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Abstract. We have implemented the brittle Bingham–
Maxwell sea ice rheology (BBM) into SI3, the sea ice com-
ponent of NEMO. After discussing the numerical aspects and
requirements that are specific to the implementation of a brit-
tle rheology in the Eulerian, finite-difference, Arakawa C-
grid framework, we detail the approach we have used. This
approach relies on the introduction of an additional set of
prognostic stress tensor components, sea ice damage, and sea
ice velocity vector, following a grid point arrangement that
expands the C-grid into the Arakawa E-grid. The newly im-
plemented BBM rheology is first assessed by means of a set
of idealized SI3 simulations at different spatial resolutions.
Then, sea ice deformation rates obtained from simulations of
the Arctic at a 1/4° spatial resolution, performed with the
coupled ocean–sea ice setup of NEMO, are assessed against
satellite observations. For all these simulations, results ob-
tained with the default current workhorse setup of SI3 are
provided to serve as a reference. Our results show that using
a brittle type of rheology, such as BBM, allows SI3 to sim-
ulate the highly localized deformation pattern of sea ice, as
well as its scaling properties, from the scale of the model’s
computational grid up to the basin scale.

1 Introduction

Sea ice impacts the ocean and the atmosphere at both the
local and the regional scale (Vihma, 2014; IPCC, 2022). In
polar regions, the sea ice cover modulates the radiative and

turbulent exchanges of heat, fresh water, gas, and momentum
between the ocean and the atmosphere (e.g., Taylor et al.,
2018, for a review). At the local scale, these fluxes are pre-
dominately controlled by the heterogeneity of the sea ice
thickness, which itself is governed by the sea ice dynam-
ics and the associated formation of leads and ridges. This
stresses the relevance of accurately representing sea ice dy-
namics in simulations of the coupled multi-component Earth
system, such as regional and global climate simulations, and
even for short-term sea ice predictions.

The dynamical behavior of sea ice is controlled by pro-
cesses that interact and evolve over a wide range of spatial
and temporal scales. This multiscale nature of sea ice physics
is fascinating and has triggered the curiosity of geophysicists
since the early 1970s (Coon et al., 1974). More recently, sci-
entific interest in sea ice dynamics has grown significantly
due to the dramatic retreat and thinning of the Arctic sea ice
cover. In addition, the abundance of new observations of sea
ice kinematics, recorded by both in situ instruments (e.g., the
buoy trajectories of the International Arctic Buoy Program,
https://iabp.apl.uw.edu/data.html, last access: 30 July 2024)
and satellites (e.g., the ice trajectories from the RADARSAT
Geophysical Processor System; Kwok et al., 1998), has the
potential to foster additional advancements in sea ice model-
ing.

The dynamics of sea ice is complex. For instance, Rampal
et al. (2008) and Weiss et al. (2009) showed that the statis-
tical properties of sea ice deformation are characterized by
a coupled space–time multi-fractal scaling invariance, sim-
ilar to what is observed for the deformation of the Earth’s
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crust (Kagan and Jackson, 1991; Marsan and Weiss, 2010).
The spatial and temporal scaling properties of sea ice defor-
mation and their coupling provide evidence for the strong
heterogeneity and intermittency that characterizes sea ice dy-
namics (Rampal et al., 2008).

Reproducing the discontinuous nature of sea ice – related
to the presence of fractures and leads – in continuous sea
ice models, as well as the complexity of the spatial patterns
and temporal evolution of these features, poses a fundamen-
tal and major challenge (e.g., Bouchat et al., 2022; Hutter
et al., 2022). As an effort to tackle this challenge, Dansereau
et al. (2016) introduced the Maxwell elasto-brittle rheology
(MEB). MEB was implemented into neXtSIM, a large-scale
dynamical–thermodynamical Lagrangian finite-element sea
ice model (Rampal et al., 2016), and used to evaluate the
performance of this new rheology in a realistic pan-Arctic
simulation. Wintertime sea ice deformations simulated by
MEB in neXtSIM were first evaluated statistically against
satellite observations, in terms of probability density func-
tions (PDFs) and scaling invariance properties, in Rampal
et al. (2016, 2019) and later in the two companion papers
of Bouchat et al. (2022) and Hutter et al. (2022), showing
satisfying results.

Recently, Ólason et al. (2022) introduced the brittle
Bingham–Maxwell rheology (BBM) as an effort to address
the incomplete treatment of the convergence of highly dam-
aged sea ice in MEB. This deficiency of MEB results in the
unrealistic representation of the ice thickness after a couple
of years of model integration. Indeed, recent realistic BBM-
driven multidecadal simulations performed with neXtSIM
have been shown to reproduce (i) the scaling properties of
sea ice deformation from the model grid cell up to the scale
of the Arctic basin and (ii) the thickness pattern of the sea
ice cover well when compared to observations (Ólason et al.,
2022; Boutin et al., 2023).

Yet, performing coupled ocean–sea ice or Earth system
CMIP-like simulations with neXtSIM in a numerically ef-
ficient manner remains challenging because the numerical
coupling of neXtSIM to a third-party – generally Eulerian –
GCM component requires the implementation of a relatively
inefficient Lagrangian–Eulerian coupling strategy. Further-
more, the weak scalability capabilities of neXtSIM when
run in parallel on more than a few tenths of processors
and/or at spatial resolutions typically below 10 km have been
shown to substantially hinder the scalability of coupled se-
tups (Samaké et al., 2017). Thus, the implementation of
BBM into an Eulerian CMIP-class sea ice model, such as
SI3 of NEMO, has the potential to significantly benefit the
sea ice, ocean, and climate modeling communities. First, it
will facilitate the assessment of the sensitivity of the sim-
ulated sea ice dynamics to the type of rheology used in
a modeling framework that these communities are familiar
with. And second, the good scalability capabilities of NEMO
(Tintó Prims et al., 2019) will allow performing realistic
kilometer-scale simulations that use a brittle rheology.

As of today, a few efforts have been made to implement
MEB in sea ice models comparable to SI3 in terms of dis-
cretization method and grid, such as the MIT general circu-
lation model (Losch et al., 2010), or LIM, the former sea ice
component of the NEMO modeling system (Rousset et al.,
2015). And more recently, Plante et al. (2020) have success-
fully implemented MEB in the McGill sea ice model (Trem-
blay and Mysak, 1997; Lemieux et al., 2008, 2014). Over-
all, the work of these modeling groups has highlighted some
challenging aspects that are specific to the implementation of
a brittle rheology in a realistic Eulerian model that uses the
finite-difference method on a staggered grid. As suggested
by the work of Plante et al. (2020), when discretized on the
Arakawa C-grid (Arakawa and Lamb, 1977), the same grid
as used by SI3 (Vancoppenolle et al., 2023), brittle rheolo-
gies seem to be more prone to numerical instabilities than
their viscous–plastic counterparts. In particular, they report
that the stability of their MEB implementation is sensitive
to the resort to spatial averaging, an interpolation technique
that is traditionally used to relocate certain fields between
the staggered points of the grid. Moreover, the need to ad-
vect the stress tensor, specific to brittle rheologies, poses an-
other challenge when using the C-grid because it demands
the advection of a scalar field, namely the shear element of
the stress tensor, that is defined at the corner points of the
grid cell.

In this paper, we propose a new discretization approach
adapted to the numerical implementation of a brittle rhe-
ology in an Eulerian finite-difference, C-grid-based sea ice
model. We describe how we have implemented this new ap-
proach into SI3 based on the expansion of the C-grid into an
Arakawa E-grid.

As a first validation step of our BBM implementation,
we discuss SI3 results obtained using the idealized test case
setup of Mehlmann et al. (2021) at different horizontal res-
olutions. Then, as the second step, we compare the sea ice
deformations obtained from realistic coupled ocean–sea ice
simulations of the pan-Arctic against those constructed from
satellite observations. To serve as a reference, the results of
simulations run using the default workhorse setup of SI3
(based on the aEVP rheology of Kimmritz et al., 2016) are
also included in both validation steps.

This paper is organized as follows. In Sect. 2, we summa-
rize the equations of the sea ice dynamics model, discuss the
aspects in which the numerical implementation of a brittle
rheology may differ from that of a non-brittle viscous–plastic
one, and detail the numerical aspects specific to our imple-
mentation of BBM into SI3. In Sect. 3, we describe the tech-
nical aspects of our SI3 simulations and discuss the results
obtained with both the idealized and pan-Arctic configura-
tions. In Sect. 4, we discuss some numerical aspects of our
implementation and some limitations of the BBM rheology.
Our conclusions are summarized in Sect. 5. Detailed nomen-
clature relating the acronyms and symbols used throughout
the paper is outlined in Appendix A.
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2 Model and implementation

2.1 Governing equations and constitutive law

The two-dimensional, vertically integrated, momentum
equation for sea ice reads

m∂tu=∇ · (hσ )+A(τ a+ τ )−mf k×u−mg∇H, (1)

wherem is the mass of ice and snow per unit area, u is the ice
velocity vector, h is the ice thickness, σ is the internal stress
tensor, A is the sea ice fraction, τ a is the wind stress vector,
τ is the ocean current stress, f is the Coriolis frequency, k is
the vertical unit vector, g is the acceleration of gravity, and
H is the sea surface height. In the two-dimensional (plane
stresses) case, the stress tensor is written as

σ =

(
σ11 σ12
σ12 σ22

)
. (2)

In general, a constitutive law relates σ to the strain rate
tensor ε̇, defined as follows:

ε̇ =

(
ε̇11 ε̇12
ε̇12 ε̇22

)
≡

(
∂xu

1
2 (∂yu+ ∂xv)

1
2 (∂yu+ ∂xv) ∂yv

)
. (3)

As derived by Ólason et al. (2022) (their Eq. 20), the BBM
constitutive model yields

∂tσ = E K · ε̇− σ
1
λ

(
1+ P̃ +

λ

1− d
∂td

)

with K =
1

1− ν2

1 ν 0
ν 1 0
0 0 1− ν

 , (4)

where E and λ are the elastic modulus and apparent viscous
relaxation time of the ice, K is the elastic stiffness tensor,
P̃ is a term introduced to prevent excessive ridging (see be-
low), and d is the damage scalar: a variable that represents
the density of fractures in the ice at the subgrid scale. The
underbar notation indicates that the tensors are expressed in
their Voigt form. E and λ are modulated by the sea ice con-
centration and damage as

E =E0(1− d)e−C(1−A), (5)

λ=λ0[(1− d)e−C(1−A)]α−1, (6)

where C is the compaction parameter constant and α is a
constant exponent greater than 1. α fulfills the physical con-
straint that the relaxation time for the stress also decreases as
damage increases and re-increases as the ice heals (i.e., dam-
age decreases) because the material respectively loses and
recovers the memory of reversible deformations (Dansereau
et al., 2016).

The BBM constitutive model in Eq. (4) only differs from
that of MEB through the inclusion of the term P̃ : a threshold

between reversible and permanent deformation regimes. As
noted by Ólason et al. (2022), the inclusion of this term pre-
vents the excessive convergence that is occurring in MEB
simulations lasting longer than a season. For convergent
stresses in the range −Pmax < σI < 0, the deformation is
elastic; otherwise, it is visco-elastic. Ólason et al. (2022) in-
terpret this threshold as the maximum pressure the ice can
withstand before ridging. They consequently choose to let
the ridging threshold, Pmax, be proportional to the ice thick-
ness to the power 3/2 (Hopkins, 1998) and depend exponen-
tially on the concentration (Hibler, 1979), i.e.,

P̃ =


0 if σI > 0

−1 if −Pmax < σI < 0
Pmax
σI

if σI <−Pmax

, (7)

where σI is the (isotropic) normal stress and Pmax is the ridg-
ing threshold defined as

Pmax = P0

(
h

h0

)3/2

e−C(1−A). (8)

We follow Dansereau et al. (2016) and Ólason et al. (2022)
in using a two-step approach to solve Eq. (4). As the first
step, an initial estimate of σ , denoted as σ (i), is calculated
assuming no change in damage:

∂tσ
(i)
= EK · ε̇− σ

1
λ
(1+ P̃ ). (9)

Then, as the second step, the following test and adjustment
are performed on the state of stress: if σ (i) is locally over-
critical, i.e., located outside of the Mohr–Coulomb damage
criterion (Fig. 1), an increment in ice damage, dcrit, is applied
such that

σ = dcritσ
(i), (10)

where σ (i) is the local value of the over-critical stress, and
σ is the corresponding post-failure (i.e., post-damage) stress.
As discussed in Dansereau et al. (2016) and Plante and Trem-
blay (2021), dcrit is used to scale over-critical stresses back
towards the Mohr–Coulomb damage criterion, assuming vis-
cous relaxation to be negligible during the (comparatively
very fast) damage process. The associated temporal evolu-
tion of the damage and adjustment of the stress state is given
by

∂td =
1− dcrit

td
(1− d), (11)

∂tσ =−
1− dcrit

td
σ (i), (12)

where td is a characteristic timescale for damage propaga-
tion. In the BBM framework, dcrit is expressed as follows:

dcrit =


c

σ
(i)
II +µσ

(i)
I

if σ (i)I ≥−N

−N

σ
(i)
I

otherwise,
(13)
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Figure 1. Mohr–Coulomb yield envelope in the internal stress in-
variant coordinates (blue line). Illustration of how an over-critical
stress state σ (i) (initial estimate) is evolving (gray arrow) towards
the corrected state σ when using the BBM rheology.

where c is the cohesion, and µ is the friction coefficient. The
threshold N is used to prevent any numerical instability at
very high normal stresses and is set large enough not to im-
pact the solution noticeably. As suggested by Rampal et al.
(2016), a slow restoring process is applied to the damage to
account for the healing of ice under refreezing conditions.
The rate of decrease of the damage associated with this re-
freezing is taken to be proportional to 1Th, the temperature
difference between basal and surface ice:

∂td =−
1Th

kth
, (14)

where kth is the healing constant. This process can be decou-
pled from Eq. (11) due to the large separation of timescales
between the healing and damaging processes.

2.2 Numerical implementation: brittle versus
viscous–plastic rheologies

To understand the extent to which the numerical implemen-
tation of a brittle rheology differs from that of a viscous–
plastic one, let us first review the main differences between
these rheologies and their respective classical numerical im-
plementation.

First, the elasto-visco-brittle family of rheologies (MEB,
BBM; Dansereau et al., 2016; Ólason et al., 2022) considers
unfragmented sea ice to be an elastic and damageable solid.
Fragmented sea ice is a visco-elastic material in which irre-
versible deformations dissipate the stresses. As opposed to
viscous–plastic frameworks, elasticity is therefore a physical
and non-negligible component of the model. It is modulated
by the level of damage, d, which keeps the memory of the
state of fragmentation of the sea ice cover. The combination
of elasticity and damage, even if treated in an isotropic man-
ner, naturally simulates a strong anisotropy and localization
of the deformation, down to the nominal spatial and tempo-
ral scale (i.e., the grid resolution and time step of the model,

respectively; Dansereau et al., 2016; Weiss and Dansereau,
2017; Rampal et al., 2019; Ólason et al., 2022). Therefore,
all the mechanically related fields, such as damage, concen-
tration, thickness, and velocity, tend to exhibit very sharp
gradients. Second, in the BBM (as in the MEB) framework,
a twofold approach is used to linearize the system of equa-
tions and solve the coupled constitutive and damage evolu-
tion equations: (i) an initial estimate, in which stress com-
ponents are updated based on the constitutive law (Eq. 9),
and (ii) a damage step in which the Mohr–Coulomb test is
performed, resulting in a potential adjustment of local over-
critical stresses and the associated increase in damage (Fig. 1,
Eqs. 11 and 12). In viscous–plastic rheologies, which do not
incorporate damage, no such twofold approach is necessary
to solve the system of dynamical equations.

A third and major difference between the two types of
model is that in brittle models, the stress tensor σ is a prog-
nostic variable, while it is a diagnostic variable in viscous–
plastic models. This implies that the implementation of a brit-
tle rheology in an Eulerian framework, as opposed to that of
a viscous–plastic rheology, should, in practice, consider the
advection of σ , along with other – typically scalar – trac-
ers (see Sect. 2.4). One could argue that, based on a scale
analysis, the advection terms of the stress tensor components
are somewhat negligible and that it is therefore acceptable
to simply omit these terms (similarly to what is done for the
ice velocity in the momentum equations). While these terms
are indeed very small, we think that it is important to include
them in the Eulerian implementation of a brittle model be-
cause of the strong interdependence that bounds the damage
tracer and the stress tensor. This interdependence is the con-
sequence of E and λ being a function of d (Eqs. 5 and 6)
in the estimate of σ (i) (Eq. 9). The damage, as a tracer that
can live on for days, if not weeks, depending on the tempera-
ture conditions, has to be advected with the ice velocity, like
any other tracer. As such, we think that the advection of the
stress tensor is necessary to preserve the full spatial consis-
tency between the damage tracer and the internal stress state,
in particular in the case of simulations longer than a few days
that involve significant sea ice displacements.

Finally, note that in their numerical implementation of
BBM, Ólason et al. (2022) chose to solve the dynamics ex-
plicitly using a time step sufficiently small to account for
the propagation of damage in the ice in a physically realistic
manner. We follow the same approach in our implementation
of BBM into SI3. Typically, this implies using a time step a
few hundred times smaller (hereafter referred to as the dy-
namical time step, 1t) than that used for the thermodynam-
ics and the advection (hereafter referred to as the advective
time step, 1T ). This is implemented by means of a time-
splitting approach. Ns, the number of (1t-long) integrations
to perform during one advective time step (1T ), is imposed

Geosci. Model Dev., 17, 6051–6082, 2024 https://doi.org/10.5194/gmd-17-6051-2024
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Figure 2. Point arrangement and staggering in a grid cell: (a) the C-grid as used in NEMO and (b) the E-grid. The letter d indicates the
location of tracers, while the letters u and v indicate that of the i- and j -wise components of the velocity vector. Letters in brackets indicate
the name of the grid points as referred to throughout the paper.

by 1T and 1x, the horizontal resolution of the grid:

1x

1t
> 2CE⇒ Ns > 2CE

1T

1x
,

with Ns ≡
1T

1t
and CE =

√
E

2(1+ ν)ρi
, (15)

where CE is the propagation speed of an elastic shear wave
and ρi is the density of ice. Note that if 1T is already con-
strained by 1x, as in NEMO, the choice of Ns becomes
somewhat independent of the spatial resolution at which the
model is run.

2.3 Numerical implementation of the BBM rheology

SI3 uses curvilinear coordinates on a fixed Eulerian mesh,
and the spatial discretization is achieved by means of
the finite-difference method (FD) on the Arakawa C-grid
(Arakawa and Lamb, 1977). The use of the C-grid is justi-
fied based on numerical and practical grounds, as it ensures
the exact collocation of ocean and sea ice horizontal veloc-
ity components, which simplifies the coupling with the ocean
component of NEMO and prevents interpolation-related er-
rors as well as extra computational load.

As shown in Fig. 2a, on the C-grid, tracers are defined at
the cell centers, hereafter referred to as the T-point, while
the x and y components of vectors are defined at the cen-
ter of the right-hand and upper edges of each cell, respec-
tively (hereafter U-point and V-point). The point located at
the upper-right corner of each cell, known as the vorticity
point, is referred to as the F-point. In the literature, this vor-
ticity point is sometimes located at the bottom-left corner of
the cell, with the U- and V-points possibly located at the left-
hand and lower edges of the cell, and is sometimes referred
to as the Z-point (Losch et al., 2010; Plante et al., 2020).

Regardless of the type of rheology considered, the main
challenge posed by the C-grid is a consequence of the dis-
cretized FD expressions of the elements of the strain rate ten-
sor ε̇ being staggered in space, with the trace elements ε̇11
and ε̇22 defined at the T-point and the shear rate ε̇12 de-
fined at the F-point. Based on the constitutive law (Eq. 4),
the same applies to the stress tensor σ . This staggering be-
tween the diagonal and off-diagonal elements of σ is appro-
priate when considering the discretization of the momentum
equation (Eq. 1) because the discretized elements of the vec-
tor divergence of σ are then defined where they are needed:
namely, at U- and V-points. However, this staggering be-
comes an issue whenever the parameterization of the consti-
tutive law requires ε̇12 or σ12 to be known at a T-point. This is
the case, for instance, for the expression of the 1 parameter
in elastic–viscous–plastic (EVP) models or that of the second
stress invariant σII in MEB and BBM (i.e., Eq.13), as they
require ε̇12 and σ12, respectively, to be known at T-points.
Moreover, in brittle rheologies, a value of d is required not
only at the T-point, but also at the F-point to estimateE and λ
(Eqs. 5 and 6) needed to update σ (i)12 (Eq. 9). On the C-grid, a
common way to interpolate a scalar defined at F-points onto
T-points is to simply use the average of this scalar on the four
surrounding F- points and conversely to interpolate from T-
to F-points. In the aEVP implementation of SI3 (Kimmritz
et al., 2016), the problem posed by the staggering of tensor
elements is overcome by using this averaging approach to in-
terpolate the square of the shear rate ε̇12 from F- to T-points.
Later on, the term P/1 is also interpolated from T- to F-
points in order to estimate σ12. In their implementation of
MEB, Plante et al. (2020) also use this approach to interpo-
late the damage tracer at F-points. However, they report that
using the same approach to estimate σ12, and hence σII, at
T-points when performing the Mohr–Coulomb test (Eq. 13)
results in checkerboard instabilities. The solution they pro-
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pose to prevent the occurrence of these instabilities is to in-
troduce an additional σ12 that is defined at T-points. This ad-
ditional σ12 is updated at each time step using – as an incre-
ment – the average of the four σ12 increments computed at
the surrounding F-points.

Note that based on the strong interdependence between
the internal stress and the damage in brittle rheologies
(Sect. 2.2), as well as the highly localized nature of the dam-
age, we think that the use of the averaging technique to es-
timate d at the corner points of the C-grid cells should be
avoided if possible. Indeed, by using such a technique, σ (i)12 ,
as opposed to σ (i)11 and σ (i)22 , is updated using values of E
and λ that have been calculated using a poorer estimate of
d at the F-point than what the rheology, together with Mohr–
Coulomb test, would have produced at this location if explic-
itly solved on the F-point. This is because the four-point av-
erage of a variable such as the damage that is highly hetero-
geneous in space, even at the grid point scale, cannot provide
a very accurate and reliable estimate of the local value.

Finally, with the C-grid, the implementation of the advec-
tion of σ12 (F-point) in a way consistent (in terms of the ad-
vection scheme used) with that used for σ11 and σ22 (T-point)
is somewhat challenging. That is because the advection of a
scalar defined at the F-point, using the same scheme as that
used for the advection of scalars at T-points, requires the ex-
istence of a u and a v at V- and U-points, respectively. These
later considerations have prompted us to consider the use of
a new spatial discretization approach for the implementation
of BBM on the C-grid.

2.3.1 The E-grid approach

To avoid the interpolation of the damage and the stress com-
ponents between the center and the corner points of the grid
cell and allow the consistent advection of all the components
of the stress tensor, an additional sea ice velocity vector,
denoted as (û, v̂), is introduced. As shown in Fig. 3b, the
x component of this additional velocity, û, is defined at V-
points, while its y component, v̂, is defined at U-points. Sim-
ilarly, the damage tracer is also duplicated, with an additional
occurrence at the upper-right corners of the grid cell, i.e.,
at F-points. This grid staggering arrangement corresponds to
that of the Arakawa E-grid (Arakawa and Lamb, 1977; Jan-
jić, 1984; Maier-Reimer et al., 1993).

As suggested by Fig. 3b, the E-grid can be seen as a su-
perposition of two C-grids, in which the cell center of the
additional C-grid coincides with the upper-right corner of
the original C-grid. For convenience, we will refer to these
two grids as F-centric (additional) and T-centric (original),
respectively.

In order to minimize the number of modifications and
rewriting in the SI3 code, the idea was to restrict the use of
this E-augmented C-grid to rheology and advection modules
only. The rest of the code, which includes the thermodynam-
ics, remains unmodified and relies entirely on the standard

C-grid. As such, only rheology-specific tracers are defined in
the E-grid fashion, i.e., at both T- and F-points. In our case,
this applies only to the ice damage d and components of the
internal stress tensor (even though components of a tensor
cannot exactly be considered tracers when it comes to the
advection; see Sect. 2.4). However, global tracers, such as
ice concentration and thickness, which are updated within
the thermodynamics module, remain defined at the T-point
only. Consequently, these tracers are interpolated at the F-
point within the rheology module whenever needed.

To summarize, in the proposed rheology-specific E-
augmented C-grid approach, as shown in Fig. 3, the con-
ventional C-grid model variables are augmented with (i) the
u-velocity component at V-points and v-velocity component
at U-points; (ii) the ice damage, σ11, and σ22 at F-points;
and (iii) σ12 at T-points. This approach implies that all the
equations related to the dynamics, including constitutive and
momentum equations, as well as the advection, have to be
solved twice: on both the T- and F-centric grids. As detailed
in Appendix B, the exact same discretization and numeri-
cal schemes can be used on both grids, with only the in-
dices of the velocity components on the F-centric grid re-
quiring particular attention: ûi+1,j and v̂i,j+1 have to be used
as the counterparts of ui,j and vi,j on the T-centric grid
(Fig.3.b). This applies to the computation of the strain rate
tensor (Sect. B2.1), the constitutive equation (Sect. B2.2),
momentum equation (Sect. B3), the divergence of the stress
tensor (Sect. B3.1), and the advection.

At this stage it is important to note that the doubling of
the number of computational points implied by the transi-
tion to the E-grid in no way relates to an increase in the spa-
tial resolution of the original C-grid. That is because the FD
discretization of spatial derivatives on the E-grid (see Ap-
pendix B) still relies on the same local spatial increment,
i.e., 1x, as that of the original C-grid, regardless of the sub-
grid considered (T- or F-centric).

2.3.2 The separation of solutions and how it is
restrained

With the E-augmented C-grid approach, all rheology-specific
prognostic variables are defined at the points where their
value is required, and no interpolation is needed to solve
the equations. It does, however, result in an apparent overde-
termination, which allows the T- and F-centric solutions to
evolve somewhat independently from one another. This sep-
aration of solutions rapidly degenerates into unrealistically
noisy solutions as the spatial consistency of the fields be-
tween the two grids deteriorates.

This problem of grid separation has been known since the
early adoption of the E-grid by the community (Arakawa,
1972; Mesinger, 1973; Janjić, 1974; Janjić and Mesinger,
1984; Mesinger and Popovic, 2010). It is mostly discussed
in the context of the shallow-water equations and is often
referred to as “(short) gravity wave decoupling” or “lattice
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Figure 3. Transition from (a) the conventional C-grid staggering as used in NEMO to (b) the E-grid staggering proposed in this study.
T-centric (red) and F-centric (blue) cells. d is the damage tracer, u and v are the i- and j -wise components of the sea ice velocity vector, and
σkl represents the components of the internal stress tensor. The x̂ notation indicates that variable x is specific to the F-centric grid. Note: the
F-centric counterparts of ui,j and vi,j of the T-centric cell are ûi+1,j and v̂i,j+1.

separation”. Various treatments and methods have been pro-
posed, from filtering approaches to more advanced ones such
as the introduction of auxiliary velocity points midway be-
tween the neighboring tracer points (Mesinger, 1973; Janjić,
1974; Mesinger and Popovic, 2010). Interestingly, the E-grid
was used in the Hamburg Large-Scale Geostrophic (LSG)
model (Maier-Reimer et al., 1993) in order to achieve more
accurate geostrophic balance, while retaining some advan-
tages of the C-grid such as the straightforward discretization
of the divergence. In their model, the problem of grid sepa-
ration, already limited due to the use of a monthly time step,
was overcome through adding horizontal viscosity and diffu-
sion. Recently, Konor and Randall (2018) also mentioned the
need to introduce a “horizontal mixing process” to avoid the
“separation of solutions” when using the E-grid.

The cause of the separation of the two solutions resides in
the weak coupling between the two grids, as they only ex-
change very little information. Specifically, in our case, the
only exchange of information between the T- and F-centric
grids occurs via the shear stress σ12 and the ice velocity vec-
tor. The estimate of σ (i)12 of the T-centric grid (at F-point),

based on Eq. (9), uses Ê, λ̂, and ˆ̃P of the F-centric grid (at
F-point) and conversely for σ̂ (i)12 . Similarly, the correction of
σ
(i)
12 in Eq. (12), if occurring, uses d̂crit and t̂d . For the veloc-

ity, the exchange of information occurs in the Coriolis term
of Eq. (1) and through the advection of σ12 via û and v̂ (and
that of σ̂12 via u and v). As suggested by results discussed
later in this section, this exchange of information is not suf-
ficient enough to prevent the decoupling of the solutions be-
tween the two grids. Hence, a numerical treatment is required

to constrain the T- and F-centric solutions to remain spatially
consistent with one another.

During the early phase of our development, we consid-
ered, implemented, and tested a variety of such treatments.
As of now, only one has proven able to prevent the grid sep-
aration issue without leading to noisy and/or unrealistic so-
lutions. This treatment, which operates sequentially on the
T- and F-centric stress tensors at the dynamical time step
level, is hereafter referred to as cross-nudging (CN). It con-
sists of nudging each vertically integrated component of the
T-centric stress tensor (σ ) towards its F-centric counterpart
(σ̂ ) interpolated at the relevant point under even time step in-
tegrations and conversely under odd time step integrations.
This is written as follows:σ11
σ22
σ12

=
σ11
σ22
σ12

 − γcn

Ns

σ11− σ̂
T

11/h

σ22− σ̂
T

22/h

σ12− σ̂
F

12/h
F


(even dynamical time step)σ̂11

σ̂22
σ̂12

=
σ̂11
σ̂22
σ̂12

 − γcn

Ns

σ̂11− σ
F
11/h

F

σ̂22− σ
F
22/h

F

σ̂12− σ
T
12/h


(odd dynamical time step), (16)

where γcn is the CN coefficient, Ns is the time-splitting pa-
rameter (Eq. 15), the bar notation denotes the spatial inter-
polation from F- to T-points or T- to F-points (see Eq. A1 in
Appendix A3), and stress components in bold are vertically
integrated (Appendix A4). Each of the two tensors is “cor-
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rected” Ns/2 times during the course of one advective time
step 1T . The form of the term that modulates the nudging
intensity, i.e., γcn/Ns, ensures that the level of cross-nudging
undergone by the two tensors under one 1T is primarily
controlled by γcn and remains somewhat independent of the
choice of Ns.

Due to the strong damage–stress interdependence
(Sect. 2.2), the CN is applied to σ (i) rather than σ , i.e.,
after solving the constitutive equation (Eq. 9) but before
computing dcrit and applying the stress correction (Eq. 12).
Applying the CN after the stress correction stage (rather
than before) may result in the use of a mix of (i) stress
values that have been corrected through a local increase in
damage and (ii) uncorrected stress values (with no increase
in damage). This may lead to spatial inconsistencies between
the post-CN stresses and the damage field.

The four-point spatial averaging (interpolation) used in the
CN inevitably results in the introduction of a smoothing of
the solution in space. As such, γcn is chosen to achieve the
best compromise between the smoothing and the coupling of
the T- and F-centric solutions. We have performed sensitiv-
ity tests with our pan-Arctic setup and we conclude, relying
exclusively on the visual assessment of the simulated fields,
that the right compromise is achieved when γcn is typically
of the order of 1, with γcn = 1 being the value used in our ex-
periments. As illustrated in Fig. 4, with a value below 1, the
solutions become increasingly noisy as γcn approaches zero.
In particular, the damage field tends to exhibit strongly unre-
alistic straight-line features of high damage that are aligned
along the x or y axis of the grid. Our results suggest that val-
ues of γcn typically above 2 lead to an excessive smoothing of
the solutions (as shown, for example, for γcn = 10 in Fig. 4f).
The value of γcn appropriate for a given model setup is likely
to be dependent on different factors that we have not iden-
tified yet. As such, we can only recommend that potential
users of our implementation consider γcn a tuning parameter
that should be adjusted for a given setup. However, simula-
tions that we have performed at spatial resolutions of 1, 2, 4,
and 10 km with the idealized test case discussed in Sect. 3.1
(not shown) suggest that γcn is only weakly influenced by the
spatial resolution at which the model is run (values typically
between 0.5 and 2 consistently yielding what we refer to as
the best compromise).

2.4 Horizontal advection

In neXtSIM, the Lagrangian finite-element model used by
Ólason et al. (2022), the advection occurs implicitly at each
advective time step (also corresponding to the thermody-
namics time step) through the ice-velocity-driven displace-
ment of the mesh elements. As such, the rate of change of a
prognostic scalar φ is φ̇ ≡ ∂tφ. In the present Eulerian con-
text, however, the term relative to the horizontal advection
has to be considered so that the rate of change of φ is now
∂tφ+U∂xφ+V ∂yφ. In our implementation, as pointed out

by Ólason et al. (2022), this advection term is computed and
added to the trend of the prognostic scalar considered ev-
ery advective time step. Thus, the sea ice velocity vectors U
and V that we consider for the advection at the advective
time step level represent the mean of the Ns successive ve-
locity vectors (u and v) calculated under one time-splitting
instance.

We use the second-order moment (SOM) advection
scheme of Prather (1986) available in SI3 to advect the dam-
age and the components of the stress tensors (considered to
be scalars for now; see Sect. 2.4.1). Technically, the dam-
age and stress tensor components defined at the T-point (d ,
σ11, σ22, and σ̂12) are advected using U and V defined at
U- and V-points, respectively. Their F-point counterparts (d̂ ,
σ̂11, σ̂22, and σ12) are advected using Û and V̂ defined at V-
and U-points, respectively. In practice, the exact same imple-
mentation of the advection scheme can be used to perform
the advection at T- and F-points; the only difference is that
for the advection of F-point scalars, the spatial indexing of
the velocity components is staggered by one cell. Namely,
Ûi+1,j and V̂i,j+1 have to be used in place of Ui,j and Vi,j
(Fig. 3b).

As it is commonly done in sea ice models and justified by
a scale analysis of the momentum equation, the term for the
advection of momentum is neglected.

2.4.1 Advection of the internal stress tensor

In the Eulerian framework, the rate of change of a second-
rank tensor must introduce additional terms to the material
time derivative in order for the dynamics of the tensor to re-
main independent of the frame of reference (Oldroyd, 1950;
Larson, 1988; Hinch and Harlen, 2021; Stone et al., 2023).
These terms account for the effects of rotation and deforma-
tion of the medium on the evolution of the stress tensor and
are gathered here in a symmetric tensor L̇:

σ̇ ≡
Dσ

Dt
+ L̇≡ ∂tσ + (U ·∇)σ + L̇. (17)

As stressed by Snoeijer et al. (2020), one faces a “a some-
what unpleasant ambiguity” as two different formulations ex-
ist for L̇. Both formulations are equally valid in terms of
frame invariance, and so is any linear combination of the two.
The first formulation is the upper-convected time derivative

of σ , denoted as
O
σ ,

O
L=−(∇⊗U)ᵀσ − σ (∇⊗U), (18)

which, in component form, simplifies into

O
L11 =−2

(
ε̇11σ11+ ∂yU σ12

)
,

O
L22 =−2(ε̇22σ22+ ∂xV σ12) ,

O
L12 =−(ε̇11+ ε̇22)σ12− ∂xV σ11− ∂yUσ22. (19)
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Figure 4. Effect of using different values for the cross-nudging coefficient γcn on the simulated sea ice damage. Random snapshot of damage
(at T-points, 13 January 1997) after 30 d of simulation using the specified value of γcn in a set of sensitivity experiments identical to SI3-BBM:
(a) no cross-nudging, (b) γcn = 0.1, (c) γcn = 0.5, (d) γcn = 1 as in SI3-BBM, (e) γcn = 2, and (f) γcn = 10.

The second formulation is the lower-convected time
derivative, denoted as

4

σ ,

4

L= σ (∇⊗U)ᵀ+ (∇⊗U)σ , (20)

with

4

L11 = 2(ε̇11σ11+ ∂xV σ12) ,

4

L22 = 2
(
ε̇22σ22+ ∂yUσ12

)
,

4

L12 = (ε̇11+ ε̇22)σ12+ ∂yUσ11+ ∂xV σ22. (21)
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These formulations of L̇ are straightforward to implement
in the model as they only involve multiplications between the
components of tensors ε̇ and σ , which are all defined at both
T- and F-points with the E-grid. Therefore, we have imple-
mented both formulations in SI3. In our implementation, the
standard advection trend for each tensor component, corre-
sponding to the term (U ·∇)σ in Eq. (17), is computed using
the identical scheme to that used for regular scalar fields. The
tensor-specific advection trend, L̇, is computed according to
Eq. (19) or (21). These two contributions are computed inde-
pendently from one another using stress values that have not
been updated yet by the advection process.

We have chosen to use the upper-convected formulation
in both the idealized and pan-Arctic simulations presented in
this paper. This choice is purely arbitrary and is not based on
scientific considerations of any kind. It relies solely on the
fact that the upper-convected formulation has been favored
in the literature since Oldroyd, who introduced both formu-
lations in his 1950 paper, found that his model would only
realistically represent the flow around a rotating rod when
using this formulation, as opposed to the lower-convected
one (Hinch and Harlen, 2021). Nevertheless, two twin sim-
ulations of our reference BBM simulation (see Sect. 3.2)
have been run, one using the traditional material derivative
(i.e., L̇= 0) and the second the lower-convected formulation.
All the diagnostics and deformation statistics discussed later
in this paper have been performed for these two additional
simulations and no significant differences have been identi-
fied among the three options (PDFs of the total deformation
for the reference and additional simulations are provided in
Fig. C3 in Appendix C as an example).

Further work, involving, for example, the design of new
idealized test cases, should be conducted to address this
ambivalence and help identify which time-derivative for-
mulation (or combination of them, such as the Gordon–
Schowalter time-derivative discussed by Dansereau et al.,
2016) is best adapted to sea ice rheology.

2.5 Construction of observed and simulated
Lagrangian sea ice deformations

Our assessment of the NEMO pan-Arctic simulations relies
on a multiscale statistical analysis of sea ice deformation
rates constructed using observed and simulated Lagrangian
sea ice trajectories during winter 1996–1997. Observed tra-
jectories are taken from the RGPS (RADARSAT Geophys-
ical Processor System Lagrangian trajectories) dataset of
Kwok et al. (1998), while simulated trajectories are gener-
ated from the Eulerian sea ice velocities of SI3 by means of
a sea ice particle tracker program.

The preprocessing and computing approach we use to con-
struct sea ice deformations out of the raw RGPS Lagrangian
trajectories is very similar to that used by Ólason et al.
(2022), the main difference being that it relies on the tracking
of quadrangles rather than triangles. To construct the SI3-

derived synthetic version of these deformations, the track-
ing software seeds the identical points to those involved in
the definition of the quadrangles selected for computing the
RGPS deformation, respecting their initial position in space
and time. These points are then tracked for about 3 d us-
ing the hourly averaged Eulerian sea ice velocities of SI3;
the exact tracking duration used is that of the time interval
between the two consecutive positions of the corresponding
RGPS point.

Our period of interest, spanning 15 December 1996 to
20 April 1997, is divided into 3 d bins, which correspond to
the nominal time resolution of the RGPS dataset.

2.5.1 Selection of RGPS trajectories

For each 3 d bin, an initial subset of the RGPS points is se-
lected. Each point of this initial subset must satisfy the fol-
lowing requirements:

– The point has at least one position that occurs within
the time interval of the bin; this position, or the earliest-
occurring one if there is more than one occurrence, is
selected and referred to as position no. 1.

– Position no. 1 is located at least 100 km away from the
nearest coastline.

– The point has at least one upcoming position that oc-
curs 3 d after position no. 1, with a tolerated deviation
of ± 6 h, referred to as position no. 2 (in the event of
more than one position satisfying this requirement, the
position yielding the time interval the closest to 3 d is
selected).

2.5.2 Quadrangulation of selected trajectories

A Delaunay triangulation is performed on this initial sub-
set of points at position no. 1. Triangles whose areas differ
by more than 25 % from the half of the nominal area of the
quadrangles to be constructed (i.e., the square of the spatial
scale under consideration) or with an angle below 5° or above
160° are excluded. Neighboring pairs of remaining triangles
are then merged into quadrangles in order to transform the
triangular mesh into a quadrangular mesh.

Aspiring quadrangles at position no. 2 are constructed
by simply considering the exact same respective sets of
four points as those defining quadrangles at position no. 1.

Finally, only points that define quadrangles that satisfy
the following requirements at both position no. 1 and posi-
tion no. 2 are retained:

– The square root of the area of the quadrangle falls within
a± 12.5 % range of agreement with the horizontal scale
under consideration.

– The time position of each of the four points defining the
vertices of the quadrangle should not differ from that of
any of the other three points by more than 60 s.
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– The thresholds for the minimum and maximum angles
allowed are 40 and 140°, respectively.

2.5.3 Computation of deformation rates based on the
quadrangles

For all quadrangles selected in a given 3 d bin, strain rates
are computed based on their position no. 1 and no. 2 us-
ing the line-integral approximations (see, e.g., Lindsay and
Stern, 2003, Eqs. 10–14).

The time location (date) assigned to a given deformation
rate corresponds to the center of the time interval defined by
position no. 1 and position no. 2 of each quadrangle. The
spatial location of the deformation rates corresponds to the
barycenter of the four vertices of the quadrangle considered
at the center of this same time interval.

2.5.4 Construction of the simulated Lagrangian sea ice
trajectories

To save computer resources, only the points from which valid
RGPS deformation estimates were computed are retained.
Each of these points is seeded using the same initialization
date and location (bilinear interpolation) as its RGPS coun-
terpart. It is then tracked during the same time interval of
about 3 d (± 6 h) that separates the two consecutive records
of the RGPS point considered. The tracking software uses a
time step of 1 h and feeds on the hourly averaged simulated
sea ice velocities of the SI3 experiments. Note that only the
conventional C-grid velocities u and v of the T-centric cell
are used to track the points (û and v̂, available in the BBM-
driven simulation, are not used).

3 Model evaluation

We use version 4.2.2 of the NEMO modeling system (Madec
et al., 2022) as the basis for the development of the BBM
rheology code extension and to perform both the idealized
and coupled pan-Arctic simulations to be assessed. Since ver-
sion 4, the default sea ice component of NEMO has been SI3
(Vancoppenolle et al., 2023).

3.1 Idealized simulations

To provide a first qualitative evaluation of the behavior of our
BBM implementation, SI3 simulations were run on the ideal-
ized test case setup introduced by Mehlmann et al. (2021), in-
cluding simulations using the default aEVP-driven SI3 setup
for reference purposes. This test case, defined on a 512 km
wide square domain, simulates a cyclone traveling in the
northeastward direction over a thin layer of ice (h' 0.3 m)
that floats on an anticyclonically circulating ocean. This test
case is well suited to illustrate the influence of the grid dis-
cretization on rheology-related processes such as the repre-
sentation of linear kinematic features (LKFs) (Danilov et al.,

2022, 2024), which makes it particularly relevant to our
study. We use the identical setup and parameter values to
those defined in Mehlmann et al. (2021) (see the “Code and
data availability” section to access the SI3 namelists and
forcing files). SI3 is run in stand-alone mode using SAS,
the stand-alone surface module of NEMO. In SAS mode,
SI3 uses a prescribed surface ocean state (current, height,
temperature, and salinity) instead of being coupled to the
ocean component of NEMO as in our pan-Arctic simulations
(Sect. 3.2).

The results of this test case, for both the aEVP and BBM
rheology, are shown in Fig. 5. First we note that for the
SI3 implementation of aEVP, the deformation fields obtained
are in qualitative agreement with those of Mehlmann et al.
(2021) (see, for instance, their Fig. 7). In the solutions ob-
tained with BBM, we note the presence of a circular network
of LKFs that contrast, by their arrangement, with the “spider-
web-like” arrangement of the LKFs in the aEVP solution. In
the BBM-driven simulation these LKFs are also simulated in
the 10 km setup (Fig. 5h). The spatial pattern of the LKFs,
particularly those accommodating the highest deformation,
also look qualitatively different: apparently longer and with
circular and concentric shapes with respect to the center of
the forcing cyclone in the case of BBM, shorter and in radial
alignment with respect to the forcing cyclone in the aEVP
case.

We also find that the background deformation field is close
to zero in the BBM solution, except along the LKFs, whereas
the deformation looks more homogeneous in space in the
aEVP solution. This can also be seen on the respective PDFs
(Fig. 5c, f, and i) that exhibit different shapes and heavier
tails in the BBM solution. We have verified that the aEVP
solution is not too significantly impacted by the number of
iterations used in the aEVP solver of SI3 by conducting
the same aEVP experiments with a NEVP= 1000 instead of
NEVP= 100 (Fig. C1).

Finally, we note that the solutions do not contain any ap-
parent numerical instabilities or noise for aEVP or BBM. The
LKF-like features in the BBM solution at 10 km show a ten-
dency to align horizontally, vertically, and diagonally with
the grid. As of now, we are unable to provide an explana-
tion of the mechanism responsible for these alignments, apart
from their apparent connection with the use of a relatively
coarse spatial resolution, as the solution obtained with the
4 km setup seems to be rid of them.

3.2 Coupled ocean–sea ice pan-Arctic simulations

The pan-Arctic simulations use SI3 coupled to the 3D ocean
component of NEMO, named OCE. They are performed
on the so-called NANUK4 regional configuration, which
is an Arctic extraction of the standard global 1/4° resolu-
tion NEMO gridded horizontal domain known as ORCA025
(Barnier et al., 2006). As such, and as shown in Fig. 6, the
actual grid resolution of NANUK4 typically spans 10 up to
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Figure 5. Sea ice total deformation (instantaneous) in the test case described by Mehlmann et al. (2021) after 48 h of simulation with SI3 using
the default SI3 aEVP setup and the newly implemented BBM rheology (left-hand and middle column, respectively) and the corresponding
PDFs (right-hand column) for simulations run at a spatial resolution of 2, 4, and 10 km (first, second, and third row, respectively).

14 km in the central Arctic region. NANUK4 features two
open lateral boundaries; the southernmost boundary is lo-
cated at about 39° N in the Atlantic Ocean, and the second
boundary is located south of the Bering Strait, at about 62° N
in the Pacific Ocean. The vertical z-coordinate grid used for

the ocean features 31 levels with a 1z of 10 m at the surface
up to about 500 m at the deepest level, at a depth of 5250 m.

The hindcast nature of the simulations is achieved through
the use of interannual atmospheric and oceanic forcings at
the surface and at the two open boundaries, respectively. For
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Figure 6. Geographical extent, numerical grid, and actual local spatial resolution of the NANUK4 computational domain that is used in the
experiments. For ease of visual representation of the grid cells, grid points have been subsampled by a factor of 4.

the atmospheric forcing, both the ocean and the sea ice com-
ponents receive, as surface boundary conditions, fluxes of
momentum, heat, and fresh water at the air–sea and air–ice
interface, respectively. These fluxes are computed every hour
by means of bulk formulae using the hourly near-surface at-
mospheric state from the ERA5 reanalysis of the ECMWF
(Hersbach et al., 2020) and the prognostic surface tempera-
ture of the relevant component (SST or ice surface tempera-
ture).

For the lateral boundary conditions of OCE, the 3D ocean
is relaxed towards the monthly averaged 3D horizontal ve-
locities, temperature, salinity, and SSH (2D) of the GLO-
RYS2v4 ocean reanalysis (Ferry et al., 2012).

Both OCE and SI3 use a time step of 1T = 720 s, the ad-
vective time step. The coupling between these two compo-
nents is also done at each advective time step. Our control
simulation, named SI3-default, uses the default SI3 setup as
provided in NEMO and thereby uses the aEVP rheology of
Kimmritz et al. (2016). The second simulation, named SI3-
BBM, only differs from SI3-default through the use of our
implementation of the BBM rheology in place of aEVP and a
higher value of the air–ice drag coefficient. Values of param-
eters relevant to both rheologies used in the two simulations
are provided in Tables 1 and 2, respectively.

The two simulations are initialized on 1 December 1996
using the same restart data generated at the end of a 2-month
spin-up performed with the SI3-default setup and run until
20 April 1997. This spin-up is initialized on 1 October 1996
by using the daily averaged ocean and sea ice data from the
GLORYS2v4 reanalysis as an initial condition. More specif-
ically, OCE is initialized at rest (no current) with the 3D tem-
perature and salinity state of the reanalysis, while SI3 is ini-
tialized with the sea ice concentration and thickness. The 2-
month spin-up we use is long enough to get the ocean ve-
locities in the upper ocean into a good state with the given
temperature and salinity fields. Our strategy implies that SI3-
BBM is initialized on 1 December 1996, with a value of ice
damage set to zero everywhere, which poses no issue as the
time required to spin up the damage is very short (Bouillon
and Rampal, 2015; Rampal et al., 2016), typically of the or-
der of a few days. The analysis of the results is performed
for the period 15 December 1996–20 April 1997, leaving the
upper ocean and the sea ice cover in SI3-BBM 2 weeks to
respond to the changed rheology, which should be ample.

For these simulations, the adjustable tuning parameters
of SI3 are kept as close as possible to those of the refer-
ence configuration of NEMO (Tables 1 and 2). As such, the
thermodynamic component uses five ice categories. Yet, the
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Table 1. Values of default aEVP-related parameters in SI3, as used in experiment SI3-default.

Parameter Definition Value used

C compaction parameter 20
P ∗ ice strength thickness parameter 20× 103 Nm2

e eccentricity of the elliptical yield curve 2
C
(a)
D ice–atmosphere drag coefficient 1.4× 10−3

C
(o)
D basal ice-water drag coefficient (Eq. B18) 5× 10−3

NEVP number of iterations 100

Table 2. Values of BBM-related parameters implemented in SI3, as used in experiment SI3-BBM.

Parameter Definition Value used

ν Poisson’s ratio (Eq. 4) 1/3
E0 elasticity of undamaged sea ice (Eq. 5) 5.96× 108 Pa
λ0 viscous relaxation time of undamaged sea ice (Eq. 6) 107 s
C compaction parameter (Eqs. 6, 5 and 8) 20
α damage parameter (Eq. 6) 5
P0 scaling parameter for ridging threshold (Eq. 8) 104 Pa
h0 reference ice thickness for ridging threshold (Eq. 8) 1 m
c sea ice cohesion (Eq. 13) 5.8× 103 Pa
µ internal friction coefficient (Eq. 13) 0.7
N upper limit for compressive stress (Eq. 13) 2.9× 107 Pa
kth healing constant for damage (Eq. 14) 26 Ks
Ns time-splitting parameter (Eq. 15) 100
1t dynamical time step (Eq. 15) 7.2 s
γcn cross-nudging coefficient (Eq. 16) 1
C
(a)
D ice–atmosphere drag coefficient 2× 10−3

C
(o)
D basal ice-water drag coefficient (Eq. B18) 5× 10−3

ice–atmosphere drag coefficient C(a)D has been adjusted from
1.4× 10−3 to 2× 10−3 in SI3-BBM in order for the mean
simulated deformation rate at the 10 km scale to be in agree-
ment with that derived from the satellite observations against
which we evaluate the model (see Sects. 2.5 and 3.3.3). In
SI3-default, the default value of 1.4× 10−3 satisfies this re-
quirement and is left unchanged. For the time-splitting ap-
proach (Sect. 2.2), we use a dynamical time step of 7.2 s
in SI3-BBM, which relates to a time-splitting parameter of
Ns = 100.

3.3 Comparison of simulated sea ice deformation
statistics against satellite data

3.3.1 Probability density function of sea ice
deformation rates

As illustrated by the maps of the 3 d total deformation rates
(Fig. 7), RGPS clearly exhibits narrow and long features,
commonly called linear kinematic features (LKFs; Kwok,
2001) along which the deformation is concentrated. Visually,
LKFs simulated by SI3-BBM appear somewhat realistic in
terms of both length and orientation, and the magnitude of

the deformation rates along these LKFs is similar to that of
RGPS. We note that SI3-default exhibits very smooth fields
of deformation with almost no such localized features; this
is consistent with the findings of recent studies that evaluate
VP-driven sea ice simulations run at a grid resolution typi-
cally coarser than 5 km (e.g., Ólason et al., 2022; Bouchat
et al., 2022).

The PDFs of the total deformation rates (Fig. 8d) show that
SI3-BBM exhibits a heavy tail similar to that of RGPS and
that it can be approximated by a power law over the values
corresponding to the last two percentiles of the RGPS distri-
bution, although with slightly different exponents (−2.9 and
−3, respectively). A look at the other invariants of the de-
formation (i.e., shear, divergence, and convergence rates in
Fig. 8a–c) shows that SI3-BBM simulates large deformation
events as seen in the observations, which suggests the abil-
ity of BBM to capture the heterogeneous character of sea ice
deformation in this setup. In contrast, SI3-BBM is unable to
reproduce the observed convergence over the full range of
values present in the RGPS data (Fig. 8c). This limitation of
the BBM rheology is further discussed in Sect. 4.2.

Our results suggest a propensity for SI3-default to under-
estimate the extreme values of deformation rates. This in-

Geosci. Model Dev., 17, 6051–6082, 2024 https://doi.org/10.5194/gmd-17-6051-2024



L. Brodeau et al.: Implementation of a brittle sea ice rheology in SI3 of NEMO 6065

Figure 7. Maps of the sea ice total deformation rate at the 10 km spatial and 3 d temporal scale for the period centered about 24 December
1996, computed based on (a) RGPS Lagrangian data and (b, c) their synthetic counterparts constructed using the simulated sea ice velocities
of SI3-BBM and SI3-default, respectively. Empty regions correspond to the absence of satellite data during the period concerned.

adequacy of the model could very likely be mitigated by
conducting a finer tuning of the parameters related to the
viscous–plastic rheology, in particular through the better ad-
justment of the ratio between the ice compressive strength
and the ice shear strength (Bouchat and Tremblay, 2017).
Yet, conducting such a tuning is out of the scope of this pa-
per. Interestingly, the underestimation of extreme deforma-
tion values set aside, SI3-default exhibits a power-law behav-
ior similar to that of both observations and SI3-BBM, with
similar exponents, except in convergence.

3.3.2 Time series of sea ice deformation rates

Following Ólason et al. (2022), we examine the 90th per-
centile of the total deformation (P90), chosen for its sensitiv-
ity to the high values that contribute to shaping the long tail
of the PDFs of deformations. Technically, P90 is the value
of deformation below which 90 % of deformation values in
the frequency distribution fall. P90 is computed from each
snapshot of deformation from mid-December 1996 to late
April 1997 to evaluate the temporal evolution of the defor-
mation. In addition to the 90th percentile, we also consider
the 95th and 98th percentiles.

As illustrated in Fig. 9, SI3-BBM is in fairly good agree-
ment with the observations, in particular for the P90 values
(see Table 3). We note, however, that despite the ability of
SI3-BBM to reproduce a variability similar to that observed,
the higher the percentile value, the lower the agreement be-
tween the magnitudes. This suggests an inability of the BBM
rheology to capture the most extreme deformation events.

We note that the biases and RMSEs are very similar be-
tween the two simulations. For P90 and P95, the values sug-
gest fairly good agreement between the two simulations and
the observations. The values for P98, however, highlight the

Table 3. Bias, RMSE, and Pearson correlation of the deformation
rate time series in Fig. 9 obtained between each simulation and
RGPS.

Experiment Bias Error ρ (p value)

P90 SI3-BBM −0.004 0.011 0.81 (2× 10−10)
SI3-default −0.006 0.011 0.78 (2× 10−9)

P95 SI3-BBM −0.01 0.02 0.79 (1.2× 10−9)
SI3-default −0.02 0.03 0.77 (4.2× 10−9)

P98 SI3-BBM −0.02 0.04 0.69 (5.4× 10−7)

SI3-default −0.06 0.07 0.7 (3× 10−7)

inability of both models to reproduce extreme deformation
events. This is in qualitative agreement with what Ólason
et al. (2022) already reported. Yet, further investigation re-
mains necessary to assess whether this is inherent to the
BBM model or could be improved through the better adjust-
ment of the rheological parameters.

3.3.3 Multi-fractal scaling analysis

The presence of heavy tails in the distributions shown in
Fig 8 implies that one needs to consider higher moments than
the mean to fully describe the statistics of the sea ice de-
formation (Sornette, 2006). Following Marsan et al. (2004),
our multi-fractal scaling analysis should be restricted to the
consideration of moments of order q > 0 because zero val-
ues exist in the deformation field. Moments of order q > 3
should also be disregarded because a transition occurs typ-
ically between qc= 2.5 and qc= 3 (Schertzer and Lovejoy,
1987). This is a consequence of the tails of the distributions
for RGPS and SI3-BBM being well represented by a power
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Figure 8. PDFs of the (a) shear, (b) divergence, (c) convergence, and (d) total deformation rates at the 10 km spatial and 3 d temporal scale
for RGPS data and their synthetic counterparts constructed using the simulated sea ice velocities of SI3-BBM and SI3-default. The light gray
lines are for reference and correspond to a power law with an exponent of −3. Below each panel, the departure between the logarithm of the
simulated and observed distributions is shown for each bin.

law with an exponent of about −3, which would cause mo-
ments of order q > qc to diverge (Savage, 1954).

We performed a multi-fractal spatial scaling analysis of
the RGPS total deformation rates and their simulated coun-
terparts, considering the moments q = 1, 2, and 3 of the dis-
tributions. Both the observed and simulated statistics (mean,
variance, and skewness) follow power laws (Fig. 10). In par-

ticular, the observed mean sea ice deformation rate 〈ε̇〉 is par-
ticularly well reproduced in SI3-BBM across the full range
of spatial scales considered for this analysis and can be ap-
proximated by a power-law scaling, i.e., 〈ε̇〉 ∼ L−β , where
L is the spatial scale and β an exponent of about 0.15. We
note that the atmospheric drag coefficient was used as the
adjustment parameter in SI3 (Sect. 3.2), which led to the use
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Figure 9. Time series of the (a) 90th, (b) 95th, and (c) 98th percentiles of the sea ice total deformation rate for winter 1996–1997 at the
10 km spatial and 3 d temporal scale for RGPS data and their synthetic counterparts constructed using the simulated sea ice velocities of
SI3-BBM and SI3-default.

of C(a)D = 2× 10−3 in SI3-BBM, while the C(a)D = 1.4× 10−3

used in SI3-default did not require any adjustment. Consis-
tent with the results previously discussed, the higher mo-
ments, which characterize the largest and most extreme
values of the distributions, remain underestimated in SI3-
BBM compared to that derived from the observations. In-

deed, the exponents of the power law that fits the SI3-BBM
data (β =−0.6 and −1.34 for q = 2 and 3, respectively) are
lower than those derived from RGPS data (β =−0.7 and
−1.52). This indicates that SI3-BBM is not fully capturing
the strength of the spatial scaling of sea ice deformation re-
vealed by the observations or, in other words, that it fails to
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achieve the extremely high degree of spatial localization of
the LKFs in the observations. Figure 10 suggests that the to-
tal deformation rates simulated by SI3-default cease to fol-
low the expected power law for scales larger than 100 km.
This is in line with published results (e.g., Hutter et al., 2018;
Bouchat et al., 2022). Hutter et al. (2018) argue that the VP
model needs approximately 10 grid cells to be able to resolve
features, which suggests that the “effective resolution” of the
model is 10 times coarser than that of the numerical grid on
which it is run. This implies that one should instead consider
fitting the deformation rates at a resolution 10 times coarser
than that used by the model, i.e., 130 km in our case. This
would yield power-law slopes that are in better agreement
with those derived from observations. We argue that since
sea ice deformation is a scale-invariant process at the geo-
physical scale, a sea ice model should be able to represent
this scaling down to the model grid cell. Figure 10 suggests
that our BBM implementation allows SI3 to achieve this de-
spite the use of the Eulerian framework.

The simulated and observed structure functions (i.e., the
dependence of the scaling exponents of the power law on
the order of the moment) β(q) are shown in Fig. 11. The
spatial scaling obtained from both the observations and SI3-
BBM are multi-fractal because their structure functions is
well approximated (in the sense of the least-square method)
by a quadratic function of the type β(q)= aq2

+ bq. One
should note that in the universal multi-fractal formalism,
the structure functions are not required to be quadratic and
can have a varying degree of nonlinearity (Lovejoy and
Schertzer, 2007). A quadratic structure function, as obtained
here, simply means that the process of sea ice deforma-
tion can be approximated by a lognormal multiplicative cas-
cade model with a maximum degree of multi-fractality. The
structure function of SI3-BBM shows a curvature a that has
a magnitude comparable to that of RGPS, i.e., 0.15 ver-
sus 0.17. These values of curvature are in fair agreement with
those obtained from Lagrangian simulations performed with
neXtSIM and reported in previous studies: 0.14 in Rampal
et al. (2016) and 0.11 in Rampal et al. (2019).

4 Discussion

4.1 On the numerical implementation

The cross-nudging has a noteworthy analogy to the Asselin
filter (Asselin, 1972) used when discretizing time derivatives
of a prognostic variable by means of the leap-frog scheme
(three time levels, centered, and second-order), in particular
in the context of shallow-water equations. The goal of this
Asselin filter is to subtly average the solutions of neighbor-
ing time levels to prevent the separation of trajectories be-
tween the even and odd time step levels (Marsaleix et al.,
2012). As such, the cross-nudging can be seen as a sort of
spatial and two-dimensional analog to the Asselin filter. De-

Figure 10. Spatial scaling analysis of the observed and simulated
total deformation rate calculated over a 3 d timescale (all based
on the motion of the same RGPS quadrangles) based on RGPS
data and their synthetic counterparts constructed using the simu-
lated sea ice velocities of SI3-BBM and SI3-default. Moments of
order q = 1,2,3 of the distributions of the total deformation rate
were calculated at scales spanning from 10 up to 640 km. The solid
straight lines indicate the associated power-law scaling based on the
least-square fit using values from 10 to 160 km. Values for 320 and
640 km are excluded due to excessive uncertainty resulting from the
small sample size. Note: we used logarithmically spaced bins and
applied an ordinary least-square method to the binned data in log–
log space to get a reasonably accurate estimate of these power-law
fits (Stern et al., 2018).

spite the crudeness of this approach, which tends to be prob-
lematic due to the unavoidable loss of conservation proper-
ties, the Asselin filter is still largely used in modern CMIP-
class OGCMs like NEMO. Indeed, the ocean component of
NEMO used in the simulations presented in this study still
relies on it. As of now, our cross-nudging approach clearly
lacks physical and numerical consistency, but it somehow al-
lows demonstrating that the implementation of a brittle rhe-
ology, along with the advection of the internal stress tensor,
is feasible onto an E-augmented C-grid, provided a method
to prevent the separation of solutions is used. Nevertheless,
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Figure 11. Structure functions β(q) for the RGPS data (black), SI3-
BBM (blue), and SI3-default (red), where β indicates the exponent
of the power-law fits indicated in Fig. 10 and q is the moment order.

we plan to further investigate the possibility of implementing
approaches that are more physically and numerically consis-
tent. For instance, an option is to apply the cross-nudging to
the two invariants of the stress tensor (i.e., σI and σII) and
the rate of internal work of the ice. This would introduce
three equations for three invariant quantities, from which the
three components of the stress tensor could be deduced af-
terward. Another option is to explore the possibility of deriv-
ing a numerical formulation inspired from that of Mesinger
(1973) and Janjić (1974), in which auxiliary velocity (or
stress) points are introduced midway between the neighbor-
ing tracer (or velocity) points.

Another critical requirement, this time stemming from the
use of the Eulerian and finite-difference framework, has to
do with the ability of the advection scheme to advect fields
with as little numerical diffusion or dispersion as possible.
This is particularly critical when using a brittle rheology like
BBM, as most fields exhibit sharp gradients, often associated
with linear kinematic features. We chose to use the scheme
of Prather (1986), the dispersive scheme option of SI3, to
favor the conservation of sharp gradients at the cost of po-
tential noise and overshoots reminiscent of the Gibbs phe-
nomenon. One could, however, consider the use of a different
approach that would optimize the advection of sharp gradi-
ents, for instance a spatial discretization based on the dis-
continuous Galerkin method. This method has proven to be
efficient and accurate in treating the advection of sea ice vari-
ables in the case of a brittle sea ice rheology such as MEB
(Dansereau et al., 2017) but has not yet been tested in the

context of large-scale, long-term sea ice simulations. This is
the scope of our present work and future papers.

As discussed in Sect. 2.3.1, the use of the E-grid in the dy-
namics and advection modules of SI3 implies that equations
specific to the momentum and the constitutive law are solved
on both the T- and the F-centric grids. Moreover, with the
need to advect the stress tensor and the damage tracer, spe-
cific to brittle rheologies, 2× 4 additional scalar fields need
to be advected. This inevitably leads to an increase in the
computational cost of SI3. We have estimated this extra cost
by comparing the wall-time length required to complete a
90 d simulation with each rheology using the same 29 cores
in parallel on the same computer. Our results, summarized in
Table 4, suggest that the increase in the computational cost
associated with the use of BBM in place of aEVP is about
45 % when SI3 is used in a stand-alone mode (SAS). In stan-
dard coupled mode, with SI3 coupled to OCE, the BBM-
related cost increase is about 20 %. This lower value is ex-
plained by the fact that by default, the coupling between OCE
and SI3 is done sequentially. As such, the cost of SI3 simply
adds up to that of OCE, and the cost of OCE is expected
to be independent of the mode used (in our case: 113 and
114 CPU hours for SI3-default and SI3-BBM, respectively).
Based on our results, the relative cost of SI3 in coupled mode
is about 40 % when using the default aEVP setup and about
50 % with our BBM implementation.

4.2 On the simulated sea ice deformations

Based on comparisons against various types of observations,
recent studies suggest that large-scale models using BBM
can realistically simulate the dynamics and properties of sea
ice (Ólason et al., 2022; Rheinlænder et al., 2022; Boutin
et al., 2023; Regan et al., 2023). Yet, the deformation in con-
vergence and the subgrid-scale processes related to sea ice
ridging are not represented by BBM with the same degree
of accuracy. The model overestimates the number of con-
verging events with magnitudes of about 1 % to 5 % per day
and underestimates the most extreme events (Fig. 8c and Óla-
son et al., 2022). As of now, parameter tuning, in particular
that of the BBM-specific ridging threshold parameter Pmax,
has not helped to improve the agreement with the observed
PDFs of convergence (not shown). Therefore, we conclude
that some fundamental processes need to be reconsidered in
BBM.

In Sect. 3.3.3, we find that the degree of multi-fractality
of the deformation fields simulated by SI3-BBM is slightly
lower than that obtained from the RGPS data. The fact that
the deformation fields simulated by neXtSIM in Ólason et al.
(2022) are in better agreement with RGPS in this regard sug-
gests that this problem is linked to some numerical aspects
of our BBM implementation rather than the BBM rheology
itself. This is most likely the consequence of the introduction
of some additional numerical dispersion and diffusion by the
advection scheme and the cross-nudging treatment, respec-
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Table 4. Computational cost of 3 months (90 d) of pan-Arctic sea ice simulation at 1/4° resolution with SI3 on the NANUK4 regional domain
(31 vertical levels), with an advective time step of 720 s, run on 29 cores in parallel (with output data writing disabled to limit the influence
of I/O). Default SI3 aEVP setup (NEVP = 100) versus newly implemented BBM rheology (Ns = 100) for both stand-alone (SI3-SAS) and
coupled (SI3-OCE) modes.

SI3-default SI3-BBM BBM-related increase

SI3 – SAS (stand-alone) 80 CPU hours 116 CPU hours +45 %

SI3 – OCE (coupled) 193 CPU hours 232 CPU hours +20 %
→ added cost of OCE 113 CPU hours 114 CPU hours –

Relative cost of SI3 in coupled mode 41 % 50 % –

tively, as these two features are absent in neXtSIM. Moments
of order 2 and 3 are expected to be more affected than the
mean by an unwanted source of noise and diffusion, which
might explain why SI3-BBM reproduces the mean across all
scales remarkably well and why the power-law exponents for
the variance and the skewness are underestimated. In this re-
gard, the use of the finite-element method together with the
discontinuous Galerkin method might prove to be a promis-
ing combination to simulate the multi-fractality of sea ice de-
formation even more accurately while remaining in the Eu-
lerian and quadrilateral mesh framework.

5 Conclusions

The brittle Bingham–Maxwell rheology, known as BBM, has
been successfully implemented into SI3, the CMIP-class, Eu-
lerian finite-difference sea ice model of the NEMO modeling
system. We have shown that our implementation, which fea-
tures a prognostic ice damage tracer and a prognostic internal
stress tensor, is able to realistically simulate sea ice deforma-
tion statistics on a pan-Arctic scale when compared to satel-
lite observations.

Our implementation uses a new discretization approach
that expands the C-grid of NEMO into the Arakawa E-grid
in the parts of the code dedicated to sea ice dynamics. We
have chosen to do so in order to (i) avoid resorting to the spa-
tial averaging of prognostic fields, in particular the damage
tracer, as an interpolation technique between the center and
corner points of the grid cells, and (ii) allow the straightfor-
ward advection of the shear component of the stress tensor.
However, by solving the dynamics on the E-grid, the issue of
the grid separation is introduced. We have introduced a sim-
ple technique to prevent this grid separation in the form of the
cross-nudging. This cross-nudging relies on the averaging of
the components of the stress tensor and, as such, introduces a
spatial smoothing of these components. Despite the fact that
this aspect of our implementation is in contradiction to one
of our initial motivations (i.e., avoid the use of spatial av-
eraging), we think that our E-augmented C-grid approach is
promising. This is because the damage tracer is never aver-
aged, which we think is beneficial for the consistency of the

brittle model, and the advection of the shear component of
the stress tensor is straightforward and numerically consis-
tent with that of the trace components.

For the advection of the stress tensor, we have chosen to
use the upper-convected time derivative rather than its lower-
convected counterpart, a combination of the two, or simply
the standard material derivative. This choice, based on arbi-
trary considerations, has no significant impact on the defor-
mation statistics presented in this paper. Both formulations
are available in our implementation, which will allow SI3
users to further investigate on this matter, in particular by
means of dedicated idealized test cases.

We carried out a statistical analysis of the sea ice deforma-
tion rates obtained from a set of realistic pan-Arctic coupled
ocean–sea ice simulations for winter 1996–1997, performed
with SI3 at a horizontal resolution of about 12 km. Based on a
comparison with satellite observations, this analysis demon-
strates that the use of the newly implemented BBM rheology
results in simulated sea ice deformation statistics that are re-
alistic. In particular, we show that the use of BBM allows
simulating highly localized (nearly linear) kinematic features
within the sea ice cover, along which the most substantial de-
formation rates are concentrated.

The observed non-Gaussian statistics of the sea ice defor-
mation process are clearly present in the simulation that uses
our newly implemented BBM rheology, except the most ex-
treme values and more particularly those corresponding to
the convergent mode of deformation. Since this drawback
was already observed in the BBM-driven simulations of the
Lagrangian sea ice model neXtSIM presented in Ólason et al.
(2022), we think that it probably shows an intrinsic limitation
of the current BBM rheological model, an issue that certainly
merits investigating and fixing in the future. Finally, we show
that the observed spatial scaling invariance property of sea
ice deformation, and in particular its multi-fractal nature, is
fairly well captured by the BBM-driven simulation but with
a slightly lower degree of multi-fractality.
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Appendix A: Nomenclature

A1 Table of symbols used in the text

Symbol Definition Units
m mass of ice and snow per unit

area
kg m−2

ρi density of sea ice kgm−3

ρw density of seawater kgm−3

u≡ (u,v) sea ice velocity m s−1

A sea ice fraction –
h sea ice thickness m
g acceleration of gravity m s−2

f Coriolis frequency s−1

k vertical unit vector (z axis) s−1

H sea surface height m
τ ice–ocean stress Pa
τ a wind (ice–atmosphere) stress Pa
σ internal stress tensor (2× 2) Pa
ε̇ strain rate tensor (2× 2) s−1

d damage of sea ice –
1x local resolution (size) of the grid

mesh
m

C compaction parameter –
α damage parameter (Dansereau,

2016)
–

E0,E elastic modulus of undamaged
and damaged ice

Pa

λ0,λ apparent viscous relaxation time
of undamaged
and damaged ice

s

P̃ BBM-specific ridging term –
Pmax ridging threshold Pa
P0 scaling parameter for Pmax Pa
h0 reference ice thickness for Pmax m
c sea ice cohesion Pa
ν Poisson’s ratio –
σI isotropic normal stress (first

invariant of stress tensor)
Pa

σII maximum shear stress (second
invariant of stress tensor)

Pa

µ internal friction coefficient –
N upper limit for compressive

stress
Pa

CE propagation speed of an elastic
shear wave

ms−1

td characteristic timescale for the
propagation of damage

s

dcrit damage increment (Dansereau,
2016)

–

kth healing constant for damage K s
1Th temperature difference between

bottom and surface of ice
K

A2 Acronyms

NEMO Nucleus for European Modeling of the Ocean
SI3 Sea-Ice modeling Integrated Initiative (sea ice

component of NEMO)
OCE 3D ocean component of NEMO
SAS Stand-alone surface module of NEMO (i.e.,

SI3 stand-alone)
LIM Louvain-La-Neuve sea-Ice Model
BBM Brittle Bingham–Maxwell (rheology)
MEB Maxwell elasto-brittle (rheology)
VP Viscous–plastic (rheology)
FD Finite difference (method)
CN Cross-nudging (treatment)
PDF Probability density function
LKFs Linear kinematic features
GCM General circulation model
OGCM Ocean general circulation model
SST Sea surface temperature
SSH Sea surface height
RGPS RADARSAT Geophysical Processor System

(dataset)

A3 Notations related to the discretization on the E-grid

The bar+ superscript notation refers to a spatial interpola-

tion;
−X

φ is field φ interpolated onto X points.
Interpolation from T- to F-points, or conversely, is based

on the average of the four nearest surrounding points
(Fig. 3a).

−T
φ i,j = 1/4(φi,j +φi−1,j +φi−1,j−1+φi,j−1)

(if φ defined at F)
−F
φ i,j = 1/4(φi+1,j+1+φi,j+1+φi,j +φi+1,j )

(if φ defined at T) (A1)

Note: surrounding points located on land or open-
boundary cells are excluded from the averaging.

For the interpolation from tracer (T or F) to velocity (U
or V) points, or conversely, only the two nearest surrounding
points are used.

−U
φ i,j = 1/2(φi+1,j +φi,j ) (if φ defined at T)
−V
φ i,j = 1/2(φi,j+1+φi,j ) (if φ defined at T)
−U
φ i,j = 1/2(φi,j +φi,j−1) (if φ defined at F)
−V
φ i,j = 1/2(φi,j +φi−1,j ) (if φ defined at F) (A2)

The “hat” notation x̂ refers to the F-centric counterpart
of x, with x being a prognostic scalar or tensor (rank 1 or 2)
defined in the T-centric grid (mind that if x is the element of
a tensor, x̂ is not necessarily defined on F-points). Example:
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d̂ and σ̂11 are prognostic fields defined on F-points (the nat-
ural location for d and σ11 on the C-grid is the T-point); sim-
ilarly, σ̂12 is defined on T-points (the natural location for σ12
on the C-grid is the F-point).

A4 Miscellaneous notations

x symmetric tensor x expressed in its Voigt form
x(i) initial estimate of variable x
at X on the X points of the grid
σ kl vertically integrated components of tensor σ

→ σ kl ≡ hσkl if σkl defined at T
→ σ kl ≡ h

F
σkl if σkl defined at F

O
x upper-convected time derivative of symmetric

(rank 2) tensor x
4

x lower-convected time derivative of symmetric
(rank 2) tensor x

A5 Table of symbols related to the numerical
implementation

Symbol Definition Units
1T advective time step for the

advection and the thermo-
dynamics

s

1t dynamical time step
specific to BBM (time
splitting)

s

Ns ≡1T/1t , time-splitting
parameter

–

k time level index of time
splitting (1≤ k ≤Ns)

–

A,h,d ice concentration, thick-
ness, and damage of ice
at T

–, m, –

−F
A,
−F
h ice concentration

and thickness interpolated
at F

–, m

d̂ damage of ice at F –
ε̇ ≡ (ε̇11, ε̇22, ε̇12) strain rate tensor (2× 2)

of the T-centric cell
s−1

ˆ̇ε ≡
(
ˆ̇ε11, ˆ̇ε22, ˆ̇ε12

)
strain rate tensor (2× 2)
of the F-centric cell

s−1

σ ≡ (σ11,σ22,σ12) internal stress tensor
(2×2) of the T-centric cell

Pa

σ̂ ≡
(
σ̂11, σ̂22, σ̂12

)
internal stress tensor
(2×2) of the F-centric cell

Pa

−U
A ,
−V
A ice concentration interpo-

lated at U and at V
m

−U
h ,
−V
h ice thickness interpolated

at U and at V
m

u,v ice velocity at the1t level
(at U and at V)

ms−1

û, v̂ ice velocity at the1t level
(at V and at U)

ms−1

U,V ice velocity at the 1T
level (at U and at V)

ms−1

Û, V̂ ice velocity at the 1T
level (at V and at U)

ms−1

C
(o)
D ice–ocean drag coefficient –
τx,τy ice–ocean stress at U and

at V
Pa

τ̂x, τ̂y ice–ocean stress at V and
at U

Pa

uo,vo surface ocean current at U
and at V

ms−1

γcn cross-nudging coefficient –
C
(a)
D ice–atmosphere drag coef-

ficient
–

1Tx T-centered 1x that con-
nects two neighboring
U-points

m

1Ty T-centered 1y that con-
nects two neighboring
V-points

m

1Fx F-centered 1x that con-
nects two neighboring
V-points

m

1Fy F-centered 1y that con-
nects two neighboring
U-points

m

1Ux U-centered 1x that con-
nects two neighboring
T-points

m

1Uy U-centered 1y that con-
nects two neighboring
F-points

m

1Vx V-centered 1x that con-
nects two neighboring
F-points

m

1Vy V-centered 1y that con-
nects two neighboring
T-points

m
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Appendix B: Algorithm and discretization

B1 Algorithm

Time-splitting loop (1t)/for k = 1 to Ns

– Compute elasticity E,Ê and viscous relaxation time
λ, λ̂ as a function of damage dk, d̂k and current sea ice

concentration A,
−F
A (Eqs. B5 and B6).

– Compute the normal stress invariant of σ k and σ̂ k →
σ kI , σ̂

k
I (Eq. B8).

– Compute Pmax, P̂max as a function of current sea ice

thickness h,
−F
h and concentration A,

−F
A (Eq. B7).

– Compute P̃ , ˆ̃P as a function of Pmax, P̂max and σI, σ̂I
(Eq. B9).

– Compute the three components of each strain rate tensor
ε̇, ˆ̇ε based on sea ice velocities at time level k (Eqs. B1,
B2, B3, and B4).

– Calculate an initial prognostic estimate of the stress ten-
sors at time level k+1→ σ (i)k+1 and σ̂ (i)k+1 (Eq. B11).

– Apply cross-nudging between the vertically integrated
σ (i)k+1 and σ̂ (i)k+1 (Eq. 16).

– Apply a Mohr–Coulomb test on σ (i)k+1 and σ̂ (i)k+1.

– Compute the two invariants of σ (i)k+1 and σ̂ (i)k+1

→ σ
(i)k+1
I ,σ

(i)k+1
II and σ̂ (i)k+1

I , σ̂
(i)k+1
II (Eq. B8).

– Compute dcrit and d̂crit based on σ (i)k+1
I ,σ

(i)k+1
II and

σ̂
(i)k+1
I , σ̂

(i)k+1
II (Eq. B12).

– Calculate a prognostic estimate of the stress tensors and
damage at time level k+ 1→ σ k+1, dk+1 and σ̂ k+1,
d̂k+1.

– Where 0< dcrit < 1 and/or 0< d̂crit < 1 (over-
critical stress state),
→ damage growth and stress adjustment (Eq. B13).

– Elsewhere,
→ no damage growth and no stress adjustment
(Eq. B14).

– Compute the divergence of the vertically integrated
σ k+1 and σ̂ k+1 (Eqs. B16 and B17).

– Calculate a prognostic estimate of sea ice velocity at
time level k+1→ uk+1,vk+1 and ûk+1, v̂k+1 (Eqs. B19
and B18).

SI3 (advective) time step (1T ):

– BBM rheology (time-splitting loop above)

– Advection of generic SI3 prognostic tracers (A, h, etc.)
at T-points using U and V

– Advection of d, σ11, σ22, and σ̂12 at T-points using U
and V

– Advection of d̂ , σ̂11, σ̂22, and σ12 at F-points using Û
and V̂

– Healing of damage (d and d̂) (Eq.14)

– Thermodynamics module of SI3 (update of A, h, etc.)

B2 Update of internal stress tensor in the T- and
F-centric worlds

B2.1 Divergence, shear, and strain rate tensor of ice
velocity

Following Hunke and Dukowicz (2002), here is how the
components of the strain rate of the sea ice velocity vector are
computed on the T- and F-centric grids based on the finite-
difference method.

– Divergence rate (∂xu+ ∂yv):

Di,j =

[1Uyu]i,j − [1
Uyu]i−1,j

+[1Vxv]i,j − [1
Vxv]i,j−1

[1Tx1Ty]i,j
,

D̂i,j =

[1Vyû]i+1,j − [1
Vyû]i,j

+[1Uxv̂]i,j+1− [1
Uxv̂]i,j

[1Fx1Fy]i,j
. (B1)

– Tension rate (∂xu− ∂yv):

Ti,j =(
[u/1Uy]i,j − [u/1

Uy]i−1,j

)
[1Ty2

]i,j

−

(
[v/1Vx]i,j − [v/1

Vx]i,j−1

)
[1Tx2

]i,j

[1Tx1Ty]i,j
,

T̂i,j =(
[û/1Vy]i+1,j − [û/1

Vy]i,j

)
[1Fy2

]i,j

−

(
[v̂/1Ux]i,j+1− [v̂/1

Ux]i,j

)
[1Fx2

]i,j

[1Fx1Fy]i,j
. (B2)
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– Shear rate (∂yu+ ∂xv):

Si,j =(
[u/1Ux]i,j+1− [u/1

Ux]i,j

)
[1Fx2

]i,j

+

(
[v/1Vy]i+1,j − [v/1

Vy]i,j

)
[1Fy2

]i,j

[1Fx1Fy]i,j
,

Ŝi,j =(
[û/1Vx]i,j − [û/1

Vx]i,j−1

)
[1Tx2

]i,j

+

(
[v̂/1Uy]i,j − [v̂/1

Uy]i−1,j

)
[1Ty2

]i,j

[1Tx1Ty]i,j
. (B3)

From the above, the three components of the 2D strain rate
tensors are obtained.ε̇11
ε̇22
ˆ̇ε12


i,j

=
1
2

Di,j + Ti,jDi,j − Ti,j

Ŝi,j


 ˆ̇ε11
ˆ̇ε22
ε̇12


i,j

=
1
2

D̂i,j + T̂i,jD̂i,j − T̂i,j
Si,j

 (B4)

B2.2 Update of the stress tensors

– Elasticity and viscous relaxation time of damaged ice

E = E0(1− d)eC(1−A)

Ê = E0(1− d̂)eC(1−
−F
A) (B5)

λ= λ0[(1− d)eC(1−A)]α−1

λ̂= λ0[(1− d̂)eC(1−
−F
A)
]
α−1 (B6)

Note that it is the averaged value of A at F-points,
−F
A , that

is used in the equations for the F-centric grid.

– Ridging threshold

Pmax = P0[h/h0]
3/2eC(1−A)

P̂max = P0
[
−F
h /h0

]3/2

eC(1−
−F
A) (B7)

Note that it is the averaged value of h at F-points,
−F
h , that

is used in the second equation.

– Invariants of stress tensor

σI =
1
2
(σ11+ σ22),σII =

√(
σ11− σ22

2

)2

+ σ̂ 2
12

σ̂I =
1
2
(σ̂11+ σ̂22), σ̂II =

√(
σ̂11− σ̂22

2

)2

+ σ 2
12 (B8)

– P̃ term

P̃ =


σI
−Pmax

for σI <−Pmax

−1 for −Pmax ≤ σI < 0
0 for σI > 0

ˆ̃
P =


σ̂I
−P̂max

for σ̂I <−P̂max

−1 for − P̂max ≤ σ̂I < 0
0 for σ̂I > 0

(B9)

– Multiplicator for stress update

�=
λ

λ+ (1+ P̃ )1t

�̂=
λ̂

λ̂+ (1+ ˆ̃P)1t
(B10)

– Initial update of stress tensor

σ
(i)k+1
11 =�

[
E1t

1
1− ν2

(
ε̇k11+ νε̇

k
22

)
+ σ k11

]
σ
(i)k+1
22 =�

[
E1t

1
1− ν2

(
νε̇k11+ ε̇

k
22

)
+ σ k22

]
σ̂
(i)k+1
12 = �̂

[
Ê1t

1− ν
1− ν2

ˆ̇εk12+ σ̂
k
12

]
σ̂
(i)k+1
11 = �̂

[
Ê1t

1
1− ν2

(
ˆ̇εk11+ ν

ˆ̇εk22

)
+ σ̂ k11

]
σ̂
(i)k+1
22 = �̂

[
Ê1t

1
1− ν2

(
ν ˆ̇εk11+

ˆ̇εk22

)
+ σ̂ k22

]
σ
(i)k+1
12 =�

[
E1t

1− ν
1− ν2 ε̇

k
12+ σ

k
12

]
(B11)

– Damage increment

dcrit =


c

σ
(i)
II +µσ

(i)
I

if σ (i)I >−N

−N

σ
(i)
I

otherwise

d̂crit =


c

σ̂
(i)
II +µσ̂

(i)
I

if σ̂ (i)I >−N

−N

σ̂
(i)
I

otherwise
(B12)

– Update of damage and stress tensors

Geosci. Model Dev., 17, 6051–6082, 2024 https://doi.org/10.5194/gmd-17-6051-2024



L. Brodeau et al.: Implementation of a brittle sea ice rheology in SI3 of NEMO 6075

– In regions where 0< dcrit < 1, the following ap-
plies.

dk+1
=

dk + (1− dcrit)

×(1− dk) 1t/td

σ k+1
=

σ (i)k+1
− (1− dcrit)

×σ (i)k+1 1t/td

with td =1
Tx

√
2(1+ ν)ρi

E

d̂k+1
=

d̂k + (1− d̂crit)

×(1− d̂k) 1t/t̂d

σ̂ k+1
=

σ̂ (i)k+1
−

(
1− d̂crit

)
×σ̂ (i)k+11t/t̂d

with t̂d =1
Fx

√
2(1+ ν)ρi

Ê

(B13)

– Elsewhere, the following applies.

dk+1
= dk

σ k+1
= σ (i)k+1

d̂k+1
= d̂k

σ̂ k+1
= σ̂ (i)k+1 (B14)

B3 Momentum equation

As opposed to aEVP for which SI3 uses the scheme of
Kimmritz et al. (2016, 2017), here we chose to solve the
equation for momentum (in both the T- and F-centric worlds)
using the implicit scheme approach of Bouillon et al. (2009).

B3.1 Divergence of the vertically integrated stress
tensor

– Definition

(
1x
1y

)
≡

(
∂(h σ11)
∂x
+
∂(h σ12)
∂y

∂(h σ22)
∂y
+
∂(h σ12)
∂x

)
(B15)

– Discretized in the T-centric cell

1k+1
x

∣∣
i,j
=

[
σ k+1

11 h 1Ty2
]
i+1,j
−

[
σ k+1

11 h 1Ty2
]
i,j[

1Ux 1Uy2
]
i,j

+

[
σ k+1

12

−F
h 1Fx2

]
i,j

−

[
σ k+1

12

−F
h 1Fx2

]
i,j−1[

1Uy 1Ux2
]
i,j

(at U)

1k+1
y

∣∣
i,j
=

[
σ k+1

22 h 1Tx2
]
i,j+1
−

[
σ k+1

22 h 1Tx2
]
i,j[

1Vy 1Vx2
]
i,j

+

[
σ k+1

12 ĥ 1Fy2
]
i,j
−

[
σ k+1

12 ĥ 1Fy2
]
i−1,j[

1Vx 1Vy2
]
i,j

(at V)

(B16)

– Discretized in the F-centric cell

1̂k+1
x

∣∣
i,j
=

[
σ̂ k+1

11

−F
h 1Fy2

]
i,j

−

[
σ̂ k+1

11

−F
h 1Fy2

]
i−1,j[

1Vx 1Vy2
]
i,j

+

[
σ̂ k+1

12 h 1Tx2
]
i,j+1
−

[
σ̂ k+1

12 h 1Tx2
]
i,j[

1Vy 1Vx2
]
i,j

(at V)

1̂k+1
y

∣∣
i,j
=

[
σ̂ k+1

22

−F
h 1Fx2

]
i,j

−

[
σ̂ k+1

22

−F
h 1Fx2

]
i,j−1[

1Uy 1Ux2
]
i,j

+

[
σ̂ k+1

12 h 1Ty2
]
i+1,j
−

[
σ̂ k+1

12 h 1Ty2
]
i,j[

1Ux 1Uy2
]
i,j

(at U)

(B17)

B3.2 Update of sea ice velocity

For clarity, we gather the contributions of the wind stress,
the Coriolis term, and the SSH tilt vectors in a single vector
term named (Rx,Ry). This is because these three terms do
not present any particular challenge to express with respect
to the existing implementation of aEVP. Note, however, that
with the E-grid no spatial interpolation is needed to express
the discretized Coriolis term.

Implicitness of the scheme is introduced through the use
of sea ice velocity at level k+ 1 in the estimate of the basal
ice–water stress vector (τx,τy).

τx = Z
k
x

(
uko− u

k+1)
with Zkx =

−U
A ρwC

(o)
D

√(
uko− uk

)2
+
(−Uk
vo − v̂k

)2(at U)

τy = Z
k
y

(
vko − v

k+1)
with Zky =

−V
A ρwC

(o)
D

√(−Vk
uo − ûk

)2
+
(
vko − vk

)2(at V)

τ̂x = Ẑ
k
x

(−Vk
uo − û

k+1)
with Ẑkx =

−V
A ρwC

(o)
D

√(−Vk
uo − ûk

)2
+
(
vko − vk

)2(at V)

τ̂y = Ẑ
k
y

(−Uk
vo − v̂

k+1)
with Ẑky =

−U
A ρwC

(o)
D

√(
uko− uk

)2
+
(−Uk
vo − v̂k

)2(at U) (B18)
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Then, the discretized equation of momentum yields the ex-
pression of the two velocity components at time level k+ 1.

uk+1
=

ρi
−U
h

1t
uk +Zxu

k
o+1

k+1
x +Rkx

ρi
−U
h

1t
+Zx

(at U)

vk+1
=

ρi
−V
h

1t
vk +Zyv

k
o +1

k+1
y +Rky

ρi
−V
h

1t
+Zy

(at V)

ûk+1
=

ρi
−V
h

1t
ûk + Ẑx

−Vk
uo + 1̂

k+1
x + R̂kx

ρi
−V
h

1t
+ Ẑx

(at V)

v̂k+1
=

ρi
−U
h

1t
v̂k + Ẑy

−Uk
vo + 1̂

k+1
y + R̂ky

ρi
−U
h

1t
+ Ẑy

(at U) (B19)
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Appendix C: Additional figures

Figure C1. Sea ice total deformation (instantaneous) in the test case described by Mehlmann et al. (2021) after 48 h of simulation with
SI3 using the default SI3 aEVP rheology with NEVP = 100 and NEVP = 1000 (left-hand and right-hand column, respectively) at 2, 4, and
10 km resolution (first, second, and third row, respectively).
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Figure C2. Sea ice total deformation (instantaneous) in the test case described by Mehlmann et al. (2021) after 48 h of simulation with
SI3 using the newly implemented BBM rheology with Ns = 100 and Ns = 200 (left-hand and right-hand column, respectively) at 2, 4, and
10 km resolution (first, second, and third row, respectively).
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Figure C3. PDFs of the total deformation rates at the 10 km spatial
and 3 d temporal scale for the synthetic counterparts of RGPS data
constructed using the simulated sea ice velocities of three BBM-
driven SI3 experiments that use different time-derivative formu-
lations for the stress tensor: only material derivative (“Material”,
black line with circle markers), upper-convected time derivative as
in SI3-BBM (“Upper-C”, blue line with square markers), and lower-
convected time derivative (“Lower-C”, red line with star markers).

Code and data availability.

– The NEMO source code used to perform the ex-
periments is based on the official release 4.2.2 of
NEMO; it is available on Zenodo with the DOI
https://doi.org/10.5281/zenodo.11551599 (The NEMO
team, 2024).

– New and modified Fortran-90 source files relative to our
implementation of the BBM rheology in version 4.2.2
of NEMO/SI3 are available on Zenodo with the DOI
https://doi.org/10.5281/zenodo.11581840 (Brodeau, 2024a).

– The Python software used to seed and build Lagrangian
trajectories out of the SI3 hourly sea ice velocities
is named sitrack; the version used to perform the
present study is available on Zenodo with the DOI
https://doi.org/10.5281/zenodo.10457918 (Brodeau, 2024b).

– The Python software used to compute the RGPS and model-
based sea ice deformation rates based on quadrangles and
perform the scaling analysis is named mojito; the version
used to perform the present study is available on Zenodo with

the DOI https://doi.org/10.5281/zenodo.10457924 (Brodeau,
2924c).

– Model data produced and analyzed in this study, namely
SI3 hourly output files for pan-Arctic simulations SI3-BBM
and SI3-default, are available on Zenodo with the DOI
https://doi.org/10.5281/zenodo.11582103 (Brodeau, 2024d).

– Model data as well as setup, forcing, and configuration files for
the “cyclone” test case experiments (Mehlmann et al., 2021)
discussed and analyzed in this study are available on Zen-
odo with the DOI https://doi.org/10.5281/zenodo.11615982
(Brodeau, 2024e).
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