The HTN planning prob-
lem specifies how a method can decompose an abstract task into a



task network, which is a sequence of tasks (either abstract or prim-
itive). A primitive task network refers to a task network comprising
solely primitive tasks.

A primitive task a is analogous to an action in classical planning
and is defined by a tuple (name(a), precond(a), effect(a)). Here,
name(a) represents the name of a, while precond(a) and effect(a)
represent the sets of propositions for preconditions and effects, re-
spectively. An action a is considered executable in a state s, de-
fined as a set of propositions describing the world, if and only
if precond(a) is a subset of s. If O represents the set of actions
and S represents the set of states, then the state transition func-
tion γ : S × O → S is defined as follows: If a is executable
in s, then γ(s, a) = (s \ effect−(a)) ∪ effect+(a)); otherwise,
γ(s, a) is undefined. The extension of γ to action sequences, denoted
γ∗ : S ×O∗ → S, is defined straightforwardly.

A method m indicates how an abstract task can be refined into
a task network. It is defined as a tuple (name(m), c, wm) where
c is an abstract task and wm is a task network. We refer to c as
the task of m and wm as the subtasks of m. Given a task net-
work w = w1cw2 where c is an abstract task, applying a method
m = (name(m), c, wm) to w will result in the task network
w′ = w1wmw2 (written as w →m w′). We write w →∗ w′

if any sequence of decomposition methods exist which transforms
w into w′. For notation purposes, we define as M(c) = {m =
(name(m), c, wm) |m ∈ M} the set of all the methods which can
be applied to the abstract task c.

2.2 Planning Problem and Solution

We define a TOTHN planning problem as follows:

Definition 1 (TOHTN Planning problem) A totally ordered HTN
Planning problem P is a tuple (L,C,O,M, cI , sI , g) where: L is a
finite set of propositions; C is a finite set of abstract (or compound)
tasks; O is a finite set of primitive tasks (or actions); M is a finite
set of decomposition methods (or methods); cI ∈ C is the initial
abstract task; sI ⊆ L is the initial state and g is the (possibly empty)
goal state.

Solving a planning problem P involves finding a primitive task
network (or plan) π which can be decomposed from the initial ab-
stract task (cI →∗ π) such that π is executable in the initial state
sI and reaches the goal g after execution, i.e., g ⊆ γ(sI , π). Un-
like classical planning, a solution to a TOHTN planning problem is
not only a sequence of primitive tasks executable in the initial state of
the problem and reaching a goal state, but it must also express the de-
composition methods used which lead to this sequence of primitive
tasks. Such a solution can be represented by a tree called a decompo-
sition tree [11] which shows the full trace indicating how an abstract
task is refined into a task network.

Definition 2 (Decomposition tree) A decomposition tree (DT) for a
task network w for a problem P = (L,C,O,M, cI , sI , g) is a tree
T = (N,E) with:

• N - A set of nodes labelled by either a primitive task, an abstract
task or a method,

• E : N → N∗ - the edge function which provides for every node
an ordered list of children ⟨e1, e2, ..., ek⟩,

• For every inner node n labelled by an abstract task c, |E(n)| = 1
and E(n) = ⟨n′⟩ where n′ is labelled by a method m ∈M(c).

• For every inner node n labelled by a method m, let us consider
⟨t1, t2, . . . , tk⟩ the subtasks of m, then |E(n)| = k and ei is
labelled by the task ti for all ei ∈ E(n) = ⟨e1, e2, . . . , ek⟩.

• For the sequence of leafs L = ⟨nl
1, n

l
2, . . . , n

l
k⟩, it holds that each

leaf if labelled by either a primitive task or an abstract task and if
we consider the corresponding sequence of tasks ⟨t1, t2, . . . , tk⟩,
then we have w = ⟨t1, t2, . . . , tk⟩.

We can now formally define a decomposition tree solution as fol-
lows:

Definition 3 (Decomposition Tree solution) Let P =
(L,C,O,M, cI , sI , g) be a planning problem. Consider Tsol

as the decomposition tree for the task network π for the problem
P . The decomposition tree Tsol is a solution for P if and only if it
achieves the following characteristics:

1. The root of Tsol is the initial abstract task cI .
2. π only contains primitive tasks.
3. π is executable in the initial state sI .
4. π reaches the goal g after execution.

3 Path Decomposition Tree and SAT planners
Since finding a solution for an HTN planning problem is equivalent
to finding a decomposition tree (DT) that satisfies some characteris-
tics, one way to find a solution is to test all possible DTs that exist
for a problem P . However, the search space representing all possible
DTs is very large for most domains and infinite for recursive do-
mains (domains in which an abstract task can be obtained by decom-
positions from the same abstract task). To address this issue, [5, 23]
suggested creating structures that represent a subset of all possible
DTs to check if they contain valid solutions. If no solution is found,
these structures can be expanded to encompass additional DTs. These
proposed structures are designed to ensure they can be expanded to
include any possible DT for a given problem. Here, we introduce an
isomorphic equivalent of their structures:

Definition 4 (Path Decomposition Tree) A path decomposition
tree (PDT) for a problem P = (L,C,O,M, cI , sI , g) is a tree
Γ = (N,E) with:

• N - A set of nodes labelled by either a primitive task, an abstract
task or a method,

• E : N → N∗ - the edge function which provides for every node
an ordered list of children ⟨e1, e2, ..., ek⟩.

We denote the root node of the PDT as rΓ. We call the PDT well-
formed if and only if:

• The root node of the PDT rΓ is labelled by the initial abstract task
of the problem cI .

• For every inner node n labelled by an abstract task c, |E(n)| =
|M(c)| and ∀mi ∈M(c), ∃ei ∈ E(n) such that ei is labelled by
the method mi.

• For every inner node n labelled by a method m, let us consider
⟨t1, t2, . . . , tk⟩ the subtasks of m, then |E(n)| = k and ei is
labelled by the task ti for all ei ∈ E(n) = ⟨e1, e2, . . . , ek⟩.

• For every leaf nl, nl is labelled by either a primitive task or an
abstract task.

Figure 1 illustrates a PDT for a problem P =
(L,C,O,M, cI , sI , g) at some level of decomposition, and



highlights a DT for the task network ⟨A2, A1, A3⟩ as a subtree of
this PDT. This DT is a solution for P if and only if π = ⟨A2, A1, A3⟩
is executable in sI and g ⊆ γ(sI , π).

Figure 1: Example showing a PDT at some level of decomposition
for a problem P = (L,C,O,M, cI , sI , g), where Ti ∈ C,Mi ∈
M and Ai ∈ O. We see that this PDT does not contain all the DTs
because the abstract tasks T2 and T8 are undeveloped. A potential
solution DT is highlighted in grey.

Searching for a solution DT in a PDT is the current approach used
by all SAT-based TOHTN planners [23, 21, 5, 4]. The core idea is
to encode a PDT (or an isomorphic equivalent data structure) into
a formula such that this formula is satisfiable if and only if a solu-
tion DT exists in the PDT. If the formula is satisfiable, the solution
DT can then be extracted from the satisfying assignment. If no so-
lution is found, the PDT is expanded. All currently existing encod-
ings develop the PDT by expanding all its abstract task leaf nodes
(or pending nodes). If the initial PDT is initialized with only a node
representing the initial abstract task, [5] have shown that, by follow-
ing this expansion approach, the jth PDT will capture all possible
DTs with a maximum depth of decomposition of j. Therefore, this
approach represents a "breadth-first search" along the depth of de-
composition and is, as a consequence, complete.

4 SibylSat planner
4.1 Planning approach

Like other SAT-based TOHTN planners, SibylSat employs a PDT
as a search space and adheres to a standard procedure of alternat-
ing between expanding the search space, encoding, and invoking a
SAT solver to find a solution plan. However, a significant departure
lies in the expansion strategy, which does not follow a breadth-first
approach. Instead, SibylSat selects promising abstract tasks for ex-
pansion.

The procedures are illustrated as a pseudo-code in Algorithm 1.
The algorithm begins by initializing the PDT with a single node rep-
resenting the initial abstract task of the problem. Then, the process
alternates between two phases until a solution is found: one where
SibylSAT seeks a solution DT within the PDT (which acts as the
termination condition), and another where it expands the PDT by ex-
ploring first the most promising abstracts tasks. To achieve this, it
focuses on finding and developing a promising DT within the PDT,

where ’promising’ refers to a DT whose expansion (i.e., the develop-
ment of all its pending nodes) could lead to a solution DT. The choice
of the promising DT to develop is made by searching for a solution
DT in a relaxation of the PDT where abstract task leaves are consid-
ered as actions. The DT solution found in this relaxed PDT is used
as a heuristic to identify which pending nodes need to be developed
in the PDT to reach a solution. Specifically, any abstract task that is
part of the plan of the relaxed solution DT will have its correspond-
ing leaf in the PDT developed. The search for a solution DT in the
PDT, as well as a promising DT in its relaxed counterpart is done by
a SAT solver.

A necessary (but not sufficient) condition to ensure the com-
pleteness of our planner is that any subtree of a solution DT must
also be recognized as a promising DT in a relaxed PDT. Failure
to meet this condition could result in overlooking viable solutions.
Therefore, when relaxing the PDT, the preconditions and effects
assigned to an abstract task must be carefully inferred to comply
with this requirement. The approach for deducing them will be
detailed in an upcoming section. Note that this implication is
not bidirectional: a promising DT does not necessarily lead to a
solution DT when further developed. The accuracy with which we
can represent abstract tasks as actions (i.e., how well we can infer
their preconditions and effects) brings us closer to achieving this
equivalence. It should also be noted that a relaxed PDT typically
contains several promising DTs available for further development.
We do not use a deterministic method to select which promis-
ing DT to develop. Instead, we entrust this decision to our SAT
solver, which acts as an oracle in this context. Specifically, we
use an incremental SAT solver (i.e., a solver that can be queried
multiple times with a growing set of clauses and is able to pre-
serve its knowledge base from previous solving iterations), which
aids in maintaining a consistent trajectory when choosing a promis-
ing DT to develop as it incrementally builds upon previous decisions.

Algorithm 1 is "greedy" because it expands the PDT by using the
first relaxed solution DT it finds in its expansion phase, even if there
are multiple relaxed solution DTs in a PDT. This method is com-
plete for non-recursive planning domains because there is a limited
number of DTs, and our algorithm eventually finds them all as it
keeps expanding the PDT. However, this approach is generally non-
terminating for recursive domains because the algorithm can keep
expanding DTs in the PDT that cannot lead to a solution DT. We will
explain how we can transform the algorithm 1 to be terminal in a
later section.

Algorithm 1 SibylSat Planner

1: procedure SIBYLSAT(P = (L,C,O,M, cI , sI , g))
2: PDT ← INITIALIZEPDT(P )
3: return GREEDY(PDT )
4: end procedure
5: procedure GREEDY(PDT )
6: DTsol ← FINDSOLUTION(PDT )
7: if DTsol ̸= ∅ then
8: return DTsol

9: end if
10: DTrelaxed ← FINDPROMISINGDT(PDT )
11: PDT ← EXPANDPDT(PDT,DTrelaxed)
12: return GREEDY(PDT )
13: end procedure



4.2 Example

To illustrate our algorithm, we detail how the PDT of a problem
P is developed by our planner in Figure 1. SibylSat is initialized
by creating a PDT with a single root node, Troot, representing the
problem’s initial abstract task. It then alternates between a search
phase and an expansion phase until a solution DT is found.

In the initial search phase, since Troot is abstract, the PDT does
not contain a solution DT, prompting the first expansion phase.
In the expansion phase, SibylSat uses the relaxation technique
to transform all the abstract task leaves, in this case, Troot, into
actions. A search is then performed within the relaxed PDT, which
identifies the relaxed DT of the plan ⟨Troot⟩ as a solution. This
DT is then developed within the PDT, leading to an expanded PDT
encapsulating the initial three layers of Figure 1, before returning to
the search phase.

The second search phase fails again to find a solution DT in the
PDT, leading to another expansion phase. In this phase, the PDT
is relaxed once more by treating the abstract task leaves T2, T3

and T5 as actions and trying to find a solution DT in this relaxed
PDT. Notably, within this relaxed PDT, two potential solution
DTs emerge: one involving the task network ⟨A0, T2⟩ and another
comprising ⟨T3, A1, T5⟩. Assuming that these task networks are
both executable in the problem’s initial state and can reach the
goal after execution, the SAT solver selects one of them for further
development. In this example, the SAT solver chooses the DT of
the task network ⟨T3, A1, T5⟩, prompting SibylSat to expand the
corresponding nodes T3 and T5, which leads to the whole PDT in
Figure 1 before returning to the search phase.

In this search phase in the PDT, SibylSat identifies the solution
DT with the plan ⟨A2, A1, A3⟩, leading to a successful termination
of the planner. However, should this solution prove non-executable
in the initial state, the absence of other possible solution DTs would
have led to another expansion phase of the PDT. In that case, if both
the DT of the task networks ⟨A0, T2⟩ and ⟨A2, A1, T8⟩ are relaxed
solution DTs, then, the SAT solver would have returned either of
those two, which would have led to developing either the node T2 or
the node T8.

5 Searching for solution DT in PDT
During the search phase, our planner needs to determine whether a
PDT contains a solution DT as its subtree. To achieve this, the ap-
proach of SAT-based TOHTN planners is to create a SAT formula
that is satisfiable if and only if a solution DT exists in the PDT. Given
that our search space is structurally congruent with those proposed by
[21, 23, 5, 4], we can use any of the encodings introduced in these
papers to search for a solution DT. We opted for the encoding used
by the Lilotane planner specifically because it can be employed with
an incremental solver, which enables our solver to keep knowledge
of previous solving iterations when looking for solution DTs and re-
laxed solution DTs. Given that the encoding is no different from that
proposed by Lilotane for a PDT, we do not detail the specific SAT
rules used to search for a solution DT in this paper.

6 Expansion of the PDT
In this section, we present the expansion phase of the PDT. This
phase occurs when there are no solution DTs in the current PDT

(i.e., the search procedure has failed to find a solution DT). As such,
some pending leaves need to be expanded to allow the PDT to cap-
ture a larger set of DTs. The core idea of our expansion phase is to
find a DT that is a subtree of a solution DT. If such a DT could be
found, developing it would lead to expanding the PDT toward hav-
ing a solution DT as its subtree. However, finding a DT leading to an
executable primitive plan is not feasible, as it would require know-
ing a solution DT for the problem in the first place. As such, we are
interested in an approximation. This approximation takes the form
of finding instead a promising DT: a DT that may lead to a solution
DT when developed. We define a DT as ’promising’ if its relaxed
task network is executable in the initial state and reaches the goal
after execution. To relax a task network, we convert all its abstract
tasks into actions with preconditions and effects based on the possi-
ble decompositions of the respective abstract task. As such, finding
a promising DT is equivalent to finding a solution DT in a relaxed
PDT where all abstract task leaf nodes are converted into actions.

We now turn to the process by which the preconditions and effects
of an abstract task are inferred. As detailed in the planning approach,
a necessary condition for completeness is that all subtrees of a solu-
tion DT are recognized as promising DTs. Consequently, the precon-
ditions and effects inferred for an abstract task must be applicable for
all refinements into primitive task networks of the respective abstract
task.

First, we explain the inference of preconditions for an abstract
task. These preconditions must encapsulate the facts necessary for
any feasible refinement of an abstract task. [20] have referred to such
preconditions as ’mandatory preconditions’, a concept used in sev-
eral planners [21, 16] to prune DTs in their search space that do not
lead to an executable sequence of primitive tasks. In our planner,
we employ the algorithm for inferring mandatory preconditions pro-
posed by [21].

Let us now consider the effects of an abstract task. Unlike ac-
tions, where effects are explicitly defined, abstract tasks introduce
uncertainty in the resulting state. Indeed, for an action a, the tran-
sition γ(s, a) = (s \ effect−(a)) ∪ effect+(a) precisely defines the
post-execution state. In contrast, it is difficult to properly define the
post-execution state of an abstract task since it can be decomposed
into multiple different primitive task networks with different post-
execution effects. Our solution for this problem is to compute all
the poss-effect+(t) (respectively poss-effect−(t)) of an abstract task,
which correspond to all the positive (respectively negative) facts that
may be caused by a refinement of the abstract task.

If we successfully compute these two sets, we can then define
an overestimation of the post-execution state of an abstract task t.
This is achieved by considering the execution of t as leading to
a nondeterministic state, which falls within a range determined by
subtracting any subset of poss-effect−(t) and adding any subset of
poss-effect+(t) to the pre-execution state.

[4] have shown that computing the exact set of possible effects of
an abstract task is PSPACE or EXPTIME-complete depending on the
hierarchical decomposition structure of the respective task. However,
it is possible to find an over-approximation of them in polynomial
time. For our algorithm, we compute an over-approximation of the
possible effects of an abstract task (denoted poss-effect∗) with the
following formula:

poss-effect+∗ (t) =
⋃

t′∈subtasks(m),m∈M(t)

poss-effect+∗ (t
′)



poss-effect−∗ (t) =
⋃

t′∈subtasks(m),m∈M(t)

poss-effect−∗ (t
′)

If t is an action, then:

poss-effect+∗ (t) = effect+(t)

poss-effect−∗ (t) = effect−(t)

If t is recursive, we avoid infinite recursion by removing t from
all the possible subtasks of all the methods.

Note that the nondeterministic post-execution state of an abstract
task, as defined above, is often an over-approximation of the post-
execution state that one specific concrete refinement of an abstract
task can actually produce, due to it encompassing effects from vari-
ous refinements. Although [19] proposed a method to generalize the
possible effects of an abstract task by differentiating them based on
the outcomes of each refinement, this method is computationally pro-
hibitive due to its high cost. Nevertheless, it is still possible to refine
the nondeterministic post-execution state of an abstract task com-
puted by eliminating inconsistencies that arise when combining ef-
fects from different refinements.

Figure 2: Toy world state.

Consider the toy example illustrated in Figure 2. The figure shows
a world state with three locations: Street1, Street2, and Street3. A
person, denoted as ’P’, is located at Street3 and needs to get a taxi.
Consider an abstract task call_taxi(), meant to accomplish this by
first reaching a location with a telephone booth and then calling a
taxi. Since in this example, there is a telephone booth in both Street1
and Street2, the possible effects of the abstract task call_taxi() will
have the predicates at(P, Street1) and at(P, Street2). If this task
is treated as a direct action, using our formula to compute its post-
execution state might create an inconsistency where the person is
at both Street1 and Street2 simultaneously. Such an incoherent state
of the world could result in finding relaxed solution DTs that are
impractical - meaning they cannot yield a valid solution DT when
further developed. This often leads to developing nodes that turn out
to be useless for finding a valid solution DT.

Our approach to reducing these types of inconsistencies in the
post-execution state of an abstract task involves the utilization of mu-
texes. Mutexes define the set of facts that cannot coexist within the
same reachable state. In our example, the predicates at(P, Street1)
and at(P, Street2) are mutex because a person cannot be at two
places at the same time. To infer those mutexes, we use the algorithm
proposed by [10] which infers mutex groups: groups of predicates
where each predicate in a group is mutex with all the other predi-
cates in the same group. Using those mutexes, we can improve the
quality of the post-execution state of an abstract task by preventing
incompatible possible effects from occurring.

In practice, this is achieved by applying an ’at-most-one’ con-
straint in our SAT encoding to prevent mutually exclusive effects
of an abstract task from occurring simultaneously. There are vari-
ous methods to encode these ’at-most-one’ constraints in SAT, as
discussed by [18]. For our empirical studies, we tried three ’at-most-
one’ encodings: classical pairwise, Binary, and Bimander (using (m
= n/2) and (m =

√
n)). Our results show that, using the solver Glu-

cose [3], the classical pairwise encoding seems to perform marginally
better than the other tested encodings, albeit with a larger memory
footprint. Our experiments have demonstrated that in many domains,
employing mutexes results in finding higher quality abstract solution
DTs and, consequently, developing fewer nodes in the PDT before
finding a solution DT.

6.1 Searching for solution in relaxed PDT

Once the PDT has been relaxed to replace all pending abstract tasks
with their corresponding actions, the search process mirrors that of
the non-relaxed PDT, with the notable distinction that the effects of
the abstract tasks are nondeterministic. This uncertainty means that
an effect listed in poss-effect∗(c) might not necessarily occur even
if c is executed. Consequently, when employing a SAT encoding to
search for a solution DT in a relaxed PDT, the effects of an abstract
task leaf node cannot be encoded in the same manner as the effects
of an action, which are represented as action =⇒ eff . Instead,
for each possible effect of an abstract task leaf node, we must encode
the fact that if the abstract task leaf node is in a solution DT, then
each of its effects may happen in its post-execution state. Lilotane
already has rules to encode such uncertainty in the post-execution
state of an abstract task, called frame axioms. Frame axioms are rules
to ensure that if a predicate value changes, then a specific abstract
task or action that has this predicate in its effects must have been
executed. By using frame axioms to encode the possible effects of an
abstract task, we correctly take into account their nondeterministic
effects.

6.2 Expanding PDT leafs

Finally, let us explain how we develop the pending nodes of a PDT
based on a solution DT found in a relaxed PDT. In the relaxed PDT,
all abstract task leaf nodes are considered actions. Consequently, the
plan π in the solution DT may include abstract tasks. For each of
these abstract tasks, we develop the corresponding node in the PDT,
as well as all the immediate child method nodes. This approach en-
sures that all leaves of the PDT contain either primitive or abstract
tasks. For example, as illustrated in Figure 1, if the plan in the solu-
tion DT for the relaxed PDT is ⟨A0, T2⟩, then the node containing T2

and its immediate method children will be developed.
Note that in our implementation, we use the search space proposed

by the Lilotane planner, where each node contains all the abstract
tasks that may occur simultaneously at some degree of refinement.
To adhere to the incremental encoding provided by Lilotane, where
some rules depend on the full set of operations within a node, we de-
velop all the abstract tasks within the same node when such a node is
expanded. A potential next contribution could be to alter the encod-
ing to allow for the selective development of only the abstract tasks
found in the relaxed solution DT.

7 Ensuring completeness for recursive domains
As the current description given for our planner is greedy instead
of the "breadth-first search" used by the other TOHTN SAT plan-



ners, this approach may suffer from non-termination for recursive
domains.

A possible approach to mitigate this issue would be to limit the
maximum decomposition depth of the PDT with an iterative deepen-
ing approach, ensuring that all DTs with a decomposition depth of up
to k are explored before incrementally increasing the bound. In prac-
tice guessing the initial depth of decomposition and how to increment
it can be challenging, as it depends on the domain’s hierarchy struc-
ture as well as the problem’s characteristics (objects, initial abstract
task and initial state).

Our approach adopts a more nuanced technique that relies directly
on the domain’s structure. We observe that for each non-recursive ab-
stract task, the process of repeatedly decomposing this abstract task
is finite. Therefore, we only need to limit the decomposition of recur-
sive abstract tasks to ensure completeness. We use the following ap-
proach: for each recursive abstract task t in the PDT, we prevent any
of its children or transitive children from being identical to t. Specif-
ically, if a node labeled by a method m is a child or transitive child of
a node labeled by an abstract task t, and one of the method m’s sub-
tasks is t, then we exclude m from the PDT. This technique ensures
that the exhaustive expansion of our PDT is finite. If no solution DT
is found when the PDT is fully developed with these restrictions, we
then incorporate all the omitted methods m and their subtasks into
the PDT and repeat the process. This approach allows our algorithm
to achieve completeness. [16] have proposed a very similar technique
to avoid infinite loops for their TOHTN planner HyperTensionN.

Empirically, this methodology has been effective. Our planner was
capable of solving problems from both the 2020 and 2023 bench-
marks of the International Planning Competition (IPC) without need-
ing to insert even once the missing methods into the PDT.

8 Evaluation

8.1 Planners

We compared SibylSat against other state-of-the-art SAT-based TO-
HTN planners to evaluate its performance. The evaluation involved
three planners: SibylSat1, our planner with the approach to ensure
completeness linked with the Glucose solver [3]; Lilotane [21], a
Lifted SAT TOHTN planner and runner-up of the 2020 International
Planning Competition (IPC); and pandaPIsatt-1iB [4], an improved
version of their original TOHTN planner totSAT [5]. The experi-
ments were conducted on a system with an Intel Core i7-12700H
CPU and 32GB of RAM. Each problem instance was given a max-
imum runtime of 10 minutes. The evaluations covered all TOHTN
benchmarks proposed in the IPC 2020 and IPC 2023.

8.2 Evaluation Metrics

The performance of the planners is evaluated using two different met-
rics:

8.2.1 IPC Score

The IPC score measures the speed of the planner in solving a prob-
lem. The score ranges from 0 to 1 for each problem, with 1 indicating
that the planner solved the problem in less than one second and 0 in-
dicating a timeout. The IPC score is calculated as follows:

1 source code is available at https://github.com/gaspard-quenard/sibylsat

IPC Score =

{
0 If no plan is found

min
(
1, 1− log(t)

log(T )

)
if a plan is found.

where T is the maximum runtime allowed for finding a plan, and
t is the time taken to find a plan, in seconds.

8.2.2 Quality Score

The quality score measures the makespan (i.e., the total number of
actions in a plan). It ranges from 0 to 1, with 1 indicating the shortest
plan and 0 indicating that no solution was found. The quality score
is calculated as follows:

Quality Score =

{
0 If no plan is found
Cref

C
if a plan is found.

where C is the makespan of the plan found by the planner and
Cref is the best makespan among all evaluated planners.

8.3 Results

Domain #
in

st
an

ce
s

Si
by

lS
at

L
ilo

ta
ne

Pa
nd

aP
Is

at
t-

1i
B

AssemblyHierarchical 30 2.61 3.89 4.05
Barman-BDI 20 16.42 15.40 15.05
Blocksworld-GTOHP 30 25.66 22.56 21.11
Blocksworld-HPDDL 30 6.74 0.80 2.91
Childsnack 30 27.09 26.78 21.56
Depots 30 25.49 22.05 24.80
Elevator-Learned-ECAI-16 147 146.91 114.23 137.45
Entertainment 12 8.49 2.46 11.53
Factories-simple 20 6.12 3.77 5.99
Freecell-Learned-ECAI-16 60 7.31 5.26 6.25
Hiking 30 24.87 22.07 18.89
Lamps 30 15.40 0 17.31
Logistics-Learned-ECAI-16 80 60.94 28.48 49.00
Minecraft-Player 20 2.66 2.49 1.43
Minecraft-Regular 59 32.78 29.55 29.82
Monroe-Fully-Observable 20 18.38 19.09 11.56
Monroe-Partially-Observable 20 17.07 18.21 9.47
Multiarm-Blocksworld 74 11.66 1.87 9.06
Robot 20 10.92 10.55 10.75
Rover-GTOHP 30 21.74 18.05 18.54
Satellite-GTOHP 20 14.70 12.39 14.64
SharpSAT 21 10.21 8.35 8.61
Snake 20 19.79 19.41 16.57
Towers 20 9.51 8.11 5.98
Transport 40 35.05 31.18 35.49
Woodworking 30 26.41 30 22.01
Coverage 948 706 583 664
Normalized coverage 26 18.97 15.45 17.61
IPC score 604.93 477.0 529.83
Normalized IPC score 16.06 13.22 13.93
Quality score 689.53 520.83 606.49
Normalized quality score 18.37 14.17 15.91

Table 1: Performance of each planner on the IPC 2020 and IPC 2023
benchmarks. Each cell contains the IPC score for the planner in a
specific domain. Total coverage, total quality score, and total IPC
score, along with their normalized values per domain, are displayed
in the last six rows.

An overview of the results for the coverage, IPC score, and
quality score is presented in Table 1. We observe that, among the 26



domains in the benchmarks, our planner achieves a better IPC score
in 19 of them and also surpasses other planners in terms of coverage
and quality score. Note that the quality score is computed based on
the first solution DT found, and therefore does not include any plan
improvement procedures, such as the one proposed by Lilotane,
which allows finding the solution DT with the shortest plan within a
PDT at the cost of a higher runtime.

To verify if the expansion strategy proposed by SibylSat effec-
tively allows exploring a smaller part of the search space before find-
ing a solution DT, we compare in Figure 3 the number of methods
developed before finding a solution DT by Lilotane and SibylSat, as
both use the same structure to represent the search space. The figure
shows that our approach generally reduces the number of methods
developed before finding a solution DT in most domains. In some
domains, such as Towers and Childsnack, the number of methods de-
veloped by our planner is similar to that of Lilotane because Lilotane
already develops the minimal number of nodes in its structure to find
a solution DT. The only benchmark where our planner develops more
methods than Lilotane is the AssemblyHierarchical domain (purple
star markers in Figure 3). This is reflected in the results, as it is the
only benchmark where SibylSat’s IPC score is lower than that of both
Lilotane and PandaPIsatt-1iB. An analysis of the AssemblyHierar-
chical domain reveals the underlying reason for this outcome. Most
of the abstract tasks in this domain are recursive and interconnected,
leading to a larger set of possible effects for each task. Because of
this complexity, the possible effects of each abstract task are exten-
sive and often lead our planner to find impractical relaxation solution
DT. Improving our algorithm for the inference of possible effects of
the abstract tasks could likely assist with this type of problem.

Figure 3: Comparison of the number of methods developed by Sibyl-
Sat and Lilotane. A different marker is used for each benchmark.

9 Related Work

The use of SAT-based HTN planners was first introduced by Mali
and Kambhampati in 1998 [17], although their representation of
HTN problems differed significantly from the current formalisms

and their encoding was incapable of handling recursive domains. De-
spite this early exploration, there was a two-decade gap in research
that specifically focused on translating HTN planning problems into
propositional logic. This changed with the introduction of totSAT in
2018 [5], a SAT-based translation of TOHTN planning which outper-
formed other state-of-the-art HTN planners and revitalized interest in
this approach. Unlike classical planning, which extends encodings it-
eratively along the length of the final plan, totSAT uses a breadth-first
search to extend encodings along the depth of the hierarchy. Follow-
ing this work, Behnke et al. refined their approach to handle partially
ordered HTN planning [6], optimal plan finding [7], and proposed
techniques to prune the search space and enhance their encoding [4].

Concurrently with totSAT, Schreiber et al. proposed a new en-
coding that was the first to leverage incremental SAT solving [22]
for HTN problems. An enhancement of this approach led to the de-
velopment of the Tree-REX planner [23], which explores the search
space similarly to totSAT but whose translation to propositional logic
is specifically designed for incremental SAT solving, providing im-
proved performance and smaller encodings. Following this work,
Schreiber et al. introduced Lilotane [21], a successor to Tree-REX
and the first lifted TOHTN SAT-based planner. Lilotane is able to
avoid the costly grounding process by using a lazy instantiation
approach for tasks and methods, allowing free arguments where
needed, resulting in SAT formulas that are considerably smaller than
previous encodings.

10 Conclusion
In this paper, we have presented a novel SAT-based approach for
solving TOHTN planning problems that uses a SAT solver both for
searching for solutions and guiding the exploration of the search
space. Specifically, we demonstrated how encoding a relaxed prob-
lem can help uncover a heuristic with a SAT solver, which can then be
used to identify promising areas in the search space. We have shown
that our planner, which uses this heuristic to greedily explore the
search space, outperforms other state-of-the-art SAT-based TOHTN
planners in runtime and plan quality. This work paves the way for
integrating heuristic information into SAT-based TOHTN planning.

In future work, we plan to explore methods beyond our current
greedy search strategy. Specifically, we aim to determine if iden-
tifying multiple promising areas within the search space using our
heuristic, then ranking and prioritizing them with classical HTN
heuristics [13, 14, 15], could lead to improved performance.

11 Acknowledgments
This work has been partially supported by MIAI@Grenoble Alpes,
(ANR-19-P3IA-0003).



References
[1] R. Alford, U. Kuter, and D. S. Nau. Translating HTNs to PDDL: A

Small Amount of Domain Knowledge Can Go a Long Way. In IJCAI,
volume 9, pages 1629–1634, 2009.

[2] R. Alford, G. Behnke, D. Höller, P. Bercher, S. Biundo, and D. Aha.
Bound to plan: Exploiting classical heuristics via automatic translations
of tail-recursive HTN problems. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 26, pages
20–28, 2016.

[3] G. Audemard and L. Simon. On the glucose SAT solver. International
Journal on Artificial Intelligence Tools, 27(01):1840001, 2018.

[4] G. Behnke. Block compression and invariant pruning for SAT-based
totally-ordered HTN planning. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 31, pages 25–
35, 2021.

[5] G. Behnke, D. Höller, and S. Biundo. totSAT-Totally-ordered hierarchi-
cal planning through SAT. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[6] G. Behnke, D. Höller, and S. Biundo. Bringing order to chaos–A com-
pact representation of partial order in SAT-based HTN planning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 7520–7529, 2019.

[7] G. Behnke, D. Höller, and S. Biundo. Finding Optimal Solutions in
HTN Planning-A SAT-based Approach. In IJCAI, pages 5500–5508,
2019.

[8] G. Behnke, F. Pollitt, D. Höller, P. Bercher, and R. Alford. Making
translations to classical planning competitive with other HTN planners.
In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 9687–9697, 2022.

[9] K. Erol, J. A. Hendler, and D. S. Nau. UMCP: A Sound and Complete
Procedure for Hierarchical Task-network Planning. In Aips, volume 94,
pages 249–254, 1994.

[10] D. Fišer. Lifted fact-alternating mutex groups and pruned grounding of
classical planning problems. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 9835–9842, 2020.

[11] T. Geier and P. Bercher. On the decidability of HTN planning with
task insertion. In IJCAI Proceedings-International Joint Conference on
Artificial Intelligence, volume 22, page 1955, 2011.

[12] I. Georgievski and M. Aiello. HTN planning: Overview, comparison,
and beyond. Artificial Intelligence, 222:124–156, 2015.

[13] D. Höller, P. Bercher, G. Behnke, and S. Biundo. A generic method to
guide HTN progression search with classical heuristics. In Proceedings
of the International Conference on Automated Planning and Schedul-
ing, volume 28, pages 114–122, 2018.

[14] D. Höller, P. Bercher, G. Behnke, and S. Biundo. On Guiding Search
in HTN Planning with Classical Planning Heuristics. In IJCAI, pages
6171–6175, 2019.

[15] D. Höller, P. Bercher, G. Behnke, and S. Biundo. HTN planning as
heuristic progression search. Journal of Artificial Intelligence Research,
67:835–880, 2020.

[16] M. C. Magnaguagno, F. R. Meneguzzi, and L. De Silva. HyperTensioN:
A three-stage compiler for planning. In Proceedings of the 30th Inter-
national Conference on Automated Planning and Scheduling (ICAPS),
2020, França., 2020.

[17] A. D. Mali and S. Kambhampati. Encoding HTN Planning in Proposi-
tional Logic. In AIPS, pages 190–198, 1998.

[18] V.-H. Nguyen, V.-Q. Nguyen, K. Kim, and P. Barahona. Empirical
Study on SAT-Encodings of the At-Most-One Constraint. In The 9th
International Conference on Smart Media and Applications, pages 470–
475, 2020.

[19] C. Olz and P. Bercher. Can They Come Together? A Computational
Complexity Analysis of Conjunctive Possible Effects of Compound
HTN Planning Tasks. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 33, pages 314–323,
2023.

[20] C. Olz, S. Biundo, and P. Bercher. Revealing hidden preconditions
and effects of compound HTN planning tasks–a complexity analysis.
In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 11903–11912, 2021.

[21] D. Schreiber. Lilotane: A lifted SAT-based approach to hierarchical
planning. Journal of artificial intelligence research, 70:1117–1181,
2021.

[22] D. Schreiber, D. Pellier, H. Fiorino, and T. Balyo. Efficient SAT en-
codings for hierarchical planning. In 11th International Conference on
Agents and Artificial Intelligence (ICAART 2019), 2019.

[23] D. Schreiber, D. Pellier, H. Fiorino, et al. Tree-REX: SAT-based tree ex-
ploration for efficient and high-quality HTN planning. In Proceedings

of the International Conference on Automated Planning and Schedul-
ing, volume 29, pages 382–390, 2019.


