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Abstract. European Rail Traffic Management System (ERTMS) is a
standard for the train control and signalling system whose application is
spreading throughout Europe. The ETCS (European Train Control Sys- AQ1

tem) level 3 is attracting experts because it is still in the design phase.
Many works provide formal models to the verification of ERTMS/ETCS
using formal methods, but they did not investigate the validation prob-
lem. To deal with this challenge we propose an iterative formal model-
driven approach that helps validating step-by-step a real formal specifica-
tion of ERTMS/ETCS hybrid level 3. Our approach introduces Domain-
Specific Languages (DSLs) to help system experts understand existing
specifications that are already proven. To this purpose we extend and
apply Meeduse, the only existing language workbench today that allows
embedding formal semantics within DSLs. The paper presents this appli-
cation and discusses the lessons learned from the railway and formal
method experts’ points of view.

Keywords: Domain-specific languages · B Method · Validation ·
Refinement · ERTMS/ETCS

1 Introduction

In a train system, functions are distributed and performed by the train or
by track-side devices. Introducing new technology can lead to reallocating a
function from the track to the train. This is typically the case for the rail-
way ERTMS/ETCS1 level 3 solution [1], where positions that were detected
by the track are now provided by the train using its own localization means.
1 ERTMS/ETCS: European Rail Traffic Management System/ European Train Con-

trol System.
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2 A. Yar et al.

The ERTMS/ETCS has gained significant attention in industry and academia,
and because of the underlying safety requirements the formal methods commu-
nity has investigated numerous techniques to its modeling and verification. For
instance, the call of solutions of the ABZ’2018 conference [2] has resulted in
several realistic applications of formal methods. Most of these applications deal
with verification concerns, without providing insights showing whether their for-
mal model is valid and conforms to user requirements. Some approaches propose
translations from graphical models (e.g., UML, KAOS) into formal specifica-
tions, but as the transformation is not proven correct, the resulting formal mod-
els still need to be validated. And, even if the transformation is proven, validation
is still necessary. Indeed, Verification cannot replace validation, and vice versa.

More generally, the use of a model provides an abstraction of reality, assuming
a specific point of view [3]. However, in this abstraction, the presence of each
concept and correlated requirement has to be justified. While building a Domain
Specific Language (DSL) that can be executed, Meeduse [6,7] provides a solution
to confront the understanding of the system architect and of the domain expert.
This motivates the current work, which is an application of the tool to a real case
study. Meeduse is a language workbench built on the B method allowing one to
formally define the semantics of DSLs, and animate them using the ProB model-
checker. In [15], we presented an approach for visual animation of B specifications
using DSLs. In this paper, we extend our approach with an iterative model-driven
technique. Considering an existing B specification of an ERTMS hybrid level 3
system provided by a formal methods expert [12], the paper proposes to build
incrementally a meta-model of the system which defines the abstract syntax of a
DSL. At each level of abstraction, the system is analyzed and the corresponding
requirements are simulated. Links are built from the current incremental stage of
the model and the corresponding provided B component. This simulation allows
railway experts to validate the formal models and compare their understandings.

Section 2 discusses the state-of-the-art and describes shortly the case study
of ERTMS hybrid level 3. Section 3 explains our iterative approach. Section 4
presents the approach based on the first level of our DSL. Section 5 discusses
other refinement levels and provides the lessons learned from this work. It also
talks about a new proposed solution to reduce proof obligations. Finally, Sect. 6
draws the conclusions of this paper and discusses its perspectives.

2 Problem Positioning

2.1 Related Works

Taking into account the railway signalling industrial context, the CENELEC
501282 norm should be considered. This norm strongly recommends the use of
formal methods for critical software development. Among various formal lan-
guages that are used in the railway scientific literature, most of the contribu-
tions come from the B ecosystem [5]. Though Formal Methods (FMs) prove
2 https://standards.globalspec.com/std/2023439/afnor-nf-en-50128.
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An Iterative Formal Model-Driven Approach to Railway Systems Validation 3

a railway system, they do not guarantee its conformity to requirements. The
misunderstanding of the user requirements by FM experts may lead to wrong
systems. Hence, validation is required to inspect whether specifications meet
the user requirements. If looking closer to the CENELEC 501293 requirements
(dealing with the safety of electronic devices used for signalling), a graphical
description of the system, structured specification and formal or semi-formal
specification are highly recommended for subsystems having the highest Safety
Integrity Level (namely SIL3 and SIL4). A structured specification in the context
of CENELEC 50129 means “design hierarchically broken down and fully trace-
able back to requirements specification”. The ERTMS hybrid level 3 specification
which is analyzed in our use case is related to the signalling task. Considering
CENELEC 50129, this paper provides DSLs together with their visual anima-
tion of the ERTMS B specification, ensuring that specifications meet the user
requirements.

In the literature, there are tools providing graphical animation and visual-
ization of B specifications such as BRAMA [13], AnimB4 B-Motion Studio [8],
B-Motion Web [9], VisB [14], and animation function in [11]. However, typical
drawbacks are associated with these tools: they use scripting or programming
languages for visualization or for mapping. This added programming layer is
error-prone. The diagnosis becomes more difficult because errors may come from
the added programming layer used for visualization. Another limitation of the
tools mentioned above is dealing with the visualization of B specifications with
multiple components like the ones we are using in this paper. In the existing
tools, the formal method expert has to define visualizations for each component
but in our approach, (s)he is only responsible for producing mappings in B. We
believe that our approach is less error-prone than other tools, as in our app-
roach, mappings are produced by formal method experts themselves. Also, our
technique allows domain experts to provide scalable domain representations by
themselves rather than defined by formal method experts.

2.2 A Formal B Model of ERTMS Hybrid Level 3 Use Case

ERTMS/ETCS is a set of specifications introduced as a standard for a common
inter-operable platform for railway management and signalling systems. It is
intended to be adopted in all European countries and to replace the signalling
system with a common system in order to reduce cost and provide interoper-
ability. ERTMS/ETCS is segregated into three levels depending on the used
equipment and the operating modes. The first two levels are operational while
level 3 is still in the design and standardization phase.

In the literature, one can find numerous formal models of ERTMS/ETCS. In
this paper, we focus on the one by Mammar et al. [12] using Event-B. In their
ERTMS/ETCS 3 model, a railway track (a line to run a train) is divided into
sections known as Trackside Train Detection (abbreviated as TTD). A TTD is

3 https://standards.globalspec.com/std/10280790/dsf-fpren-50129.
4 AnimB: https://wiki.event-b.org/index.php/AnimB.

A
ut

ho
r 

Pr
oo

f

https://standards.globalspec.com/std/10280790/dsf-fpren-50129
https://wiki.event-b.org/index.php/AnimB


4 A. Yar et al.

further divided into subsections called Virtual Sub-Section (VSS). An ERTMS
train can be fitted with TIMS which stands for Train Integrity Monitoring Sys-
tem reporting its position and integrity to the train supervisor. The latter refers
to the system controller. ERTMS trains without TIMS can only report their
front position while non-ERTMS trains do not report their position at all to the
supervisor. A train’s VSS occupation is also determined by the TIMS. In the
ERTMS/ETCS, Movement Authority (MA) is the permission assigned to the
train to move on specific sections or subsections. In this model, the supervisor
assigns the MA (containing VSSs) and sends it to the ERTMS train. A train
cannot go beyond the specified VSS in order to avoid collisions.

This model allows the trains to be connected or disconnected. A connected
train regularly reports its integrity and position to the supervisor. In order to
manage disconnected trains, the model provides the concept of timers. Note
that, in this use case, all trains move in the same direction on the same track
and MA is chosen non-deterministically. We re-use this model in our approach
as a classical-B artifact which consists of four components: an abstract machine
(M0) and 3 refinements (M1, M2 and M3). This case study represents a linear
route of a railway topology with tracks without any branching points (switches).

3 Towards an Iterative Formal Model-Driven Approach

3.1 Meeduse Language Workbench

This work extends and applies the Meeduse5 language workbench [7]. The tool
is dedicated to formally instrument DSLs using the B-Method. It embeds the
ProB [10] model-checker to support animation and verification. The Meeduse
approach (taken from [6]) is shown in Fig. 1.

Fig. 1. Meeduse Approach (taken from [6])

The semantics layer translates the meta-model of a DSL into a B specification
using the translator component. The resulting B specification defines the static
5 http://vasco.imag.fr/tools/meeduse/.
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An Iterative Formal Model-Driven Approach to Railway Systems Validation 5

semantics of the DSL. The Modelling layer includes two components: Injector
and Animator. From a given instance (model resource) of the DSL, Meeduse
first creates a valuated B specification which is an extraction from the trans-
lated B model, and then it injects the valuations to populate the various B
data structures. Having this valuated B specification, ProB is applied to ani-
mate B operations of any B machine that includes the valuated model. It is
called “Dynamic Semantics” because it confers to the DSL a behavioral char-
acter (note that the user specifies the dynamic semantics). At every animation
step, when ProB modifies the internal state of the valuated functional model,
Meeduse translates back this modification to the input model resource, resulting
in an automatic animation of the model resource.

3.2 Using an Existing B Model

In [15], we presented an approach that uses DSLs to visually animate of a given B
specification. The approach introduces a linkage machine that allows the usage of
the B machine as dynamic semantics of the DSL. This approach is extended here
and applied to a realistic case study. We incrementally build our DSL layer and
use refinements and inclusions to make the connection between every increment
of the DSL and the considered B model. The proposed approach is applied to
each abstract/refinement component as depicted in Fig. 2.

Fig. 2. The Iterative Architecture for the Case Study

First, we develop a DSL meta-model (DSLv0.ecore) based on the initial
abstract component (M0.mch) of the model. Then we provide a linkage machine
(Linkage0.ref) which refines the M0.mch and includes the translated static
semantics of DSLv0.mch (the translation from ecore to B is done using Mee-
duse). In the next iteration, we update the DSL based on refinement M1.ref
(which is a refinement of the M0.mch machine) and the resulting DSL becomes
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6 A. Yar et al.

DSLv1.ecore. In this iteration, another linkage machine (Linkage1.ref) is intro-
duced which refines the existing refinement M1.ref and includes the translated
static semantics DSLv1.mch. The same step is repeated until the final refinement
M3. At each iteration, we are able to visually animate the existing component
using the corresponding version of the DSL thanks to the execution of the linkage
machine in Meeduse. This graphical animation allows the domain expert to check
that the verified built specification (existing model) captures the right require-
ments. The complete B specification of the existing model, the ones generated
from the DSL and linkage machines can be found in the Meeduse git reposi-
tory6. The mechanisms of linking B data structures, the initializations and the
operations of linkage machines can be also found in our paper [15]. The linkage
machines in this case study are generated using our DSL-based Linkage Genera-
tor Tool7, which is built on the definition of generation patterns that are defined
by the user and that can be applied (and reused) for various specifications and
models.

4 An ERTMS/ETCS Hybrid Level 3 DSL

In a Model-Driven Architecture, a DSL is built from a meta-model. We propose
to incrementally create this meta-model based on the existing formal B model,
such that each concept in the meta-model corresponds to a concept in the B
model. From each version of the meta-model Meeduse generates B static seman-
tics, and the dynamic semantics refers to the corresponding component of the B
model. Figure 8 (presented later) shows the whole meta-model where concepts
of each refinement are defined using different colors.

4.1 DSL Version 0 (DSLv0)

DSLv0 is built based on abstract machine M0.mch of the existing model.
Figure 3 shows the B data structure of M0.mch with its sets, constants and
variables. Initialization and operations are not shown here due to space lim-
itation. Machine M0.mch allows free movement of trains on TTDs and col-
lisions are possible at this level. This level contains operations: trainSupervi-
sor, trainEntering, trainMovingInSameTTD, trainMovingFrontNextTTD, trainMov-
ingRearNextTTD, trainExiting, trainConnect, trainDisconnect, and TimerExpira-
tion.

Figure 4 shows the meta-model of DSLv0 where class Railway is the root class.
It is composed of class Trackside and class Train. Class Trackside has the attribute
TrackStatus which can have the value Free or Occupied from the enumeration
Status. Each Trackside has 0 to 2 previous tracksides (association previous) and
0 to 2 next tracksides (association next).

Class Train has two attributes in addition to its identifier: kindOfTrain and
Connected. Attribute kindOfTrain refers to three kinds of trains (enumeration
6 https://github.com/meeduse/Samples/tree/main/ETCSLevel3.
7 https://github.com/meeduse/Samples/tree/main/LinkageGeneratorTool.
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An Iterative Formal Model-Driven Approach to Railway Systems Validation 7

Fig. 3. B data structure of existing abstract machine M0

KindOfTrains): ERTMS, NoERTMS and TIMSERTMS. An TIMSERTMS train is
equipped with Train Integrity Management System contrary to simple ERTMS
trains. Recall that ERTMS trains equipped with TIMS communicate their loca-
tion with the supervisor. Attribute Connected is a Boolean that shows the con-
nection of a train with the supervisor. Each train has a head and a tail whose
positions are defined with references front and rear to class Trackside.

4.2 Translation of the Meta-model

In order to provide the static semantics as B specifications, Meeduse generates
machine DSLv0.mch from DSLv0.ecore, the above ecore meta-model. Figure 5
shows the generated Sets, Properties of the Constants, and the related typing
invariants. For more details about this translation we refer the reader to [6,7].

4.3 Linkage Machines

Based on the approach of Fig. 2, linkage B machines are created at every itera-
tion. These machines link the existing B specification (e.g. machine M0), which
we would like to animate, to the DSL components (e.g. machine DSLv0). It
refines the existing B model and includes the machine issued from the meta-
model of the DSL. The idea is to map concepts from the DSL to concepts from
the existing B model. In this sub-section, we give an overview of the mappings
used in this first refinement level of our case study. More details about the cor-
responding approach are provided in [15].
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8 A. Yar et al.

Fig. 4. DSLv0 Meta-Model

Rule 1: EClass to BMachine. In the DSL, class Railway is a root class that
contains all other classes. We consider that this class and machine M0 represent
the same concept, which is the railway system. Thus, we introduce a constant
Linked Railway in the linkage machine which will be helpful later while mapping
the underlying concepts.

CONSTANTS: Linked Railway
PROPERTIES: Linked Railway ∈ Railway

Rule 2: Enumeration to BSet. In machine M0, StateTTD is a set containing
values freeT and occupiedT. The similar concept in the DSL is the enumera-
tion Status with the values: Free and Occupied. So, the mapping between an
enumeration and a set is done as follows:

CONSTANTS: Linked Status
PROPERTIES: Linked Status={freeT "→ Free, occupiedT "→ Occupied}

Rule 3: EClass to BSet. In the existing model, constant Ttds is set from
constant minTTD to constant maxTTD. The Ttds concept is similar to class
Trackside from the DSL. Same like Trains is a finite set of TRAINS and the
similar concept from the DSL is class Train. Mapping these sets and classes is
done as follows:

A
ut

ho
r 

Pr
oo

f



An Iterative Formal Model-Driven Approach to Railway Systems Validation 9

CONSTANTS: Linked Trackside, Linked Trains
PROPERTIES:

Linked Trackside ∈ Trackside !" Ttds ∧
Linked Trains ∈ Train !" Trains

Rule 4: Boolean EAttribute to Boolean BVariable . Attribute isCon-
nected of class Train is a boolean attribute. The similar concept in the existing
model is variable Connected. To map these two concepts, we introduce the fol-
lowing invariant:

INVARIANT: Connected = (Linked Trains ; isConnected)

Rule 5: EAttribute (EnumType) to BVariable (SetValued). stateTTD is
a variable in the existing model which is typed as a set-value from set StateTTD.
In the DSL, TrackStatus is an enumeration attribute in the class Trackside. We
use composition relation (;) in this mapping as:

INVARIANT: TrackStatus = (Linked Trackside ; stateTTD ; Linked Status)

Fig. 5. Excerpt of the structural part of machine DSLv0
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10 A. Yar et al.

Rule 6: Attribute (EnumType) to a Boolean Variable. The boolean
variable supervisor defines the status of the controller (false if not active and
true if it is active). In the DSL, the same concept is defined using an attribute
SupervisionOfTrain (enumeration SupervisionStatus) in class Railway. Mapping
between enumeration values and the boolean values is established by means of
the following invariant:

INVARIANT:
(supervisor = TRUE ⇒ SupervisionOfTrain(Linked Railway) = Active)
∧ (supervisor = FALSE ⇒ SupervisionOfTrain(Linked Railway) = Deactive)

Rule 7: Single Valuated EReference to BVariable. Variable trainOccupa-
tionTTDFront of the existing model defines the occupation of train’s front on a
Ttd. In the DSL, this concept is defined with reference TrainFront from class Train
to class Trackside. We introduce the following invariant to map both concepts:

INVARIANT:
dom(TrainFront) = Linked Trains−1[dom(trainOccupationTTDFront)]

4.4 Modeling and Visual Animation

Figure 6 is a graphical model conforming to DSLv0. It features two TIMS trains
(Train 1, Train 2) and five tracks (Trackside 1..5). The state of each track is rep-
resented in the right-hand side of the figure. In this model all tracks are set to
Free; they are not occupied by any of the two trains. Actually, the model of
Fig. 6 is drawn by the domain expert to describe an initial state. Once the link-
age machine between DSLv0 and M0 is created, this model can be animated in
Meeduse. The tool valuates all the B data (variables and constants), initializes
the machine and applies ProB for animation. In a classical animation of B spec-
ifications, the B method expert has to complete by hand the specifications with
valuations. Here, it is the domain expert who created two instances of Train
and five instances of Trackside; and then the tool automatically produces the
valuated machine together with its initialisation. Figure 7 shows the movement
of trains in the graphical representation by triggering the operations of M0.mch
mentioned in Sect. 4.1.

The Front of Train 1 occupies TTD 4 while its Rear occupies TTD 1. The
Other shows the occupancy of the train on TTDs that are between Front and
Rear. For Train 2, the Front is positioned at TTD 2 and Rear at TTD 1. Apart
from Trackside 5, all other tracksides are occupied. At this stage, someone can
observe the collision between Train 1 and Train 2 as both occupy the TTD 1
and TTD 2. Actually, the safety property regarding the non-collision is only
satisfied in the M3 refinement level of the existing model. We chose not to repre-
sent other concepts defined in the meta-model such as supervision status, train
connect/disconnect, because they are not directly linked to possible collisions.
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An Iterative Formal Model-Driven Approach to Railway Systems Validation 11

Fig. 6. A model conforming to DSLv0

Fig. 7. Animating DSLv0 using M0

5 Application, Findings and Analysis

The complete meta-model of our DSL is shown in Fig. 8. Concepts of every
refinement level are presented using different colors. Yellow classes and black
associations show DSLv0. Associations in brown color are introduced during
DSLv1. Class VirtualBlock and associations represented in light blue are from
DSLv2. Finally, attributes and associations in purple represent DSLv3.

5.1 Next Iterations

DSLv1. This version is an update of DSLv0 by introducing two new concepts
introduced in refinement M1 of the existing specification. Since M1 refines M0,
all concepts from M0 are already included in meta-model of DSLv1. Associations
frontTrackLocation and rearTrackLocation, illustrated with a brown color in Fig. 8
are added in DSLv1. The frontTrackLocation shows the front location of a train
that is communicated to the controller (supervisor) and rearTrackLocation is
the communicated location of the train’s rear. The inclusion of these concepts
updates the graphical representation with Train’s location information, as known
by the supervisor.

DSLv2. Concepts of DSLv2 are shown in light blue in Fig. 8. Class VirtualBlock
has been introduced. It is linked to class Railway using the composition relation.
At this level no attributes are included in class VirtualBlock except the Id. A link
between class Trackside and VirtualBlock is created where a track side can have
many virtual blocks (association virtualblock) and in the opposite each virtual
block is associated to at-least one track (association trackside). The other intro-
duced associations in this level are those from class Train to class VirtualBlock

A
ut

ho
r 

Pr
oo

f



12 A. Yar et al.

Fig. 8. Whole DSL Meta-Model (Color figure online)
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An Iterative Formal Model-Driven Approach to Railway Systems Validation 13

which are VssFront (front of train on virtual block), VssRear (rear of train on
virtual block), frontVssLocation (front of train on virtual block communicated
to the controller), and rearVssLocation (rear of train on virtual block communi-
cated to the controller). These additional concepts lead to the creation of a new
representation containing virtual blocks (VSSs) instead of tracks (TTDs).

DSLv3. Concepts of DSLv3 are shown in violet in Fig. 8. Enumeration VSSSta-
tus gives the state of a virtual block. It can be free (FreeVSS), occupied
(OccupiedVSS), unknown (UnknownVSS), or ambiguous (AmbiguousVSS). Enu-
meration TimerValuesDSL includes values: Inactive, Running and Expired, which
are the states of a timer. The associations: previous and next from VirtualBlock
to VirtualBlock represents the connections between virtual blocks. The concept
of movement authority (MA) is defined by associations: frontMA (MA for train’s
head) and rearMA (MA for train’s rear) from class Train to class VirtualBlock.
Association previousVssFront is used to store the value of a previous VSS for a
train’s front. We introduced the four timer concepts in the DSL as defined in
the existing ERTMS/ETCS HL3 specifications. The timers related to the trains
are defined in class Train as TrainMuteTimer and TrainWaitIntegrityTimer. The
timer related to VSS is VssDisconnectTimer which is introduced inside class Vir-
tualBlock, while timer TrackGhostTimer which is related to TTD is included in
class Trackside. The VssStatus attribute in class VirtualBlock shows the status of
each virtual block using enumeration VSSStatus. Attribute previousVssFrontSta-
tus stores the status of the previous VSS for the train’s front. Finally, attribute
TrainReConnected is a Boolean and gets value TRUE when a train is connected
back after disconnecting.

Figure 9 is a graphical representation conforming to DSLv3. The figure rep-
resents eleven VSSs and two TIMS trains, in addition to train’s location, occu-
pation, and MA. The right-hand side represents the states of the VSSs. Before
assigning MA, the train supervisor calculates the VSSs and sets the state of all
VSSs to free if there is no train. Once the calculation of VSSs is done, a train
can be connected and can be assigned an MA. In Fig. 9 VSSs are free and move-
ments authorities are assigned to Train 1 from VSS 1 till VSS 5. Rear of MA is
the “start of authority” and Front of MA is “End of Authority” (EoA).

Fig. 9. Assigning MA to Train 1 using DSLv3
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14 A. Yar et al.

Fig. 10. Train Movement consuming MAs

5.2 Unexpected Behaviors

Figure 10 shows that Train1 has entered and reached EoA. In a normal case, it
should be possible to assign new MAs to train 1 to move on the next VSSs, but
the animation tells us that this is not possible. The only possible allowed opera-
tions are disconnection and connection of Train1. This problem is a deadlock and
was identified during the animation of normal scenarios from ERTMS/ETCS.
In Fig. 10, a user can observe that some VSSs remain concerned by MAs even
after a train has consumed them. It can be seen that VSS 1, 2 and 3 have been
released but still they are concerned by the MAs of Train1. This behavior can
be considered as a problem from the domain expert point of view. Actually, it
reveals some limits (misunderstandings of the requirements) of the existing B
specifications.

Another unexpected behavior that we observed is that a VSS never gets the
state OccupiedVSS. According to ERTMS/ETCS, when the train’s front or rear
is over a VSS then the VSS is considered to be occupied. The right side of Fig. 10
shows that VSS 4 and VSS 5 are set to AmbiguousVSS, which should be instead
OccupiedVSS as both VSS host the rear and the front of Train1 respectively.
In order to test whether this problem is coming from the linkage machine or
the existing machine, we analyzed the states of VSSs in the existing machine.
We came to the conclusion that the problem is located in the existing machine
and this information was communicated to the authors of the existing machine.
Note that the authors of the existing model already mentioned in their paper
that proof obligations related to VSS state machines were found ambiguous
(non-deterministic) and were not discharged.

5.3 Lessons Learned

Lessons Learned from a Formal Methods Expert’s Point of View. The
existing animation tools (Brama, AnimeB, etc.) do not offer a useful graphical
view for the model’s animation. Indeed, ProB and AnimB, for instance, only
display the values of the variables at each animation step leaving the task of
analyzing and explaining them to the user. This is definitely not exploitable
for complex systems with several variables like ERTMS 3 system. So, the app-
roach introduced in this paper permits overcoming the drawbacks of the existing
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tools by providing a useful graphical view of the animation permitting users a
better understanding of their systems, and helping them detect errors and bugs.
Among others, this approach permits us to detect, for instance, that a VSS never
becomes occupied, while this went unnoticed under Rodin and ProB.

Lessons Learned from a Railway Expert’s Point of View. Among the
three unexpected behaviors, one is to be pointed out at first: VSS never gets
the state OccupiedVSS. This is a problem because when a train is on a VSS,
this VSS must be occupied. Particularly when the train is connected and sends
its position to the control center supervising train movement. In a first analysis,
it is surprising that such an evidence is not fulfilled. Analyzing deeper, this
is not so surprising. A railway norm is written by railway experts for railway
experts. It means that some evidences are not recalled to mind: this is an implicit
requirement that everybody is supposed to know.

The paper of Mammar [12], clearly says that in their opinion, the specifica-
tion is ambiguous. From a methodological point of view, the DSL is run using
various scenarios generating behaviors that often surprise a railway expert. Two
trains in the same location are correct in the first level because the non-collision
mechanisms will be implemented in a later step. The simulation analysis by an
expert helps to define the semantic limits of a given DSL but the more interest-
ing part comes when a misunderstanding of the specification is identified. The
OccupiedVSS value that is never reached is a good demonstration. Even authors
of the code never identified the problem before. It shows that basic specification
errors happens and are really difficult to detect without a graphical animation.

5.4 A New Proposed Solution and Proof Obligations

Through an industrial case study (ERTMS 3/ETCS), we showed how a DSL can
be used to validate an existing formal B specification. We define links between the
concepts defined in our DSLs and those used in the B specification. To verify the
various B models, proof obligations (POs) are generated. These POs ensure the
correctness of the B specification regarding the linking invariants (see Table 1).

Table 1. Comparison of POs generated using both architectures

Architecture M0 M1 M2 M3 Linkage0 Linkage1 Linkage2 Linkage3

First Architecture 35 134 153 377 108 168 467 NA

New Architecture 21 83 105 NA 39 120 205 NA

As one can notice, the number of POs is huge; this is due to the fact that the
linking invariants of each level include those of the previous one. To overcome
this problem, we are working on a new architecture, depicted in Fig. 11), which
generates fewer POs and that is even easier to prove.
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Fig. 11. New Architecture

In this new architecture, first, the concepts of the existing model are kept
in a separate context machine called C0.mch and then concepts of the DSL are
kept in a context machine called CDSL.mch. In the first iteration, M0.mch sees
the C0.mch while DSLv0.mch and Linkage0.mch sees the CDSL.mch. Then the
Linkage0.mch refines the M0.mch and includes the DSLv0.mch. In the second
iteration, Linkage1.ref (which is based on M1.ref) refines the linkage0.ref and
includes the DSLv1.mch (which extends the DSLv0.mch). The same process that
is done in the second iteration is applied until the last iteration. The architecture
is easier to prove but the animation is complicated using DSLs. In the first
architecture shown in Fig. 2, there is one DSL and we are updating the same
DSL at each iteration. In the new architecture, at each level, we have a different
DSL extending the previous one. The Eclipse Modeling Framework (EMF) [4]
does not support such an architecture when designing meta-models of DSLs. But
we are able to animate the dynamic semantics of this architecture in Meeduse
using a single DSL (using an updated version of DSL at each level). Note that
this new architecture is preliminary and not part of this case study.

Currently, the use of this approach on a specification written in a formal lan-
guage different from the B language incurs additional translation/proof efforts
since we have to map the specification into the B language and prove the spec-
ification again. For the case study presented in this paper, the B specification
provided in [12] has been first rewritten with respect to the B language syntax,
and then all the operations have been re-proved under AtelierB by A. Mammar
(original author of the existing B specification). Table 1 shows the comparison
of number of (POs) generated from both architectures. The table clearly shows
that POs generated from the components using the first architecture is signifi-
cantly higher than the new architecture. AtelierB automatically proved most of
the POs. We are not able to generate POs for a few components and in the table,
their POs are shown as NA. To reduce this cost, a perspective of this work is to
study how the proofs can be performed under Rodin, the Event-B development
platform, can be applied to discharge the corresponding proofs under AtelierB.
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6 Conclusion

This paper presents an extension of Meeduse, and its application, for validating
step-by-step an existing B specification that is developed independently of the
Meeduse team. This specification corresponds to the ERTMS/ETCS level 3 case
study of the ABZ’2018 conference [2]. The proposed extension brought to the
tool the capability to deal with B refinements while animating a DSL. Further-
more, during the application we incrementally built the DSL being guided by the
B data that are used in each refinement level. Some specific scenarios were used
to show how a visual animation can document border cases of a given refinement
level. The railway expert, who is often not an expert in B, is fully aware of the
normative framework and may assess and document the hierarchical decompo-
sition with regard to functional safety requirements. An executable DSL allows
the railway expert to visualize and discuss requirements such as (non-)collision
constraints and train integrity, with the formal methods expert.

While the extension of Meeduse covers B refinements, it does not deal with
DSL refinements. This perspective is left to future works. In Sect. 5.4 we dis-
cussed a novel architecture and showed that it may reduce the number of POs.
However, to make this architecture effective we need to establish a refinement
relationship between meta-models of every increment, which requires the exten-
sion of the Eclipse Modeling Framework.
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