

Efficient conversion of hemicellulose into high-value product and electric power by enzyme-engineered bacterial consortia

Bo Liang, Jing Yang, Chen-Fei Meng, Ya-Ru Zhang, Lu Wang, Li Zhang, Jia Liu, Zhen-Chao Li, Serge Cosnier, Ai-Hua Liu, et al.

▶ To cite this version:

Bo Liang, Jing Yang, Chen-Fei Meng, Ya-Ru Zhang, Lu Wang, et al.. Efficient conversion of hemicellulose into high-value product and electric power by enzyme-engineered bacterial consortia. Nature Communications, 2024, 15 (1), pp.8764. 10.1038/s41467-024-53129-0. hal-04744227

HAL Id: hal-04744227 https://hal.univ-grenoble-alpes.fr/hal-04744227v1

Submitted on 18 Oct 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

- 1 Efficient conversion of hemicellulose into high-value product and electric power by
- 2 enzyme-engineered bacterial consortia
- 3 Bo Liang¹, Jing Yang¹, Chen-Fei Meng¹, Ya-Ru Zhang², Lu Wang¹, Li Zhang¹, Jia Liu¹,
- 4 Zhen-Chao Li², Serge Cosnier^{3,4,5}*, Ai-Hua Liu²*, and Jian-Ming Yang¹*

5

- 6 ¹Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center,
- 7 Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural
- 8 University, Qingdao 266109, China.
- 9 ²Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao
- 10 University, Qingdao 266071, China.
- ³Centre for Organic and Nanohybrid Electronics, Silesian University of Technology,
- 12 Konarskiego 22B, 44-100 Gliwice, Poland
- ⁴Department of Physical Chemistry and Technology of Polymers, Silesian University of
- 14 Technology, M. Strzody 9, 44-100 Gliwice, Poland
- ⁵DCM UMR 5250, Université Grenoble-Alpes, F-38000 Grenoble, France; Departement de
- 16 Chimie Moleculaire, UMR CNRS, DCM UMR 5250, F-38000 Grenoble, France.
- *Correspondence: serge.cosnier@univ-grenoble-alpes.fr
- liuah@gdu.edu.cn
- 19 yjming888@126.com

20

21

Abstract:

As an abundant agricultural and forestry biomass resource, hemicelluloses are hard to be effectively degraded and utilized by microorganisms due to the constraints of membrane and metabolic regulations. Herein, we report a synthetic extracellular metabolic pathway with hemicellulose-degrading-enzymes controllably displayed on *Escherichia coli* surface as engineered bacterial consortia members for efficient utilization of xylan, the most abundant component in hemicellulose. Further, we develop a hemicellulose/ O_2 microbial fuel cell (MFC) configuring of enzyme-engineered bacterial consortia based bioanode and bacterial-displayed laccase based biocathode. The optimized MFC exhibited an open-circuit voltage of 0.71 V and a maximum power density (P_{max}) of 174.33 \pm 4.56 μ W cm⁻². Meanwhile, 46.6% (w/w) α -ketoglutarate was produced in this hemicellulose fed-MFC. Besides, the MFC retained over 95% of the P_{max} during 6 days' operation. Therefore, this work establishes an effective and sustainable one-pot process for catalyzing renewable biomass into high-value product and powerful electricity in an environmentally-friendly way.

Introduction

Lignocellulose, which is produced through photosynthesis by plant, is a huge solar energy reservoir. As a green and sustainable alternative to fossil energy, it has attracted a broad interest to explore lignocellulose biomass for high added-value products and biofuel^{1, 2}. Biological hydrolysis and fermentation process of lignocellulosic biorefinery are regarded as the most promise and eco-friendly approach compared to physical and chemical methods^{3, 4}. As the most abundant component in lignocellulose, cellulose can be easily metabolized by most microorganism owing to only glucose units⁵. Whereas, hemicellulose, accounting for 20-40% of lignocellulose, are hard to be effectively degraded and utilized by many microorganisms due to the heterogeneous structure of hemicellulose and the constraints of effective membrane transporters as well as the metabolic regulations *in vivo*^{6, 7}. Thus, the low utilization efficiency of hemicellulose greatly affect lignocellulosic biorefinery⁸.

Currently, hemicelluloses have been used to produce valuable chemicals such as ethanol, furfural and xylitol⁹. Unfortunately, these processes still experience challenges of low conversion activity and poor stability of cells. For example, the yield of hemicelluloses-bioethanol is lower than that of bioethanol fermented from cellulose owing to the poor utilization efficiency of polysaccharide and pentose by microorganisms during fermentations¹⁰. Besides, bioelectric energy has been heralded as a one of the most potential renewable energies in the future^{11, 12}. To realize the generation of energy from hemicelluloses biomass, great efforts via recruitment of microbial community (microbial fuel cells, MFCs) have been devoted¹³. However, diverse biological properties in one system result in the instability in bacterial community, which severely limits its large-scale application¹⁴. To

address these challenges, a strategy is highly desirable to realize high-efficient production of biofuels and biochemicals directly from hemicellulose instead of its monosaccharides.

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

As an efficient and green method, enzymatic catalysis has been employed to hydrolyze polysaccharides and oxidize monosaccharides. However, the high-cost and poor stability greatly limit their large-scale applications¹⁵. Meanwhile, microbial fermentation is another main biological approach to produce biofuels and biochemicals. The cell membrane barrier and intracellular metabolic regulation always restrict the highly efficient substrate utilization, especially polysaccharides¹⁶. Enzymes can be displayed on microbial surface and the resulted whole-cell biocatalyst was obtained by large-scale fermentation and directly applied in biocatalytic reactions without tedious protein purification process, which enables to implement complex biochemical reactions even metabolic pathways without the constraints of cell membrane and metabolic regulation 17, 18, 19. Similar with secreted proteins, displayed enzymes could be expressed and folded in periplasm and exported directly across cell membrane of E. coli to the culture medium using Sec secretory system²⁰. The displayed enzymes could be assembled and anchored onto outer membrane by fusing with anchoring motif, which could facilitate their abilities to be recycled and regenerated. In contrast, secreted proteins will be folded in cytoplasm or periplasm, depending on the sec or tat signal sequence used, and then secreted and dispersed in the culture media without geographical restrictions of cell surface, failing to be recycled or regenerated²¹.

Herein, we report on an artificial hemicellulose degrading pathway catalyzed by the engineered bacterial consortia whose enzymes from various origins are recruited to achieve the optimal overall reaction rate in a controlled manner, for the high-efficiently converting

renewable biomass into electric energy and high-value chemical simultaneously in an environmentally-friendly way. The engineered *Escherichia coli* (*E. coli*) (up-stream pathway members) degrade xylan, the most abundant biopolymer in hemicellulose²², into monosaccharides, while the following recombinant *E. coli* (down-stream pathway members) oxidize monosaccharides into α -ketoglutarate accompanied by generating the reduced form of nicotinamide adenine dinucleotide (NADH) (Fig. 1). Thus *denovo* MFC is designed to achieve one-pot efficient production of high added-value chemical of α -ketoglutarate and powerful electricity from hemicellulose biomass in a "one-stone-two-birds" manner, demonstrating a model to efficiently utilize biomass in a sustainable way.

Results and discussion

Bacterial surface displaying enzymes (engineered bacterial consortia) involving in the

saccharification of xylan (up-stream pathway)

Herein, the utilization of xylan experienced two stages, firstly saccharified into monosaccharides (mainly D-xylose), which are then oxidized to produce α -ketoglutarate and release electrons. For the initial phase, hemicellulases hydrolyze β-linkage in the xylan backbone to release monosaccharides. A marine symbiont *Teredinibacter turnerae* was selected as the bacterial endo-β-1,4 xylanases (TtGH8) source. TtGH8 shows a wide variety of glycoside hydrolases activities including β-1,4 xylanases, especially the highest activity on mixed-linkage β-1,3 and β-1,4 xylanases²³, which could expand the panel of substrate used in our system. β-D-xylosidase (SXA) from *Selenominas ruminantium* exhibits good thermo-stability as well as superior activity towards 1,4-β-D-xylooligosaccharides^{24, 25}. Besides, SXA also has α -arabinofuranosidase activity towards arabino xylanases²⁶. The

synergy of these two hemicellulases could break down xylan into monosaccharides. Unfortunately, E. coli BL21 (DE3) can metabolize xylose under the action of xylose isomerase (XylA) and xylulose kinase (XylB)²⁷. Therefore, in order to drive all of the generated xylose by hemicellulase into the designed extracellular metabolic pathway and avoid monosaccharides waste, xylA and xylB genes in E. coli BL21 (DE3) were knocked out. During the first stage, when applying two types of hydrolase-displaying on the surface of bacterial cell, polysaccharide generated from lignocellulose pretreatment could be immediately degraded into monosaccharide by these displayed enzymes in a high efficient way without passing through cell membrane²⁸. TtGH8 and SXA were displayed on cell surface separately or simultaneously as fusion protein using N-terminal region of ice nuclear protein from *P. borealis* (InaPb) as anchoring motif²⁹. The connection manner of cell surface displayed TtGH8-SXA was optimized by introducing linkers Gly-Ser, Gly-Ser-Gly-Gly-Ser-Gly and (Ala-Pro)₇ between TtGH8 and SXA, respectively. Results show that the engineered strains harboring GS and GSGGSG linkers had similar activities. However, (AP)₇ linker influenced the functions of cell surface displayed TtGH8-SXA, and the whole-cell activity reduced 50% compared to that of strain displayed TtGH8-SXA with GS linker. Therefore, Gly-Ser was employed as the linker between TtGH8 and SXA. Surface displaying-enzymes demonstrated obvious expression levels, which were confirmed by Western Blotting (Supplementary Fig. 1) and confocal imaging (Supplementary Fig. 2). Next, biochemical activity assays were conducted to validate biological functions of surface-displayed enzymes by using commercial xylan as substrate using 3,5-dinitrosalicylic acid (DNS) method. The optimized protein expression conditions for displayed enzymes were

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG) and 30 °C (Supplementary Fig. 3). However, when IPTG concentration was over 1.0 mM, the whole-cell activities of engineered strains were declined due to the imbalance of transcription and secretion³⁰. According to results of Quantitative Immunoassay (Supplementary Fig. 4), the number of cell surface displayed proteins were estimated. Strains displayed different amounts of these enzymes, approximately 25560, 25300 and 18020 enzyme molecules for TtGH8, SXA and TtGH8-SXA, respectively. The fewer number of TtGH8-SXA displayed on the surface of per cell suggests the decreased display efficiency for protein with a larger molecule (108 kDa). On the basis of the number of enzymes displayed on cell surface, the effects of single display system and dual-display system on saccharification of hemicellulose were investigated. As can be seen from Supplementary Fig. 5, the strain displaying fusion protein TtGH8-SXA exhibited a 30.37% lower activity towards xylan than the mixture of two strains displaying TtGH8 and SXA individually with molar ratio of 1:1 at the same levels of displayed enzyme molecules, probably due to the lower protein numbers of TtGH8-SXA on cell surface compared to the sum of TtGH8 and SXA single-displayed numbers. Then, the ratio of cell density of two engineered strains was optimized to efficiently hydrolyze xylan into monosaccharides. As indicated in Fig. 2a, different ratios of strain E. coli-TtGH8 to E. coli-SXA resulted in different hydrolysis efficiency with the best ratio of 3:7. TtGH8 and SXA possess different functions during the degradation process of xylan. TtGH8 is responsible for degrading xylan into xylooligosaccharide as well as a small amount of D-xylose and L-arabinose²³. The xylooligosaccharide could be further hydrolyzed into D-xylose and L-arabinose under the action of SXA. So, the amounts of required SXA were higher than those of TtGH8 for full

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

hydrolyzation of xylan into monosaccharides. The hydrolysis efficiency of up-stream bacterial consortia including *E. coli*-TtGH8 and *E. coli*-SXA towards xylan at different concentrations were examined. To quantify the proportion and amounts of pentose in the hydrolysate after strains' treatment, the resultant D-xylose and L-arabinose were determined by HPLC method, accounting for 97.43% and 2.57%, respectively. Although the efficiency of saccharification was increased with the decreasing xylan concentration from 1 g/L to 0.1 g/L, the yields of pentose monomers also reduced accordingly (Supplementary Fig. 6). When corncob xylan was 1 g/L, the hydrolysis efficiency was 65.43% (w/w) after 6 h reaction (Supplementary Fig. 6), which was about 1.42-fold higher than *in vitro* process³¹ and 1.65-fold higher than *in vivo* process reported previously³². When the concentration of xylan continued to increase, the production of pentose failed to rise proportionally. Anyway, this simple bacterial consortium could generate soluble monosaccharides from xylan ready for the subsequent oxidative degradation.

Engineered bacterial consortia involving in oxidation of pentose monosaccharides

(down-stream pathway)

To date, D-xylose metabolism pathway has been found in a few microorganisms, which harbors three catabolic routes, including the Weimberg or Dahms pathway, the xylulose-1-phosphate or ribulose-1-phosphate pathway and the xylose isomerase or xylose reductase-xylitol dehydrogenase pathway³³. *E. coli* can utilize xylose as a carbon source for growth through the native route mediated by XylA and XylB as well as pentose phosphate pathway and the glycolysis. However, the low efficiency limited the application of this pathway in metabolic engineering³⁴. Weimberg route in *Caulobacter crescentus* involves

conversion of D-xylose to α -ketoglutarate by five steps successively catalyzed by XDH, XylC, XylD, XylX and KGSADH³⁵ (Fig. 1). This pathway has been proved to be an attractive route for biosynthesis of various chemicals from xylose^{34, 36, 37}. In our current study, the oxidation of pentose and the transferring of electrons could be realized by employing this efficient pathway, during which 1 molecule of α -ketoglutarate and 4 electrons per pentose unit can be generated.

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

To identify the biological activity of each enzyme involved in Weimberg pathway, the in vitro activities of the purified enzymes were measured. Proteins expression conditions were optimized (Supplementary Fig. 7) and enzymes were purified to homogeneity through Ni²⁺ column affinity chromatography before SDS-PAGE analysis (Supplementary Fig. 8). In this first step of Weimberg pathway, D-xylose is oxidized into D-xylono-lactone and generates NADH catalyzed by XDH using NAD⁺ as coenzyme. So, the activity of XDH was monitored by measuring the absorbance at 340 nm, typical absorption peak of NADH. As listed in Supplementary Table 3, the enzymatic activity of XDH was 1195.00 ± 8.60 U/mg. To examine the activity of XylC, D-xylono-lactone was used as substrate to produce D-xylonic acid. The enzymatic activity of XylC was 146.93 ± 2.16 U/mg, which was 7-fold lower than that of XDH (Supplementary Table 3). Subsequently, D-xylonic acid would be transformed into 2-keto-3-deoxyxylic acid by XylD with an activity of 77.00 ± 3.00 U/mg. The activity of KGSADH is 54.00 ± 6.00 U/mg, which was also monitored by measuring the generation of NADH using analogous glutaraldehyde as substrate. Finally, the enzymatic activity of XylX was determined only 35.65 ± 0.25 U/mg (Supplementary Table 3) by a coupled assay with XylD and KGSADH. Thus XylX possessed the lowest activity among these five enzymes

involved in Weimberg pathway. Therefore, all of the enzymes had biological functions, but the conversion of 2-keto-3-deoxyxylic acid to 2,5-dioxopentanoate catalyzed by XylX may be a limiting step in the overall route, as proposed in other literatures³⁷.

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

On the basis of the *in vitro* analysis of these five members in Weimberg pathway, cell-surface display systems were constructed. To confirm that the localization of enzymes on the surface of E. coli using InaPb anchoring motifs, Western-Blot analysis of outer membrane fraction and immunofluorescent labeling of cells were conducted. All the distinct bands of expected sizes from outer membrane fractions were found (Supplementary Fig. 9), confirming that the introduced genes in different recombinant plasmids were expressed obviously. Compared with the control strain, green fluorescence was visualized for strains samples by confocal microscope (Supplementary Fig. 10). To ascertain the displayed enzymes possessed functions on the surface of bacteria, the whole-cell was regarded as the catalyst in the enzymatic activity assay. After optimizing the protein expression conditions for displayed enzymes (Supplementary Fig. 11), the whole-cell activities were determined. As depicted in Tables S3 and S4, XDH-displaying E. coli exhibits the highest activity of 1.25 ± 0.04 U/OD₆₀₀ with $k_{\rm cat}$ value of 11.34 \pm 1.21 s⁻¹. The whole cell activity of E. coli-XylC was significantly lower than that of E. coli-XDH. So, the co-display of XDH and XylC would lead to the imbalance of cascade reaction. Therefore, the maximum cascade reaction rate could be achieved by separately displaying XDH and XylC on cell surface and regulating the ratio of strain E. coli-XDH and E. coli-XylC. On the contrary, XylX-displaying E. coli shows the lowest activity (0.044 \pm 0.003 U/OD₆₀₀) with $k_{\rm cat}$ value of 0.07 \pm 0.006 s⁻¹, which corresponds to the in vitro data. These results reveal that XylX was the rate-limiting enzyme in the whole

pathway, so the highest overall reaction rate could be realized by adjusting the level of *E. coli*-XylX in engineered bacterial consortia.

Considering the imbalance of activities between E. coli displaying enzymes, the dual-display and tri-display systems were developed to accelerate the overall reaction rate of the latter half of the pathway. The Western Blotting analysis and confocal imaging micrographs indicate the successful expression and display of fusion enzymes on cell surface (Supplementary Fig. 9 and Supplementary Fig. 10). Unfortunately, the degradation of triple fusion protein XylX-XylD-KGSADH was observed, implying the unstable presentation of much larger protein (157 kDa) on cell surface. The overall reaction rates from D-xylonic acid to α-ketoglutarate were varied using different display systems as biocatalysts. Among them, the bacterial consortia containing XylD-KGSADH-displaying E. coli (E. coli-XylDK) and XylX-displaying E. coli (E. coli-XylX) exhibited the best catalytic efficiency when using D-xylonic acid as substrate and NADH as indicator (Fig. 2b). Then, the cell density ratios of down-stream pathway were optimized to realize the maximum overall reaction rate from D-xylose to α-ketoglutarate. Considering the highest activity of E. coli-XDH in the five whole-cell catalysts, the ratio of E. coli-XDH in the prepared bacterial consortia was controlled at a lower level. The ratios of other three strains, including E. coli-XylC, E. coli-XylDK and E. coli-XylX, were varied to realize the highest overall reaction rate from D-xylose to α -ketoglutarate. As shown in Fig. 2c, the ratios of E. coli-XylDK and E. *coli*-XylX had obvious synergistic effect on the generation of the final product α -ketoglutarate.

244

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

245

Thus, the Weimberg pathway can function in the engineered bacterial consortia.

The integration of the engineered bacterial consortia for producing α -ketoglutarate

To integrate the entire pathway for degrading xylan, according to above optimized enzyme-displaying strain ratios in up-stream pathway and down-stream pathway, these involved enzyme-displaying strains were mixed into bacterial consortia with different ratios of cell densities in the saccharification of xylan into pentose and the oxidation pentose into α -ketoglutarate. The most appropriate ratio was 3:7 for bacterial consortia in up-stream route to down-stream route with the total OD₆₀₀ of 10.0 taking the titer of α -ketoglutarate as evaluation criterion (Fig. 2d). These results demonstrate that the imbalanced enzymes activities could be adjusted by optimizing strain ratios.

 α -Ketoglutarate is not only an important intermediate metabolite in cells, but also is widely used as antioxidant and nutrient supplements in food and pharmaceutical fields³⁸. Due to the low efficiency and complex process of chemical synthetic route³⁹, α -ketoglutarate is 10 times more expensive than other common organic acids such as citric acid and lactic acid. Moreover, the usage of toxic chemical reagent cyanide in chemical reaction process has aroused the concerns of environmental pollution. The microbial synthesis method is characterized as cost-effective, high efficient and eco-friendly⁴⁰. Until now, *Yarrowia lipolytica* and *Corynebacterium glutamicum* have been engineered as microbial cell factories to produce α -ketoglutarate using various substrates, such as raw glycerol and xylose (Table 1). Compared with these substrates, hemicellulose is considered to be the most promising feedstock due to its global availability and cost-effective benefits. Herein, to the best of our knowledge, the employment of renewable hemicellulose to produce α -ketoglutarate was realized for the first time with the yield of 47% (g/g) within 6 h *in vitro* one-pot reaction by

the engineered bacterial consortia saccharification and oxidation pathway. Our yield reaches the highest level within 6 h, which is significantly shorter than over 90 h for microbial cell factories using cost-ineffective glycerol and xylose as substrates (Table 1). It is worth noting that, as the pivot metabolites among tricarboxylic acid cycle (TCA cycle), glyoxylate cycle and amino acid metabolism, the generation of α -ketoglutarate would be impacted by complex metabolic regulation *in vivo*. In this study, extracellular pathway circumvented this bottleneck and improved the synthetic efficiency. Thus, the bioproduction of α -ketoglutarate from hemicellulose in this work realized the efficient conversion of agricultural and forestry residues to high-added value compound.

277

278

279

280

281

282

283

284

285

286

287

288

289

268

269

270

271

272

273

274

275

276

The integration of the engineered bacterial consortia for generating electricity in MFC

Fig. 3 describes the mechanism of the two-compartment xylan/O2 MFC separated by a Nafion® membrane. The mediator-less anodic compartment containing multi-walled carbon nanotubes (MWCNTs) covered carbon cloth (CC) electrode, which was modified with engineered bacterial consortia (CC/MWCNTs/bacterial-consortia) and fuel of xylan, while the cathodic compartment contained MWCNTs-coated CC electrode, which was modified with E. 2,2'-azino-bis coli-displayed laccase (Lac) (CC/MWCNTs/E.coli-Lac) and (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as the redox mediator. Lac was confirmed to display on the cell surface by SDS-PAGE, Western-Blot and confocal imaging (Supplementary Fig. 12) with good catalytic activity (Supplementary Fig. 13), which catalyzes the O₂ reduction at the cathode (Fig. 4a). E.coli-Lac exhibits the maximum activity at pH 5.0 (Supplementary Fig. 13c). The synthetic metabolic pathway on the anode 290 compartment was designed to degrade xylan into α-ketoglutarate, generating 4 electrons per

pentose unit. The reactions can be expressed as:

- 292 Anode: $Xylan \xrightarrow{\text{engineered bacterial consortia}} \alpha \text{-ketoglutarate} + 4e^- + 4H^+ (1)$
- 293 Cathode: $O_2 + 4e^- + 4H^+ \rightarrow 2H_2O$ (2)

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Overall: Xylan + $O_2 \rightarrow \alpha$ -ketoglutarate + $2H_2O(3)$

The performance of the biocathode and bioanode was examined by Cyclic voltammetry (CV). At the CC/MWCNTs/E.coli-Lac, ABTS exhibited a redox pair in the absence of oxygen (red line), while the cathodic specific current significantly enhanced in the presence of O₂ (Fig. 4a, light blue line), indicating that with ABTS as the electron transfer mediator, the bacteria-displayed laccase catalyzes the reduction of oxygen. For bioanode, as shown in Fig. 4b, an onset potential at 0.13 V (vs. Ag/AgCl) for enzyme-displayed E. coli was observed (red line). Interestingly, the onset potential for CC/MWCNTs/bacterial-consortia was negatively shifted to 0 V (blue line), suggesting that the generated NADH from NAD+ was catalytically oxidized by MWCNTs⁴³. 9,10-anthraquinone-2,7-disulfonic acid (AQDS) was used as electron mediator to investigate the impact of electron transfer mechanisms on the performance of bioanode. As shown in Fig. 4b, the two reduction peaks (green curves) at -0.6 V and -0.9 V were the reduction peaks of AQDS with MWCNTs modified CC as electrode. The oxidation peak of AQDS was around -0.5 V on the purple curve, which was shifted to around -0.4 V due to the influence of CC modified with bacterial consortia. The oxidizing redox peak around -0.1 V on the purple curve was the oxidation peak of NADH produced by the catalysis of bacterial consortia in the presence of AQDS. AQDS can lower the onset potential of NADH which was produced by cell-surface displayed enzymes' catalysis. The onset potential was negatively shifted to -0.20 V (purple line). Therefore, this mediator was implemented in the electrolyte of anodic chamber in the following studies.

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

Then, we studied the performance of MFCs composed of the above prepared bioanode and biocathode by varying the way of loading engineered strains. The current density (j_{max}) of the generated MFC was $371.67 \pm 10.36 \,\mu\text{A}\cdot\text{cm}^{-2}$ when bacterial consortia were immobilized on electrode (Fig. 4c, light green line). However, the j_{max} of MFC dropped to 297.54 \pm 10.24 μA·cm⁻² when bacterial consortia were dispersed in bioanode chamber (Fig. 4c, blue line). Then the effects of different concentrations of AQDS on the performance of xylan/O₂ MFC were investigated. The results show that the highest value of power was achieved when 10 mM of AQDS was used (Fig. 4c, peach pink line). The similar trends were observed in Fig. 4d, and the constructed MFC reached the maximum power output (P_{max}) of 68.25 ± 2.38 μW·cm⁻² when bacterial consortia immobilized on bioanode in the presence of 10 mM of mediator AQDS. Shewanella oneidensis is one of the most well-known electricigen in nature⁴⁴. The attempt to engineer S. oneidensis MR-1 using D-xylose as fuel to generate bioelectricity in MFC by introducing D-xylose metabolic route shows restricted power owing to poor efficiency of this exogenous pathway⁴⁵. Herein, we reconstituted a D-xylose oxidative pathway and electron transfer chain on cell surface by displaying Weimberg pathway members. There are two steps can produce NADH for generating power, which were catalyzed by XDH and KGSADH. Finally, the oxidation of one D-xylose can yield two NADH and four electrons during the whole process, and the final metabolite α-ketoglutarate can be used as the key precursor of several medicine and nutrient substance in food as well as feed⁴⁶.

The optimization of MFC performance

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

To boost the power output of MFC, effects of several parameters on electricity generation were investigated. First, the loading amounts of bacterial consortia on the bioanode was optimized. The $j_{\rm max}$ of MFCs was 671.33 \pm 26.21 μ A·cm⁻², corresponding $P_{\rm max}$ of 112.87 \pm 7.83 µW·cm⁻² when loading 10 OD₆₀₀ bacterial consortia (Fig. 5a, peach pink line). The results indicate that the bacterial cell loading exerted effects on power output since the insulated nature of concentrated cells would cause ohmic losses⁴⁷. Then, MFCs performance fueled by commercial xylan from corncob was tested under the optimal conditions established according to above experiments. As shown in Fig. 5b, when the concentrations of corncob xylan increased from 0.5 g/L to 1 g/L, the $P_{\rm max}$ boosted from 111.82 \pm 5.35 $\mu \text{W} \cdot \text{cm}^{-2}$ (green line) to $174.33 \pm 4.56 \,\mu\text{W}\cdot\text{cm}^{-2}$ (peach pink line). However, further increase in concentrations of xylan resulted in 12.22% decrease in power density (blue line), probably due to the poor solubility and high viscosities of commercial xylan prepared in buffer solution. The $P_{\rm max}$ of our MFC fueled by 1 g/L xylan is $174.33 \pm 4.56 \,\mu\text{W}\cdot\text{cm}^{-2}$, which is significantly higher than those for xylan-fueled MFCs inoculated with activated sludge (0.609 µW·cm⁻²) or rumen microorganisms (40.5 µW·cm⁻²)^{13, 48}. In order to investigate the release and transfer of electrons in bioelectrochemical system, Faraday efficiency (η_F) was determined (Supplementary Fig. 14). The current peaked at 2.07 mA at the onset time and then declined over time. In a batch reaction of 35 h, the cumulative electric charges generated from 50 mL of reaction solution were 58.34 C. The concentration of product α-ketoglutarate determined by HPLC was 3.19 mM, convertible to the yield of 46.6%, suggesting that the same amount of D-xylose was consumed and corresponding to

61.58 C of electricity. In consideration of a conversion efficiency of 97% from NADH to electrons determined in a previous study⁴⁹, the η_F value was calculated to be 97.7% (58.34÷61.58÷0.97×100%).

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

359

357

358

Long-term electricity generation of MFCs fueled by hemicellulose fractions of corncob As xylan is a predominant component of hemicellulose, we next examined the performance of MFCs powered by real hemicellulose. Biomass corncob pretreated by heating in alkaline solution after neutralizing was used as fuels for power generation⁵⁰. 1.06 g/L xylan from the pretreated hydrolysates of corncob was fueled, in which D-xylose was not detectable by HPLC. To supply constant fuels to MFC, the above pretreated hemicellulose was supplemented once a day to roughly maintain the same level. Then we examined the performance of the MFC using enzyme-engineered-bacterial-consortia-modified-bioanode. As shown in Fig. 6, the P_{max} of enzyme-bacterial-consortia-bioanode based MFC was 162.73 \pm μW·cm⁻² (Fig. 6, black line). The remarkable power output of the 3.69 enzyme-bacterial-consortia-bioanode based MFC is much excelled over microbial community based MFC¹³, possibly because diverse biological properties of various microorganisms in one system may result in the instability in bacterial community. In addition, the long-term generation of electricity was also evaluated. The bacterial-consortia-bioanode based MFC maintained more than 95% of the P_{max} after 6 days' operation. On the contrary, the poor stability was observed in other biomass-based sugar-fed enzymatic fuel cells⁵¹. Besides, the conversion of pretreated hemicellulose from corncob to α-ketoglutarate was also monitored during 6 days. The yield of α-ketoglutarate was 44.3% during the 6 days' long-term electricity generation of MFC fueled by the pretreated hydrolysates of corncob (Fig. 6, red line).

Moreover, the morphology of the bacterial-consortia-bioanode was observed by scanning electron microscope (SEM). After generating power for 6 days, the *E. coli* consortia and MWCNTs were still closely bound to the CC, while the *E. coli* were intact (Supplementary Fig. 15). These results indicate that the cells survived and stayed stable on CC during 6 days' operation. These results suggest that the capabilities of engineered bacterial consortia can efficiently convert hemicellulose biomass into high-value products and electric power.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

380

381

382

383

384

385

In summary, a synthetic pathway that can generate high value-added chemical of α-ketoglutarate and 4 electrons from hemicellulose in a controllable manner was successfully constructed by integrating six enzyme-displayed strains into a high-efficient bacterial consortia through tuning the expressed enzyme molecules and adjusting ratios of consortia members. The production of α-ketoglutarate with excellent yield of 0.47 g/g was realized within 6 h by the enzyme-engineered bacterial consortia surface-displayed saccharification and oxidation pathway of xylan, the most abundant hemicellulose type. Then a two-compartment xylan/O2 MFC was assembled using enzyme-bacterial consortia modified bioanodes and a laccase-displayed strain modified biocathode, realizing the direct conversion of biomass into electricity and α-ketoglutarate. The optimized MFC realized 46.6% (w/w) yield of α -ketoglutarate, the highest OCV and the largest P_{max} . The Faraday efficiency was 97.7%. Furthermore, this MFC exhibited a considerable power output and long-term stability towards real biomass samples. To the best of our knowledge, this is the first example to use engineered bacteria consortia as biocatalyst for efficient utilization of hemicellulose, representing an important step toward further improving conversion of biomass to high value-added chemical and powerful electric energy. Based on these results, we envision that

controllably enzyme-engineered bacterial consortia would find a wide range of applications in the fields of metabolic engineering, synthetic biology, enzyme engineering, bioenergy and enzymatic electrosynthesis.

406 407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

405

403

404

Methods

Strains and chemicals

All strains and plasmids used in this study are listed in Supplementary Table 1. The primers used are listed in Supplementary Table 2. E. coli DH5a was used for gene recombinant manipulation and E. coli BL21 (DE3) $\Delta xylAB$ was used as host to express recombinant proteins. Strains of E. coli carrying recombinant plasmids were routinely grown in Luria-Bertani (LB) medium (10 g/L tryptone, 10 g/L NaCl, 5 g/L yeast extract) at 37 °C and 200 rpm. Whenever necessary, antibiotic (kanamycin, 50 µg/mL) was added. Taq DNA Polymerase and all restriction endonucleases were purchased from Fermentas (St. Leon Rot, Germany). Kits used for molecular cloning were obtained from Sparkjade Biotech Co., Ltd (Qingdao, China). Corncob xylan to represent hemicellulose were purchased from Meryer Co. Ltd (Shanghai, China). 4-nitrophenyl-β-D-xylopyranoside (PNPX), ABTS, AQDS, D-xylose, L-arabinose, xylono-1,4-lactone, D-xylonic acid lithium salt and α-ketoglutarate were purchased from Sigma-Aldrich (St. Louis, MO, USA). Platinum (Pt) wire, Ag/AgCl electrode and Nafion 117 membrane (N117) were purchased from Incole Union Technology Co. Ltd (Tianjin, China). Multi-walled carbon nanotubes (MWCNTs) were purchased from Macklin Biochem Technology Co. Ltd (Shanghai, China). Corncob was obtained from Corn Research Center of Qingdao Agriculture University. Other chemicals were purchased from Solarbio Science & Technology Co., Ltd (Beijing, China).

Plasmids construction

Construction of the knockout plasmids For genetic operations into the genome of *E. coli* BL21 (DE3), the pRE112 suicide vector was utilized. To construct plasmids pRE112- $\Delta xylAB$, approximately 862 bp upstream and 857 bp downstream fragments of the xylA and xylB genes were amplified using the upstream primers xylAB-Up-F/R and downstream primers xylAB-Down-F/R, respectively, and inserted into the Kpn I site of pRE112. The plasmid pRE112- $\Delta xylAB$ were transferred from *E. coli* χ 7213 to *E. coli* BL21(DE3) by conjugation. Suitable recombinants were identified by antibiotic resistance screening and sucrose reverse screening. The resulting strain *E. coli*- $\Delta xylAB$ was identified by PCR via the primers xylAB-1-F/R.

Construction of anchoring motif expressing plasmid

The gene encoding N-terminal ice nucleation protein originating from *Pseudomonas borealis*was amplified from vector pTInaPbN-Xdh by PCR using primers INP-F/INP-R, and inserted
into the *Nco I/Nde* I site of pET-28a (+) to generate plasmid pYJ-00.

Constructions of hemicellulose hydrolytic enzymes expressing plasmids

The gene encoding TtGH8 from *Teredinibacter turnerae* (GenBank No. CP001614.2), SXA from *Selenominas ruminantium* (GenBank No. WP_026766185) were codon-optimized for *E. coli* and synthesized by BGI Co., Ltd (Shenzhen, China). To construct intracellular protein expression vectors pYJ-01 and pYJ-02, TtGH8 and SXA encoding gene and corresponding cloning vector gene were amplified from above cloning plasmids and pET-28a by PCR method using primers pET-28a-F(TtGH8)/pET-28a-R(TtGH8) & TtGH8-1-F/TtGH8-1-R, pET-28a-F (SXA)/pET-28a-R (SXA) & SXA-1-F/SXA-1-R, respectively, and using the

ClonExpress Ultra One Step Cloning Kit (Vazyme Biotechnology, Nanjing, China). To construct intracellular protein expression vectors pYJ-03, pYJ-01 and pYJ-02 vectors were used as PCR templates and pET-28a-TtGH8-F/pET-28a-TtGH8-R & SXA-2-F/SXA-2-R as primers, and two amplified gene fragments were ligated by in-fusion method using the ClonExpress Ultra One Step Cloning Kit. For the construction of plasmids overexpressing enzymes displayed on cell surface, TtGH8 and SXA encoding gene and corresponding cloning vector gene were amplified from above cloning plasmids and pYJ-00 by PCR using primers pET-28a-INP-F (TtGH8)/pET-28a-INP-R (TtGH8) & TtGH8-2-F/TtGH8-2-R, pET-28a-INP-F(SXA)/pET-28a-INP-R(SXA) & SXA-3-F/SXA-3-R, respectively, and using the ClonExpress Ultra One Step Cloning Kit to generate pYJ-04 and pYJ-05. Plasmid pYJ-06 constructed using pYJ-04 pYJ-05 **PCR** templates was and and pET-28a-INP-TtGH8-F/pET-28a-INP-TtGH8-R & SXA-4-F/SXA-4-R as primers by fusion PCR strategy.

Construction of pentose oxidative enzymes expressing plasmids

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

To construct intracellular protein expression vectors pYJ-07, pYJ-08, pYJ-09, pYJ-10 and pYJ-11, the genes encoding XDH, XylC, XylD, XylX, KGSADH were amplified from the genomic DNA of Caulobacter crescentus NA1000³⁵ and corresponding cloning vector gene amplified pET-28a by PCR was from method using primers pET-28a-F (XDH)/pET-28a-R(XDH) & XDH-1-F/XDH-1-R, pET-28a-F (XylC)/PET-28a-R (XylC) & XylC-1-F/XylC-1-R, pET-28a-F(XylD)/pET-28a-R(XylD) XylD-1-F/XylD-1-R, & pET-28a-F(XylX)/pET-28a-R(XylX) & XylX-1-F/XylX-1-R, pET-28a-F(KGSADH)/pET-28a-R(KGSADH) & KGSADH-1-F/KGSADH-1-R, respectively, and using the ClonExpress Ultra One Step Cloning Kit. To construct intracellular protein expression vectors pYJ-12, pYJ-09 and pYJ-11 vectors were used as templates and pET-28a-XylD-F/pET-28a-XylD-R & KGSADH-2-F/KGSADH-2-R as primers, and two amplified gene fragments were ligated by in-fusion method (the ClonExpress Ultra One Step Cloning Kit). For the construction of plasmids overexpressing enzymes displayed on cell surface, XDH, XylC, XylD, XylX, KGSADH encoding genes was amplified from above cloning plasmids and corresponding cloning vector gene was amplified from pYJ-00 by PCR method using primers pET-28a-INP-F(XDH)/pET-28a-INP-R(XDH) &XDH-2-F/XDH-2-R, pET-28a-INP-F(XylC)/pET-28a-INP-R(XylC) & XylC-2-F/XylC-2-R, pET-28a-INP-F(XylD)/pET-28a-INP-R(XylD) XylD-2-F/XylD-2-R, & pET-28a-INP-F(XylX)/pET-28a-INP-R(XylX) & XylX-2-F/XylX-2-R, pET-28a-INP-F(KGSADH)/pET-28a-INP-R(KGSADH) & KGSADH-2-F/KGSADH-2-R, respectively, and using the ClonExpress Ultra One Step Cloning Kit to generate plasmids pYJ-13, pYJ-14, pYJ-15, pYJ-16 and pYJ-17. Plasmid pYJ-18 was constructed using pYJ-15 and pYJ-16 as PCR templates and pET-28a-INP-XylD-F(XylX)/pET-28a-INP-XylD-R(XylX) & XylX-3-F/XylX-3-R primers by fusion PCR strategy (ClonExpress Ultra One Step Cloning Kit). Plasmid pYJ-19 was constructed using pYJ-15 and pYJ-17 as PCR templates and pET-28a-INP-XylD-F(KGSADH)/pET-28a-INP-XylD-R(KGSADH) & KGSADH-3-F/KGSADH-3-R primers by fusion PCR strategy (ClonExpress Ultra One Step Cloning Kit). Plasmid pYJ-20 was constructed using pYJ-19 and pYJ-16 as PCR templates pET-28a-INP-XylD-KGSADH-F/pET-28a-INP-XylD-KGSADH-R and & XylX-4-F/XylX-4-R primers by fusion PCR strategy (ClonExpress Ultra One Step Cloning

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

492 Kit).

493

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

Construction of lac-expressing plasmid

For the construction of plasmids overexpressing lac- displayed on cell surface, the gene encoding laccase from *Bacillus subtilis* ⁵² was subcloned into pYJ-00 to generate pYJ-21 by BGI Co., Ltd (Shenzhen, China).

Purification of cytoplasmic enzymes

Cells expressing seven intracellular enzymes, including TtGH8, SXA, TtGH8-SXA, XDH, XylC, XylD, XylX, KGSADH and XylDK (strain TtGH8, SXA, TtGH8-SXA, XDH, XylC, XylD, XylX, KGSADH and XylDK), were separately grown overnight in LB medium with kanamycin, and induced with 0.5 mM IPTG when cells had reached an OD₆₀₀ of 0.6. After overnight growth at 16 °C, cells were harvested by centrifugation, resuspended in 40 mL 50 mM Tris-HCl (pH 7.0) buffer, broken by ultrasonication and centrifuged at 12000 g for 40 min at 4 °C to remove cell debris and unbroken cells. The soluble extract was applied to a 5 mL Ni-NTA column that had been equilibrated with 50 mM Tris-HCl (pH 7.0). Then the column was washed consecutively with resuspended buffer and several washing buffer (20 mM Tris-HCl pH 7.0, 300 mM NaCl, 1 mM β-mercaptoethanol) containing increasing amounts of imidazole (10, 20, 30 and 50 mM). The bound protein was eluted with elution buffer (20 mM Tris-HCl pH 7.0, 300 mM NaCl, 200 mM imidazole, 1 mM β-mercaptoethanol). Protein dialysis was conducted in a buffer (10 mM Tris-HCl pH 7.0 containing 100 mM NaCl, 1 mM β-mercaptoethanol) at 4 °C. Protein purity was analyzed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and protein concentration was determined by Bradford assay.

Cell-surface display of enzymes and cell-surface location analysis

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

For displaying enzymes on cell surface of E. coli, recombinant strains were cultured in LB medium to an OD600 of 0.6, 0.5 mM of IPTG was used to induce protein expression. For laccase, cells were further cultured overnight at 16 °C, collected by centrifugation and incubated in a buffer of Tris-HCl (50 mM, pH 7.0). The other cells were further cultured at 30 °C overnight, which were collected by centrifugation and incubated in Tris-HCl buffer (50 mM, pH 7.0). To determine the successful display of enzymes on the cell surface, outer membrane proteins of recombinant strains and negative control strain were isolated⁵³. The outer membrane protein fractions of related strains were analyzed by 10% (wt/vol) SDS-PAGE. For Western-Blot assay, samples were transferred to PVDF membranes at 100 mA for 10 min. Anti-6×HisTag mouse monoclonal antibody (catalog number D191001, Sangon Biotechnology, Shanghai, China) at 1:1000 was added and incubated for 3 h at room temperature, then rinsed three times with phosphate buffered saline (PBS) with 0.05%(v/v) Tween-20 (PBST). It was then incubated with goat anti-mouse immunoglobulin G (IgG)-horseradish peroxidase (HRP) conjugate (catalog number D110068, Sangon Biotechnology, Shanghai, China) for 1 h at room temperature, washed three times with PBST and then once with PBS. The conjugation of antigen and antibody was detected with W-TMB chromogenic kit (Sangon Biotechnology, Shanghai, China). For Quantitative Immunoassay, outer membrane proteins of recombinant strains were transferred to low fluorescent background PVDF membranes. Anti-6×HisTag mouse monoclonal antibody at 1:1000 was added and incubated for 3 h at room temperature, then

rinsed three times with PBST. It was then incubated with goat anti-mouse IRDye 800CW fluorescent secondary antibodies (catalog number 926-32210, LI-COR, Inc., Lincoln, NE) for 1 h at room temperature, and then washed with PBST, air dried, wrapped in aluminum foil, and stored at 4 °C. LI-COR Odyssey CLx imaging system was used to detect bands on membrane. The standard curve from known concentrations of purified recombinant XDH run on the same blot was obtained. Specific protein bands are quantified by fluorescent signals (excitation wavelength, 785 nm; emission wavelength, 820 nm) and a linear regression equation generated from recombinant XDH to estimate concentrations of proteins. For fluorescence imaging, the induced cells were washed with PBS and blocked in PBS buffer containing 1% bovine serum protein (BSA) for 30 min at room temperature. Next anti-6xHis tag mouse monoclonal antibody was added (1:100) after blocking, incubated overnight at 4 °C, and incubated for 1 h the next day at room temperature. After three washes with PBS, the cells were incubated with FITC-conjugated Donkey anti-Mouse IgG (1:100) for 2 h at room temperature. The cells after PBS washing were observed with Laser Scanning Confocal Microscope (TCSsp5 II 03040101, Agilent, USA).

Enzymatic activity assay

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

Enzymatic activity was monitored by measuring the optical density at 600 nm (OD₆₀₀) for cells using a Cary-60 UV-VIS spectrophotometer (Agilent Technologies, Inc., Santa Clara, CA). Soluble commercial corncob xylan was prepared by water dissolution. TtGH8 activity was assessed on 1 g/L soluble commercial corncob xylan in 50 mM Tris–HCl buffer pH 7.0 with 10 mM CaCl₂ at 37 °C. The reducing sugars released by TtGH8 hydrolysis reaction was measured by DNS method with xylose as standard⁵⁴. SXA enzymatic activity was detected

using pNPX as the substrate at 37 °C. The product p-nitrophenol shows typical peak at 405 nm, which can be monitored by a spectrophotometer²⁶. Enzymatic activity of XDH was assayed by detecting the generation of NADH at 340 nm and 37 °C using 10 mM D-xylose as substrate as well as 1 mM NAD⁺ as coenzyme. For XylC, it can accelerate the hydrolysis of xylono-1,4-lactone into D-xylonic acid to generate D-xylonic acid, which can reduce the absorbance at 405 nm of p-nitrophenol. Enzyme activity was quantified by measuring the decrease in the absorbance at 405 nm⁵⁵. Spontaneous hydrolysis of xylono-1,4-lactone was analyzed without catalysts. Enzymatic activity of XylD was assayed according to a modified procedure. In a typical assay, the reaction cocktail contained a certain amount of purified or cells and D-xylonic acid. After incubation at 37 °C for a certain period, the samples were mixed with solution containing 1% semi-carbazide hydrochloride and 1.5% sodium acetate. Finally after incubation at 30 °C for 10 min, the 2-keto-3-deoxyxylic acid produced was quantified by detection of the absorbance at 250 nm typical of semicarbazone³⁷. Enzymatic activity of XylX was assayed spectrophotometrically in a coupled assay with the corresponding previous dehydratase XylD and KGSADH.^{37,56} The assay was performed in 50 mM Tris-HCl buffer (pH 7.0) with 10 mM MgCl₂ containing 20 mM D-xylonic acid and 1 mM NAD⁺. After the addition of purified enzymes or enzyme-surface displayed strains, the mixture was incubated at 37 °C. The increasing absorbance at 340 nm caused by NADH produced in the reaction was monitored. Glutaraldehyde was used as the substitute substrate to measure the activity of KGSADH by following the rate of NAD⁺ reduction by measuring the optical density at 340 nm⁵⁷. To determine kinetic constants of cell surface-displayed enzymes, different amounts substrate was used to initiate a series of enzymatic assays. The

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

data were applied to the Michaelis-Menten kinetic model using Graph-Pad Prism 5 software (www.graphpad.com). To determine the optimum pH for the *E. coli*-Lac, all enzymatic activities of the whole-cell catalyst were measured by adding ABTS to the final concentration of 5 mM at 37 °C by varying the pH values of the buffer solution (50 mM), including HAc–NaAc buffer (pH 3–5.5), Na₂HPO₄–NaH₂PO₄ buffer (pH 6) and Tris–HCl buffer (pH 7–9). The oxidation activity of *E. coli*-Lac towards ABTS was calibrated by measuring the absorbance of the supernatant at 420 nm (ε=36 mM⁻¹cm⁻¹, referred to ABTS concentration).

Optimization of protein induced expression conditions

Recombinant strains were cultured in LB liquid medium at 37 °C and 200 rpm. To optimize inducer concentration for overexpressing INP-fused proteins, IPTG at different concentrations of 0.1 mM, 0.5 mM, 1 mM and 1.5 mM were used when cells grew to an OD₆₀₀ value of 0.6. Protein expression was induced overnight, and the activities of whole cell catalyst were determined as above described. In order to investigate the effects of induction temperatures on intracellular and displayed proteins, 0.5 mM of IPTG were added in to cultures when cells grew to an OD₆₀₀ value of 0.6. Protein expression was induced overnight at different temperatures of 16 °C, 25 °C, 30 °C and 37 °C, and the activities of crude extract or whole cell catalyst was determined as above described.

Bioproduction of α-ketoglutarate

Recombinant strains were cultured in LB medium to an OD₆₀₀ of 0.6, 0.5 mM of IPTG was used to induce protein expression. Cells were further cultured at 30 °C overnight, which were collected by centrifugation and incubated in Tris–HCl buffer (50 mM, pH 7.0). To produce α-ketoglutarate, 100 mL of 50 mM Tris–HCl buffer (pH 7.0) with 10 mM MgCl₂, 10 mM

CaCl₂, 1.0 g/L commercial corncob xylan and 4 mM NAD⁺ were incubated with artificial bacterial consortia (OD₆₀₀=10) in a flask, which was shaken in an incubator at 150 rpm and 37 °C for 6 h. The produced α -ketoglutarate was determined by HPLC.

Preparation of bioanode and biocathode

The thickness of CC (CeTech, Taiwan, China) is 0.32 ± 0.02 mm, which was cut into pieces of 1.5×1.5 cm² and washed by sonication in water and anhydrous ethanol, respectively. A 100 μ L of poly (acrylic acid)-MWCNTs dispersion (0.089 mg/cm²) was cast and dried in air to acquire modified CC/MWCNTs. For the preparation of bioanode, 100 μ L of the prepared cells (OD₆₀₀=5.0) were dropped onto the CC/MWCNTs and dried at room temperature to obtain CC/MWCNTs/cells modified electrodes. Then 50 μ L of Nafion solution (0.1 wt%) was syringed to the electrode surface to cover the electrode. For the modification of biocathode, 100 μ L *E. coli*-Lac aqueous dispersion (OD₆₀₀=10.0) was coated on the CC/MWCNTs, and subsequently, 50 μ L of Nafion solution (0.1 wt%) was dropped onto the surface of the resulting electrode, then dried at room temperature. The thus-prepared electrode was denoted as CC/MWCNTs/*E.coli*-Lac. The onset potential is defined as the potential at which the current or current density goes above 1 μ A·cm⁻².

Fabrication of MFC

The dual-chamber hemicellulose/O₂ MFC was assembled with anodic compartment containing the artificial bacterial consortia modified CC/MWCNTs/cells and cathodic compartment containing CC/MWCNTs/*E.coli*-Lac, separated by a Nafion 117 proton exchange membrane (DuPont, USA) with a diameter of 1.6 cm. The anodic electrolyte consisted of 100 mM Tris–HCl buffer (pH 7.0) containing 100 mM NaCl, 10 mM MgCl₂, 10

mM CaCl₂, 4 mM NAD⁺ and xylan. 10 mM AQDS was used as mediator when necessary. The cathodic electrolyte consisted of 100 mM Na₂HPO₄–citric acid buffer (pH 5.0) containing 0.5 mM ABTS. Polarization curves were obtained by performing linear sweep voltammetry (LSV) at the scan rate of 1 mV s⁻¹ and 37 °C. The specific current (I) was recorded in real time. The voltage (V) between the anode and the cathode was set as the Y-axis of polarization curves. The output power (P) was derived via the relationship: $P = V \times I$. The specific current and power were normalized to the geometric area of the anode (1.5 cm × 1.5 cm = 2.25 cm²) to obtain the current density and power density, respectively. The calculations of current density and power density refer to Eq.(1) and Eq.(2), respectively:

 $j_{\text{max}} = I/2.25$ (1)

 $P_{\text{max}} = V \times I/2.25$ (2)

Faradaic efficiency (η_F) assay

The η_F was determined through amperometry at 0.45 V. The generation of current was monitored during a reaction time in a volume of 50 mL at 37 °C. The reaction system composed of 100 mM NaCl, 10 mM MgCl₂, 10 mM CaCl₂ and 4 mM NAD⁺, 1 g/L commercial corncob xylan in 100 mM Tris–HCl buffer (pH 7.0). The production of α -ketoglutarate was detected by HPLC. The total charge (C) was calculated according to the generated current during the whole time. The η_F was calculated using the equation as follows⁵⁸:

643
$$\eta_F = \int I \times dt/(C_{\alpha-KG} \times V \times n \times F)$$
 (3)

where I is the current generated, dt is the time to produce current, $C_{\alpha\text{-KG}}$ is the concentration of produced α -ketoglutarate during the whole time, V is the reaction volume, n is the number of

electrons generated per D-xylose consumed, and F is Faraday constant=96,485 C per mole electron.

Long-term electricity generation of MFCs powered by pretreated hemicellulose

To obtain the hemicellulose from lignocellulose, biomass sample corncob was pretreated 50 . The milled corncob was pretreated by 2.5 M NaOH with a solid to liquid ratio of 1:30 (g/mL) at 115 °C for 1 h. After filtration, the filtrate was neutralized with 1 M acetic acid for use. The amounts of xylan were determined by gradient precipitation with ethanol and then freeze drying 6 . This pretreated hemicellulose was used as fuels to power MFC for monitoring electricity and α -ketoglutarate generation. 100 μ L of the prepared cells (OD₆₀₀=10.0) was dropped onto the 2 mg/mL of MWCNTs coated CC surface (2.25 cm²) and dried at room temperature. The pretreated corncob was supplemented into anodic electrolyte daily to maintain the constant concentration according to that of α -ketoglutarate. LSV was performed every 12 h incubating at 37 °C during 6 days. The produced α -ketoglutarate was determined by HPLC.

Morphology observation of the bio-nanocomposite modified CC

To determine whether the *E. coli* consortia and MWCNT were successfully attached to the CC surface, scanning electron microscopic images of the modified CC were recorded using JSM-7500F scanning electron microscopy (JEOL, Tokyo, Japan). The CC was first washed three times with PBS, soaked with 2.5% glutaraldehyde, and fixed at 4 °C for 12 h. Next, the fixed CC was cleaned three times with PBS for 5 min each time. Then the cleaned CC was dehydrated with 30%, 50%, 70%, 90% and 100% ethanol for 5 min each time. Then the dehydrated CC was further dehydrated with 30%, 50%, 70%, 90%, 70%, 90%, 100% tert-butanol/ethanol

for 5 min each time. After dehydration, the CC was frozen at -20 °C. Next, the frozen CC was put into the freeze-drying machine (Songyuan Huaxing Biotechnology Co., Ltd, Beijing, China) for freeze-drying. Then, the CC was pasted to the copper platform with conductive glue, followed by gold spraying.

Analytical methods

Cell growth was monitored by measuring the optical density at 600 nm (OD₆₀₀) for cells using a Cary-60 UV-VIS spectrophotometer. Concentrations of D-xylose, L-arabinose, α-ketoglutarate were detected via Ultimate 3000 HPLC (ThermoFisher, USA) using an Aminex HPX87H column. The mobile phase was 0.05 M H₂SO₄, and the flow rate was 0.6 mL min⁻¹ at a refractive-index detector at 50 °C⁵⁹. Cyclic voltammetry (CV) was performed in a three-electrode configuration with CC/MWCNTs/cells as working electrode, an Ag/AgCl reference electrode and Pt wire as auxiliary electrode connecting to a CHI 1000C potentiostat (CH Instrument, Shanghai, China). The electrochemical reactions were performed at 37 °C.

Statistics and reproducibility

Statistical analyses were mainly performed using Microsoft Excel software (version 2021). Double-tailed t test or one-way ANOVA and a posteriori test were used for variance analysis. The data were expressed as mean \pm standard deviation (SD). Each group included at least three independent biological samples. Compared to a reference sample, significance was established with a P-value less than 0.05. No statistical method was used to predetermine sample size. No data were excluded from the analyses. The experiments were not randomized. The investigators were not blinded to allocation during experiments and outcome assessment.

690

691

Data availability

- Data supporting the findings of this work are available within the paper and Supplementary
- 693 Information files. A reporting summary for this Article is available as a Supplementary
- Information file. Source data are provided with this paper.

695

696

References

597 1. Schulte LA, et al. Meeting global challenges with regenerative agriculture producing food and energy. *Nat. Sustain.* **5**, 384-388 (2022).

699

Qiao J, Sheng YJ, Wang MH, Li AN, Li XJ, Huang H. Evolving robust and interpretable enzymes for the bioethanol industry. *Angew. Chem. Int. Edit.* **62**, e202300320 (2023).

702

703 3. Chen Z, et al. Exploitation of lignocellulosic-based biomass biorefinery: A critical review of renewable bioresource, sustainability and economic views. *Biotechnol. Adv.* **69**, 108265 (2023).

706

Yuan JS, Pavlovich MJ, Ragauskas AJ, Han B. Biotechnology for a sustainable future: biomass
 and beyond. *Trends Biotechnol.* 40, 1395-1398 (2022).

709

5. Lynd LR, et al. Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biomass to fuels. *Energ. Environ. Sci.* **15**, 938-990 (2022).

712

713 6. Li H, et al. Effect of structural characteristics of corncob hemicelluloses fractionated by graded ethanol precipitation on furfural production. *Carbohyd. Polym.* **136**, 203-209 (2016).

715

716 7. Choi JW, Jeon EJ, Jeong KJ. Recent advances in engineering *Corynebacterium glutamicum* for utilization of hemicellulosic biomass. *Curr. Opin. Biotechnol.* **57**, 17-24 (2019).

718

719 8. Xiao M, Liu Y-J, Bayer EA, Kosugi A, Cui Q, Feng Y. Cellulosomal hemicellulases: indispensable players for ensuring effective lignocellulose bioconversion. *Green Carbon*, (2024).

721

722 9. Vuong TV, Master ER. Enzymatic upgrading of heteroxylans for added-value chemicals and polymers. *Curr. Opin. Biotech.* **73**, 51-60 (2022).

724

725 10. Saha BC. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30, 279-291 (2003).

727 11. Mahapatra DM, Mishra P, Thakur S, Singh L. Leveraging artificial intelligence in 728 bioelectrochemical systems. Trends Biotechnol. 40, 535-538 (2022). 729 730 12. Xiao X, et al. Tackling the challenges of enzymatic (bio)fuel cells. Chem. Rev. 119, 9509-9558 731 (2019).732 733 13. Tao MN, et al. Enhanced denitrification and power generation of municipal wastewater 734 treatment plants (WWTPs) effluents with biomass in microbial fuel cell coupled with 735 constructed wetland. Sci. Total Environ. 709, 136159 (2020). 736 737 14. Liu ZD, et al. Performance and microbial community of carbon nanotube fixed-bed microbial 738 fuel cell continuously fed with hydrothermal liquefied cornstalk biomass. Nat. Commun. 185, 739 294-301 (2015). 740 741 Wu SK, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: enzymatic synthesis 15. 742 for industrial applications. Angew. Chem. Int. Edit. 60, 88-119 (2021). 743 744 16. Cai M, Liu Z, Zhao Z, Wu H, Xu M, Rao Z. Microbial production of L-methionine and its 745 precursors using systems metabolic engineering. Biotechnol. Adv. 69, 108260 (2023). 746 747 17. Fang SQ, et al. Controllable display of sequential enzymes on yeast surface with enhanced 748 biocatalytic activity toward efficient enzymatic biofuel cells. J. Am. Chem. Soc. 142, 749 3222-3230 (2020). 750 751 18. Hasunuma T, Kondo A. Development of yeast cell factories for consolidated bioprocessing of 752 lignocellulose to bioethanol through cell surface engineering. Biotechnol. Adv. 30, 1207-1218 753 (2012).754 755 19. Fishilevich S, Amir L, Fridman Y, Aharoni A, Alfonta L. Surface display of redox enzymes in 756 microbial fuel cells. J. Am. Chem. Soc. 131, 12052-12053 (2009). 757 758 20. Van Bloois E, Winter RT, Kolmar H, Fraaije MW. Decorating microbes: surface display of 759 proteins on Escherichia coli. Trends Biotechnol. 29, 79-86 (2011). 760 761 21. Liu Z, et al. Combined cell-surface display- and secretion-based strategies for production of 762 cellulosic ethanol with Saccharomyces cerevisiae. Biotechnol Biofuels., 8: 162. 763 764 22. Naidu DS, Hlangothi SP, John MJ. Bio-based products from xylan: A review. Carbohyd. Polym. 765 **179**, 28-41 (2018). 766 767 23. Fowler CA, et al. Structure and function of a glycoside hydrolase family 8 endoxylanase from 768 Teredinibacter turnerae. Acta Crystallogr. D. 74, 946-955 (2018). 769 770 24. Jordan DB, Li XL, Dunlap CA, Whitehead TR, Cotta MA. Beta-D-xylosidase from Selenomonas

771		ruminantium of glycoside hydrolase family 43. Appl. Biochem. Biotechnol. 137-140, 93-104
772		(2007).
773		
774	25.	Jordan DB, Braker JD. Beta-D-xylosidase from Selenomonas ruminantium: thermodynamics of
775		enzyme-catalyzed and noncatalyzed reactions. Appl. Biochem. Biotechnol. 155, 330-346
776		(2009).
777		
778	26.	Jordan DB, Braker JD. beta-D-Xylosidase from Selenomonas ruminantium: role of glutamate
779		186 in catalysis revealed by site-directed mutagenesis, alternate substrates, and active-site
780		inhibitor. Appl. Biochem. Biotechnol. 161, 395-410 (2010).
781		
782	27.	Rodriguez GM, Hussain MS, Gambill L, Gao D, Yaguchi A, Blenner M. Engineering xylose
783		utilization in Yarrowia lipolytica by understanding its cryptic xylose pathway. Biotechnol
784		Biofuels 9 , 149 (2016).
785		
786	28.	Anandharaj M, et al. Constructing a yeast to express the largest cellulosome complex on the
787		cell surface. Proc. Natl. Acad. Sci. U. S. A. 117, 2385-2394 (2020).
788		
789	29.	Liang B, Li L, Mascin M, Liu A. Construction of xylose dehydrogenase displayed on the surface
790		of bacteria using ice nucleation protein for sensitive D-xylose detection. Anal. Chem. 84,
791		275-282 (2012).
792		
793	30.	Li L, Kang DG, Cha HJ. Functional display of foreign protein on surface of <i>Escherichia coli</i> using
794		N-terminal domain of ice nucleation protein. Biotechnol. Bioeng. 85, 214-221 (2004).
795		
796	31.	Li HL, et al. The hydrolytic efficiency and synergistic action of recombinant xylan-degrading
797		enzymes on xylan isolated from sugarcane bagasse. Carbohyd. Polym. 175, 199-206 (2017).
798		
799	32.	Zheng Z, Chen T, Zhao M, Wang Z, Zhao X. Engineering Escherichia coli for succinate
800		production from hemicellulose via consolidated bioprocessing. Microb. Cell Fact. 11, 37
801		(2012).
802		
803	33.	Li XW, Chen Y, Nielsen J. Harnessing xylose pathways for biofuels production. Curr. Opin.
804		Biotech. 57 , 56-65 (2019).
805		
806	34.	Rossoni L, et al. Engineering Escherichia coli to grow constitutively on D-xylose using the
807		carbon-efficient Weimberg pathway. Microbiology 164, 287-298 (2018).
808		
809	35.	Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U. Genetic analysis of a novel
810		pathway for D-xylose metabolism in Caulobacter crescentus. J. Bacteriol. 189, 2181-2185
811		(2007).
812		
813	36.	Liu M, Ding Y, Xian M, Zhao G. Metabolic engineering of a xylose pathway for biotechnological
814		production of glycolate in Escherichia coli. Microb. Cell. Fact. 17, 51 (2018).

815		
816	37.	Tai YS, et al. Engineering nonphosphorylative metabolism to generate lignocellulose-derived
817		products. Nat. Chem. Biol. 12, 247-253 (2016).
818		
819	38.	Sun L, et al. Current advance in biological production of short-chain organic acid. Appl.
820		Microbiol. Biotechnol. 104 , 9109-9124 (2020).
821		
822	39.	Zeng W, Zhang H, Xu S, Fang F, Zhou J. Biosynthesis of keto acids by fed-batch culture of
823		Yarrowia lipolytica WSH-Z06. Bioresour. Technol. 243, 1037-1043 (2017).
824		
825	40.	Stottmeister U, Aurich A, Wilde H, Andersch J, Schmidt S, Sicker D. White biotechnology for
826		green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent
827		chemical syntheses. J. Ind. Microbiol. Biotechnol. 32, 651-664 (2005).
828		
829	41.	Yovkova V, Otto C, Aurich A, Mauersberger S, Barth G. Engineering the $lpha$ -ketoglutarate
830		overproduction from raw glycerol by overexpression of the genes encoding
831		NADP*-dependent isocitrate dehydrogenase and pyruvate carboxylase in Yarrowia lipolytica.
832		Appl. Microbiol. Biotechnol. 98, 2003-2013 (2013).
833		
834	42.	Tenhaef N, et al. Microaerobic growth-decoupled production of alpha-ketoglutarate and
835		succinate from xylose in a one-pot process using Corynebacterium glutamicum. Biotechnol. J.
836		16 , 2100043 (2021).
837		
838	43.	Liu A, Lang Q, Liang B, Shi J. Sensitive detection of maltose and glucose based on dual
839		enzyme-displayed bacteria electrochemical biosensor. <i>Biosens. Bioelectron.</i> 87 , 25-30 (2017).
840		
841	44.	Zhu H, Li Y. Turning light into electricity, biologically. <i>Green Carbon</i> 1, 14-19 (2023).
842		
843	45.	Li F, et al. Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell.
844		Biotechnol. Biofuels 10, 196 (2017).
845		
846	46.	Ali R, Mittal G, Sultana S, Bhatnagar A. Ameliorative potential of alpha-ketoglutaric acid (AKG)
847		on acute lung injuries induced by ammonia inhalation in rats. Exp. Lung Res. 38, 435-444
848		(2012).
849		
850	47.	Gal I, Schlesinger O, Amir L, Alfonta L. Yeast surface display of dehydrogenases in microbial
851		fuel-cells. Bioelectrochemistry 112, 53-60 (2016).
852		
853	48.	Zang GL, et al. Direct electricity recovery from Canna indica by an air-cathode microbial fuel
854		cell inoculated with rumen microorganisms. Environ. Sci. Technol. 44, 2715-2720 (2010).
855		
856	49.	Zhu Z, Kin Tam T, Sun F, You C, Percival Zhang YH. A high-energy-density sugar biobattery
857		based on a synthetic enzymatic pathway. Nat. Commun. 5, 3026 (2014).

859 860 861	50. Oliveira EE, et al. Xylan from corn cobs, a promising polymer for drug delivery: produ				
862 863 864	51.	Shi P, Wu R, Wang J, Ma C, Li Z, Zhu Z. Biomass sugar-powered enzymatic fuel cells based on a synthetic enzymatic pathway. <i>Bioelectrochemistry</i> 144 , 108008 (2022).			
865 866 867 868	52.	Durao P, et al. Proximal mutations at the type 1 copper site of CotA laccase: spectroscopic, redox, kinetic and structural characterization of I494A and L386A mutants. <i>Biochem. J.</i> 412 , 339-346 (2008).			
869 870 871	53.	Liang B, Liu Y, Zhao Y, Xia T, Chen R, Yang J. Development of bacterial biosensor for sensitive and selective detection of acetaldehyde. <i>Biosens Bioelectron</i> 193 , 113566 (2021).			
872 873 874 875	54.	Ontanon OM, et al. EcXyl43 beta-xylosidase: molecular modeling, activity on natural and artificial substrates, and synergism with endoxylanases for lignocellulose deconstruction. <i>Appl. Microbiol. Biot.</i> 102 , 6959-6971 (2018).			
876 877 878 879	55.	Sutter JM, Johnsen U, Schonheit P. Characterization of a pentonolactonase involved in D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii. <i>FEMS Microbiol Lett</i> 364 , (2017).			
880 881 882 883	56.	Wasserstrom L, Portugal-Nunes D, Almqvist H, Sandstrom AG, Liden G, Gorwa-Grauslund MF. Exploring D-xylose oxidation in <i>Saccharomyces cerevisiae</i> through the Weimberg pathway. <i>AMB Express</i> 8 , 33 (2018).			
884 885 886 887	57.	Borgstrom C, et al. Identification of modifications procuring growth on xylose in recombinant <i>Saccharomyces cerevisiae</i> strains carrying the Weimberg pathway. <i>Metab. Eng.</i> 55 , 1-11 (2019).			
888 889 890	58.	Zhu Z, Zhang YP. In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose. <i>Metab Eng</i> 39 , 110-116 (2017).			
891 892 893 894	59.	Tai YS, et al. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. <i>Nat. Chem. Biol.</i> 12 , 247-253 (2016).			
895	Acknowledgments				
896	This work is financially supported by the National Key Research and Development Program				
897	of China (2021YFA0910400, A.L.) and National Natural Science Foundation of China				
898	(22278233, B.L.; 22378222, J.M.Y.).				

Author contributions B.L., S.C., A.H.L., and J.M.Y. conceived and coordinated the study. B.L., A.H.L., S.C. and J.M.Y. wrote the article with input from all other co-authors. B.L., J.Y., C.F.M., and L.W. constructed the engineered strains, tested enzymatic activity and MFCs. Y.R.Z. and Z.C.L. performed electrochemical testing. J.Y. conducted SEM characterizations. L.Z. and J.L. performed biomass pretreatment. B.L., J.Y., C.F.M., and L.W. analyzed the experimental data. All authors contributed to the writing of the manuscript. **Competing interests** The authors declare no competing interest.

Table 1 The production of α -ketoglutarate by microbial cell factories or $in\ vitro$ one-pot reaction using different substrates.

Organism	Substrate	Time (h)	Yield (g/g)	Reference
Y. lipolytica H355A (PYC1-IDP1)	glycerol	117	40%	41
Y. lipolytica WSH-Z06	glycerol	204	47%	39
C. glutamicum WMB2evo	xylose	90	0.55%	42
E. coli consortia	xylan	6	47%	this study

Figure Legends

939

Fig. 1 The saccharification and oxidative pathway of xylan catalyzed by bacterial 940 941 surface displayed enzymes using N-terminal region of ice nuclear protein as anchoring **motif.** The final product is α -ketoglutarate. TtGH8, β -1,4 xylanase; SXA, β -D-xylosidase; 942 943 XDH, D-xylose dehydrogenase; XylC, xylonolactonase; XylD, xylonate dehydratase; XylX, 2-keto-3-deoxy-D-xylonate dehydratase; KGSADH, 2,5-dioxopentanoate dehydrogenase. 944 945 Fig. 2 The optimization of ratios and constituents of engineered bacterial consortia. a 946 Relative production of reducing sugars using corncob xylan (1g/L) as substrate catalyzed by 947 engineered bacterial consortia involving in the saccharification of xylan (up-stream pathway) with different cell density ratios of E. coli-TtGH8 to E. coli-SXA. 1 mL of 50 mM Tris-HCl 948 949 buffer (pH 7.0) with 10 mM CaCl₂ and 1.0 g/L commercial corncob xylan were incubated with artificial bacterial consortia (OD₆₀₀=10) at 37 °C (n = 3 biologically independent 950 951 experiments). The bacterial consortia with the ratio of 3:7 produced the highest level of reducing sugars compared to those with other ratios. b Relative production of NADH 952 catalyzed by different bacterial consortia using D-xylonic acid as substrate. When different 953 fusion proteins of XylD-KGSADH, XylD-XylX and XylD-XylX-KGSADH were separately 954 displayed on cell surface, the resultant strains were named as E. coli-XylDK, E. coli-XylDX 955 and E. coli-XylDXK, respectively. The total OD600 of these four systems were the same and 956 the cell density ratios of different strains were the same in one system. 1 mL of 50 mM Tris-957 958 HCl buffer (pH 7.0) with 10 mM MgCl₂, 20 mM D-xylonic acid and 1 mM NAD⁺ were incubated with artificial bacterial consortia (OD₆₀₀=10) at 37 °C (n = 3 biologically 959 independent experiments). Strain E. coli-XylDXK as the control. The bacterial consortia 960 system composed of E. coli-XylDK and E. coli-XylX produced the highest level of NADH 961 compared to those with other system. c Relative production of α -ketoglutarate catalyzed by 962

different bacterial consortia involving in oxidation of pentose monosaccharides (down-stream pathway) with various cell density ratios among E. coli-XDH, E. coli-XylC, E. coli-XylDK and E. coli-XylX using D-xylose as substrate. 1 mL of 50 mM Tris-HCl buffer (pH 7.0) with 10 mM MgCl₂, 10 mM D-xylose and 1 mM NAD⁺ were incubated with artificial bacterial consortia (OD₆₀₀=10) at 37 °C (n = 3 biologically independent experiments). The bacterial consortia with the ratio of 1:5:20:25 produced the highest level of α-ketoglutarate compared to those with other ratios. d Relative production of α -ketoglutarate catalyzed by different bacterial consortia with various cell density ratios of up-stream pathway to down-stream using corncob xylan (1g/L) as substrate at 37 °C for 6 h. The up-stream pathway included E. coli-TtGH8 and E. coli-SXA with the optimal ratio of 3:7. The down-stream pathway included E. coli-XDH, E. coli-XylC, E. coli-XylDK and E. coli-XylX with the optimal ratio of 1:5:20:25. The total $OD_{6000}=10$ of the bacterial consortia was applied. n=3 biologically independent experiments. The bacterial consortia with the ratio of 3:7 produced the highest level of α -ketoglutarate compared to those with other ratios. Data are presented as mean \pm SD. The statistical significance is determined by a two-sided t test, and ***, **, * indicate P<0.001, 0.01, and 0.05, respectively. Source data are provided as a Source Data file. Fig. 3 Schematic drawing of electron transfer route and catalytic reactions in the proposed two-compartment xylan/O2 MFC. The system was composed of the enzyme-engineered bacterial consortia based bioanode and E. coli-Lac based biocathode. Fig. 4 The integration of the enzyme-engineered bacterial consortia for generating electricity in MFC. a CVs of the CC/MWCNTs/E.coli-Lac biocathode in 100 mM Na₂HPO₄-citric acid buffer (pH 5.0) under N₂-saturated atmosphere without ABTS (black line), and in the presence of 0.5 mM ABTS under N2-saturated (red line) and under oxygen-saturated atmosphere (blue line). Scan rate: 10 mV s⁻¹. **b** CVs of CC in electrolyte

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

solution (black line); CC/bacterial consortia in electrolyte solution containing xylan (1 g/L) and NAD+ (4 mM) (red line); CC/MWCNTs/bacterial-consortia in electrolyte solution containing xylan (1 g/L) and NAD⁺ (4 mM) (blue line); CC/MWCNTs in electrolyte solution containing AQDS (10 mM) (green line). CC/MWCNTs/bacterial-consortia in electrolyte solution containing xylan (1 g/L), NAD⁺ (4 mM) and AQDS (10 mM) (purple line). The electrolyte solution is 100 mM Tris-HCl buffer (pH 7.0) containing 100 mM NaCl, 10 mM MgCl₂ and 10 mM CaCl₂. Scan rate: 10 mV s⁻¹. c Profiles of potential versus current density MFC consisting of CC/MWCNTs/bacterial-consortia bioanode (j). and CC/MWCNTs/E.coli-Lac cathode, which contain 10 mM of AQDS in the anodic chamber (peach pink line). MFC consisting of CC/MWCNTs bioanode and CC/MWCNTs/E.coli-Lac cathode, which contained bacterial consortia and 1 mM of AQDS in the anodic chamber (blue line). MFC consisting of CC/MWCNTs/bacterial-consortia and CC/MWCNTs/E.coli-Lac biocathode, which contained 1 mM of AQDS in the anodic chamber (light green line). d Profiles of power density dependent on different bioanodes, which are the same as c. Scan rate: 1 mV s⁻¹. Abbreviation: CC: carbon cloth. Source data are provided as a Source Data file. Fig. 5 The optimization of MFC performance. a Effect of loading amounts of bacterial consortia onto the CC/MWCNTs/bacterial-consortia bioanode on the power output. The bioanodes were prepared by dropping 100 μL of the prepared cells with different OD₆₀₀ values onto the CC/MWCNTs and dried at room temperature. The xylan concentration is 1.0 g/L. The amounts of bacterial consortia were 5 OD (blue line), 10 OD (pink line) and 20 OD (green line), respectively. b Effect of concentrations of commercial corncob xylan on the

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

power output. The bioanodes were prepared by dropping 100 μ L of the prepared cells with 10.0 OD₆₀₀. The concentrations of commercial corncob xylan were 0.5 g/L (blue line), 1.0 g/L (pink line) and 2.0 g/L (green line), respectively. Abbreviation: CC: carbon cloth. Source data are provided as a Source Data file. **Fig. 6 Long-term operation stability of MFC fueled by hemicellulose fractions of corncob.** The time-dependent power density curve (black line) and α -ketoglutarate titers (red line) of enzyme-bacterial-consortia-modified-bioanode based MFC. Electrical outputs (power density) from engineered bacterial consortia were shown. The production of α -ketoglutarate in MFC was measured every 12 h during 6 days. LSV was recorded every 12 h during 6 days. The systems absence of pretreated hemicellulose from corncob were used as negative controls (blue line representing power density curve and green line representing α -ketoglutarate titers). n=3 biologically independent experiments. Data are presented as mean \pm SD. Source data are provided as a Source Data file.