
HAL Id: hal-04689660
https://hal.univ-grenoble-alpes.fr/hal-04689660v1

Submitted on 5 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Forgetting Analysis by Module Probing for Online
Object Detection with Faster R-CNN

Baptiste Wagner, Denis Pellerin, Sylvain Huet

To cite this version:
Baptiste Wagner, Denis Pellerin, Sylvain Huet. Forgetting Analysis by Module Probing for Online
Object Detection with Faster R-CNN. EUSIPCO 2024 - 32nd European Signal Processing Conference,
Aug 2024, Lyon, France. �hal-04689660�

https://hal.univ-grenoble-alpes.fr/hal-04689660v1
https://hal.archives-ouvertes.fr


Forgetting Analysis by Module Probing for Online
Object Detection with Faster R-CNN

Baptiste Wagner, Denis Pellerin, Sylvain Huet
Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab

38000 Grenoble, France

Abstract—Online Object Detection (OOD) involves learning
novel object categories from a stream of images, like the
one generated by an agent exploring new environments. In
this scenario, the widely used Faster R-CNN architecture faces
catastrophic forgetting—the phenomenon where acquiring new
knowledge leads to forget previously learned knowledge. The
forgetting evaluations published in the literature focus only on
the evolution of the performances on past seen data without
questioning where forgetting occurs in the architecture and how
it propagates. In this paper, our first contribution introduces a
new protocol called Module Probing to offer a detailed evaluation
of forgetting. This protocol identifies the layers accountable for
catastrophic forgetting within the Faster R-CNN architecture.
Our results reveal that forgetting is predominantly concentrated
in the final classification layer. Building on these insights, our
second contribution involves mitigating forgetting by modifying
the architecture’s classification layer. We demonstrate that it
significantly reduces forgetting on three OOD benchmarks. Our
achievements provides a first replay-free baseline for challenging
OOD scenarios to enhance model long-term performance.

Index Terms—Catastrophic forgetting, Online Object Detec-
tion, Faster R-CNN, Online Continual Learning

I. INTRODUCTION

Online Object Detection (OOD) [1] involves training an
object detector on a continuous stream of images. This kind
of training system mimics a real-world experience of an
embodied agent that encounters different new and already-seen
categories of objects as it navigates through.

The reference model architecture for OOD is the
Faster R-CNN [2]. However, this architecture is subject to
the phenomenon known as catastrophic forgetting [1], [3]–[5].
This phenomenon is characterized by a loss of information
related to previously learned data, resulting in an irreversible
decline in the model’s performances when it is subsequently
trained on new data. [1], [5]. Furthermore, the Faster R-CNN
architecture is complex and composed of different modules for
solving the localization and classification tasks for OOD [2].
The challenge is therefore to identify the components of the
architecture responsible for the occurrence of catastrophic for-
getting. Indeed, existing metrics for forgetting evaluation only
assess the architecture’s overall forgetting, without examining
the Faster R-CNN components individually.

In this study, we investigate the forgetting manifestation
inside the Faster R-CNN architecture trained in an OOD
context. To this end, our first contribution is the proposal of a
new evaluation protocol called Module Probing. This protocol
identifies the architecture modules where forgetting occurs and

Backbone

RPN

Linear Head

Box Classifier Box Regressor

Faster R-CNN

Classification
scores

RoI Align

Bounding boxes

Figure 1. The Faster R-CNN architecture. An input image (here from
the EgoObjects benchmark [6]) is fed in a Backbone to generate a global
image feature map. The RPN (Region Proposal Network) identifies regions
of interest containing objects. The RoI Align operation generates a region-
specific feature map for each proposed region. Each RoI Aligned region is fed
to two fully connected layers in the Linear Head, then to the Box Classifier
and the Box Regressor to output classification scores and refined bounding
boxes.

allow to understand the impact of forgetting at the different
layers of the Faster R-CNN architecture.

In particular, our analysis with Module Probing identified
the last classification layer as the main factor of forgetting in
the architecture. Based on this result, our second contribution
is a new approach to efficiently mitigate the forgetting of the
Faster R-CNN by adjusting its classification layer only.

This paper is organized as follows. In Section II we start
with an in-depth description of the Faster R-CNN architecture.
In Section III, we detail our Module Probing evaluation
protocol aimed at probing forgetting in Faster R-CNN and
expose the results obtained. In Section IV, we highlight the
effectiveness of our approach to mitigate forgetting in the
Faster R-CNN, illustrated by the results on three specific
benchmarks for OOD.



II. PRELIMINARIES: FASTER R-CNN ARCHITECTURE

Faster R-CNN [2] is a reference architecture for object
detection tasks. This architecture is part of the two-stage
detectors family: the first stage localizes objects by proposing
Regions of Interest (RoI) and the second classifies the detected
objects. Its overall architecture is schematized in Figure 1. The
following modules constitute the Faster R-CNN.

Backbone: extracts features from the entire input image
by combining a Convolutional Neural Network (CNN) with a
Feature Pyramid Network (FPN). This step provides a global
image feature for subsequent modules.

Region Proposal Network (RPN): proposes Regions of
Interest (RoI) in the form of bounding boxes around potential
objects in the image. These proposals serve as a basis for
object localization.

RoI Align: generates a feature map for each Region of
Interest given by the RPN. Specifically, it processes the image
features along with a RoI as input, generating a RoI feature of
fixed size, regardless the size of the bounding box predicted
by the RPN.

Linear Head: reduces the dimension and flattens the feature
map outputed by the RoI Align. This module is composed of
two fully connected linear layers.

Box Classifier: assigns a classification score for each
detected object given the features extracted from the Linear
Head. This module is a Softmax classification layer. The logit
with the highest score determines the predicted class.

Box Regressor: refines the region of interest to obtain a
more accurate bounding box around the detected object via
linear regression.

III. MODULE PROBING

In the context of OOD, knowledge retention in the
Faster R-CNN architecture is essential for a model to be
effective over the long term. Our main objective is to identify
the modules of the Faster R-CNN architecture where the
catastrophic forgetting phenomenon occurs.

In this section, inspired by Linear Probing [7], we present
a new protocol called Module Probing. This methodology
allows us to evaluate each module of the Faster R-CNN in
terms of knowledge preservation. Thanks to this approach, we
analyze how each element of the architecture reacts during
online learning and we locate areas prone to forgetting.

A. Module Probing Protocol

The proposed Module Probing methodology assesses the
Faster R-CNN’s information retention across various depths
in its architecture.

Let’s consider two distinct datasets D1 and D2. The
Faster R-CNN is initially trained on dataset D1, and subse-
quently trained on D2. During the second training phase on
D2, the Faster R-CNN gradually forgets the knowledge related
to D1. The model’s weights move to a place in the weight
space where the only concern is recognizing the new objects
in D2. This phenomenon of catastrophic forgetting [8], [9] is
illustrated in Figure 2.

Low Error on First Dataset 

Low Error on Second Dataset 

Catastrophic forgetting

Knowledge retention

Figure 2. Illustration of the catastrophic forgetting effect for a model of
parameters θ. When the network is trained on a new dataset D2, gradient
updates may damage the performance on the previous dataset D1. The model
efficiently maintains knowledge if it finds a location in weight space suitable
for recognizing both new and old objects.

The Module Probing methodology consists of first training
the model sequentially on D1 then on D2. Secondly, we
freeze the modules of interest to examine their information
retention. Finally, we retrain the partially frozen model on D1

and evaluate its performance on the same dataset.
By evaluating on D1, we measure whether the frozen

modules still allow the trained modules to readjust to D1.
If the model has low performance, the frozen modules have
forgotten past information. In other terms, their weights are in
a place in the weight space exclusive to the resolution of D2.

B. Benchmark details

As an agent navigates through an environment, it encounters
categories of objects it has previously seen [1]. The agent
revisits certain categories more frequently than others, deter-
mined by their presence in the environment. This phenomenon
of re-occurrence of old categories is called Natural Replay
[4]. The disparity in the degree of replay between different
categories distorts the model’s measures of forgetting. A rare
object in the flow is prone to be forgotten, while proficiency in
recognizing a commonly encountered object tends to improve
over time [4]. Evaluating the genuine forgetting of a model in
OOD requires training it in a learning scenario without Natural
Replay. For this reason, we performed our experiments on the
benchmark EgoObjects Continual Learning (CL) Instance [6],
which is free of Natural Replay.

EgoObjects CL Instance [6]: This benchmark contains
100K images with 250K box annotations for 1.1K object
instances. Annotations are exclusively provided for the main
object instance in each image, with the instance ID serving
as the class label for prediction. The dataset offers a diverse
range of backgrounds, surrounding objects, distances, lighting
conditions, and camera motions, providing a rich and varied
environment for object detection tasks.

The dataset is divided into 5 different experiences
(E1, E2, . . . E5). Access to images from previous experiences
is prohibited, ensuring that only the current experience is
used for training. Previous experiences share no common main
object instances with later experiences, resulting in a Natural
Replay-free benchmark ideal for evaluating forgetting.

Online constraints: The benchmark on EgoObjects is orig-
inally introduced for continual object detection, where several



RPN

B

H

C R

RPN

B

H

C R

RPN

B

H

C R

RPN

B

H

C R

RPN

B

H

C R

1 2 3 4 5
Experience learned

0.00

0.25

0.50

0.75

1.00

AP
50

MP
observed

(a)

1 2 3 4 5
Experience learned

0.00

0.25

0.50

0.75

1.00

MP
observed

(b)

1 2 3 4 5
Experience learned

0.00

0.25

0.50

0.75

1.00

MP
observed

(c)

1 2 3 4 5
Experience learned

0.00

0.25

0.50

0.75

1.00
MP
observed

(d)

1 2 3 4 5
Experience learned

0.00

0.25

0.50

0.75

1.00

MP
observed

(e)

Figure 3. Performance comparison of Observed and Module Probed (MP) performances across five configurations (a) - (e). The Faster R-CNN is composed
of five modules: a Backbone (B), a RPN, a Linear Head (H), a Box Classifier (C) and a Box Regressor (R). Modules marked in blue are frozen to examine
their knowledge retention. When the Box Classifier is excluded from retraining, the model struggles to readjust its performance (d). In all other configurations,
the model successfully readjusts. These observations strongly suggest that the Softmax layer in C is the main source of forgetting within the architecture.

epochs are possible on each experience [6]. To respect the
online constraint specific to the field of study in which we
position ourselves, we follow the learning scenario outlined
by the benchmark but allow a single training epoch on each
of the 5 experiences. In addition, following [1], [3], [4], we
build a validation set by performing a 1/16 split of the training
set. The validation set specific to the first experience E1 is
used to evaluate model forgetting in our Module Probing
protocol as D1. The four latter experiences (E2, E3, E4, E5)
constitute D2. For a given configuration of frozen modules, we
evaluate the model at the end of each experience, this gives
four intermediate forgetting measures on D2.

Training details: We train a Faster R-CNN [2] with a
Mobile-Net [10] as Backbone, pre-trained on the COCO
dataset [11]. The model is trained by stochastic gradient
descent with a learning rate of 0.01, a weight decay of 10−5

and a score threshold of 0.001. The model is evaluated using
the Average Precision metric with an IoU (Intersection over
Union) threshold of 0.5 (AP50).

We employ a top-down approach to measure forgetting in
each module of the Faster R-CNN. We perform a Module
Probing experiment by freezing only the Backbone. Then,
we perform additional experiments in which we progressively
freeze the following modules. This results in five different
freezing configurations, illustrated at the top of Figure 3.

C. Results

In the following, we present the results of Module Probing
on the EgoObjects CL Instance benchmark [6]. For a given
configuration of frozen modules, we show two evaluation
measures. The observed AP50 is the performance of the model
trained in an incremental way on each experience Ei. Module
Probed (MP) performance is evaluated after readjusting non-
frozen modules on the reference experience E1 at the end of
training on Ei, i ≥ 2 as explained in the Module Probing
protocol in III-A. The results are shown in Figure 3.

During online learning, the Faster R-CNN loses knowl-
edge of previous data: the observed performance curve de-
creases progressively as the model is trained on other data in
E2, E3, E4 and E5.

In the first three configurations (3(a), 3(b), 3(c)), the MP
AP50 is readjusted compared to observed. This suggests that
the frozen modules have retained information relating to the
first experience E1. The forgetting effect in the Faster R-CNN
is not localized in the first three modules Backbone, RPN,
and Linear Head. Hence, it is unnecessary to readjust these
modules to obtain good performance on earlier data.

In the forth freeze configuration where the Box Classifier
is additionally frozen (3(d)), the performance MP is not read-
justed: the MP and observed curves are almost overlapping.
In this configuration, only the Box Regressor is re-trained on
E1, the rest of the architecture is frozen. This is the only
configuration among five where the Box Classifier is frozen.

In the last configuration (3(e)), the Box Classifier is the
only module retrained on E1. In this configuration, the model
performance is readjusted. This indicates that all the remained
frozen modules, i.e. all modules except the Box Classifier,
forget limited knowledge linked to the first experience E1.

D. Discussion

These results suggest that the Box Classifier module, which
is a Softmax classification layer, is primarily responsible for
the overall forgetting effect in the Faster R-CNN architecture.

In the field of online classification [12], the Softmax layer
has been criticized in numerous works [12]–[14]. This layer
induces a classification bias towards more recent classes,
leading to poor classification performance, despite limited
intermediate representation forgetting [7].

This finding links the manifestation of forgetting in the do-
mains of classification and object detection in online learning.
In the following section, we modify the Faster R-CNN at
the level of the Box Classifier only to address the observed
forgetting of this architecture in an OOD scenario.



IV. FORGETTING COMPENSATION IN FASTER R-CNN FOR
OOD

In the previous section, our Module Probing experiences
showed that catastrophic forgetting in Faster R-CNN is mainly
localized in the Box Classifier module which is a Softmax
classification layer.

Based on these results, we modify the Softmax layer in
the Faster R-CNN architecture to enhance its information
retention. In this section, we detail the new architecture and
demonstrate its performance on three OOD benchmarks.

A. Mitigating forgetting with Label Trick

In a class-imbalanced training context, the Softmax classi-
fier is biased towards over-represented classes [15]. In OOD,
recent classes tend to be more represented than old classes.
Thus, Softmax favors new classes over old ones, perceived as
knowledge forgetting [12], [14].

To overcome the problem of Softmax bias in Faster R-CNN,
we replace the original cross-entropy loss for classification
with the Label Trick (LT) [12]. The loss is the following:

LLT (pi, yi) = − log

 ezyi∑
j∈C

δjezj

 , δj =

{
0 if j /∈ Ccur

1 if j ∈ Ccur

(1)
where pi is the region of interest i of ground truth class yi.

zj is the logit associated with the region of interest pi for class
j. C is the set of all classes while Ccur is the set of classes
currently present in the minibatch.

Old classes are absent in the current minibatch. By ex-
clusively considering outputs corresponding to classes in the
current minibatch, the training avoids excessively penalizing
logits for old classes.

Comparison between Softmax and LT: In the following,
we compare the performances of the traditional Softmax layer
with the LT layer for two main strategies for OOD: Incre-
mental and Experience Replay (ER) [16]. Incremental involves
training a Faster R-CNN over the data stream without taking
precautions to prevent catastrophic forgetting. ER augments
the current batch with old images that have been stored in
an external memory buffer. ER allows training on new data
from the stream as well on old data to preserve knowledge
and has shown to be particularly effective in OOD [4]. We
assess the advantages of using the LT layer for both strategies:
Incremental and ER.

B. Experimental setting

1) Datasets: In section III, we applied our Module Probing
protocol on the Natural Replay-free benchmark EgoObjects
CL Instance [6]. In this section, we introduce two additional
benchmarks with Natural Replay to understand our method’s
effectiveness in such scenarios.

EgoObjects CL Category [6]: The same image data stream
as EgoObjects CL Instance is used. In the Category bench-
mark, all objects in each image are annotated. The detector
must predict the category class from 277 different object
categories.

OAK [1]: This benchmark was introduced in a pioneering
work on OOD [1]. It features an egocentric video stream set
covering nine months in the life of a student wandering in a
campus. The dataset is a subset of the KrishnaCam dataset,
consisting of 7.6 million frames divided into 460 video clips,
for a total duration of 70.2 hours. The dataset contains 105
object categories. We split the dataset in 20 experiences.

We use to the methodology established by recent works in
OOD for the allocation of training and test data [1], [3], [4]
on OAK and EgoObjects datasets. Every 16 consecutive video
frames, we reserve one frame for testing while the remaining
frames are used for training. We perform one evaluation step
after each training experience on each benchmark.

The three benchmarks show different levels of Natural
Replay. We show in Table I the Natural Replay Score (NRS)
[4] for each benchmark. NRS ranges between 0 and 1 and the
closer the NRS is to 1, the more often classes are revisited
in the stream i.e. the Natural Replay is higher.

2) Evaluation metrics: We use two evaluation metrics to
assess the performance of online object detectors [1]. Let
CAPt denotes the AP at IoU 0.5 at evaluation step t and
T the total number of experiences.

Final Average Precision (FAP): FAP assesses the model’s
overall performance at the end of training:

FAP = CAPT (2)

Continual Average Precision (CAP): CAP evaluates the
model’s continual learning performance throughout training
as the AP average over time:

CAP =
1

T

T∑
t=1

CAPt (3)

3) Implementation details: dIn each experiment, we use
the same training setup as described in Section III-B. For
the Incremental strategy, the batch size is set to 8. For ER,
each batch of 8 images is augmented with 8 images randomly
sampled from memory, forming a training batch of 16 images.

C. Results

Table I shows the performance of the Incremental and ER
[16] strategies when using the Softmax or the LT layer. All
benchmarks demonstrate that incorporating the LT layer into
the Faster R-CNN architecture yields superior performance
compared to the traditional Softmax. Notably, the LT layer
shows promising results on EgoObjects CL Instance, gaining
28.7 FAP points and 12.5 CAP points for the Incremental
strategy. On EgoObjects CL Category with a moderate level
of Natural Replay (NRS = 0.51), LT significantly improves
both FAP and CAP compared to using the Softmax layer: FAP
increases from 44.1 to 63.8, and the CAP from 39.5 to 48.3.
On OAK with high Natural Replay (NRS = 0.92), the LT
layer yields a FAP of 31.1 and a CAP of 22.7, outperforming
Softmax’s FAP of 29.1 and CAP of 21.1.

When evaluating the replay method ER, the integration of
the LT layer enhances model performance by an average of 1.4
FAP points and 0.8 CAP points across all three benchmarks.



Table I
COMPARISON OF FINAL AVERAGE PRECISION (FAP) AND CONTINUAL AVERAGE PRECISION (CAP) USING SOFTMAX OR LABEL TRICK (LT) LAYERS
FOR INCREMENTAL AND ER STRATEGIES. EVALUATED ON EGOOBJECTS CL INSTANCE, EGOOBJECTS CL CATEGORY, AND OAK BENCHMARKS.

HIGHER NATURAL REPLAY SCORES (NRS) INDICATE MORE FREQUENT CLASS REVISITS. ↑ INDICATES HIGHER IS BETTER.

EgoObjects CL Instance (NRS = 0) EgoObjects CL Category (NRS = 0.51) OAK (NRS = 0.92)

FAP (↑) CAP (↑) FAP (↑) CAP (↑) FAP (↑) CAP (↑)

Incremental Softmax 27.3 25.2 44.1 39.5 29.1 21.1
LT 56.0 37.7 63.8 48.3 31.1 22.7

ER [16] Softmax 89.8 54.1 77.1 57.3 34.7 26.9
LT 90.8 54.6 78.8 58.2 36.3 28.0

These results highlight the effectiveness of modifying the
Softmax layer, as discussed in Section III, in effectively
addressing forgetting in the Faster R-CNN across both replay-
free and replay-based strategies.

D. Discussion

The LT layer demonstrates remarkable effectiveness, partic-
ularly on the most challenging benchmarks. On EgoObjects
CL Instance (NRS = 0), LT doubles the performance of
an Incremental Faster R-CNN, highlighting its robustness in
Natural Replay-free scenarios.

In the presence of Natural Replay, LT still enhances model
performances, albeit to a lesser extent. On OAK (NRS =
0.91), the FAP gap between Softmax and LT is around 2
points for Incremental and ER strategies. This observation is
expected, as the presence of Natural Replay tends to balance
training between old and new classes. In this case, the Softmax
classifier is less biased to recent classes as old classes are
revisited. ER reproduces this phenomenon as it introduces an
artificial replay in the training loop.

The LT layer restricts the modifications to the weights linked
to old classes. In the absence of replay, either Natural Replay
or ER, the introduction of our loss in the Faster R-CNN
efficiently compensates for the forgetting induced by the lack
of revisiting of old classes.

V. CONCLUSION

This paper carries out an in-depth study of the catastrophic
forgetting perceived in the Faster R-CNN architecture in
an Online Object Detection scenario. The proposed Module
Probing methodology measures forgetting at different levels
of the architecture. Evaluation using Module Probing revealed
that the softmax classification layer is the main source of
forgetting in the architecture. We therefore proposed the first
replay-free baseline for OOD, which consists of modifying the
architecture at the classification layer. Our method greatly im-
proves the performance of Faster R-CNN in OOD by limiting
its forgetting, especially on more challenging benchmarks that
present little revisit of old classes in the data stream.

Acknowledgements All the computations presented in this
paper were performed using the GRICAD infrastructure
(https://gricad.univ-grenoble-alpes.fr), which is supported by
Grenoble research communities.

REFERENCES

[1] J. Wang, X. Wang, Y. Shang-Guan, and A. Gupta, “Wanderlust: Online
continual object detection in the real world,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10829–
10838, 2021.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, 2015.

[3] J. Z. Wu, D. J. Zhang, W. Hsu, M. Zhang, and M. Z. Shou, “Label-
efficient online continual object detection in streaming video,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 19246–19255, 2023.

[4] B. Wagner, D. Pellerin, and S. Huet, “Comparative study of natural
replay and experience replay in online object detection,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV)
Workshops, pp. 3585–3593, October 2023.

[5] A. G. Menezes, G. de Moura, C. Alves, and A. C. de Carvalho,
“Continual object detection: a review of definitions, strategies, and
challenges,” Neural Networks, 2023.

[6] C. Zhu, F. Xiao, A. Alvarado, Y. Babaei, J. Hu, H. El-Mohri, S. Culatana,
R. Sumbaly, and Z. Yan, “Egoobjects: A large-scale egocentric dataset
for fine-grained object understanding,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 20110–20120, 2023.

[7] M. Davari and E. Belilovsky, “Probing representation forgetting in
continual learning,” in NeurIPS 2021 Workshop on Distribution Shifts:
Connecting Methods and Applications, 2021.

[8] M. McCloskey and N. J. Cohen, “Catastrophic Interference in Con-
nectionist Networks: The Sequential Learning Problem,” vol. 24 of
Psychology of Learning and Motivation, pp. 109–165, Academic Press,
1989. ISSN: 0079-7421.

[9] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, vol. 114, no. 13, pp. 3521–
3526, 2017.

[10] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[11] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13,
pp. 740–755, Springer, 2014.

[12] Z. Mai, R. Li, J. Jeong, D. Quispe, H. Kim, and S. Sanner, “Online
continual learning in image classification: An empirical survey,” Neuro-
computing, vol. 469, pp. 28–51, 2022.

[13] H. Ahn, J. Kwak, S. Lim, H. Bang, H. Kim, and T. Moon, “Ss-
il: Separated softmax for incremental learning,” in Proceedings of the
IEEE/CVF International conference on computer vision, pp. 844–853,
2021.

[14] G. Liang, Z. Chen, Z. Chen, S. Ji, and Y. Zhang, “New insights on
relieving task-recency bias for online class incremental learning,” IEEE
Transactions on Circuits and Systems for Video Technology, 2023.

[15] B. Kang, S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. Feng, and
Y. Kalantidis, “Decoupling representation and classifier for long-tailed
recognition,” arXiv preprint arXiv:1910.09217, 2019.

[16] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania,
P. H. S. Torr, and M. Ranzato, “On Tiny Episodic Memories in Continual
Learning,” arXiv:1902.10486 [cs, stat], June 2019. arXiv: 1902.10486.


