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Abstract

As two alternative options in a forced choice task are separated by design, two classes of computational models of decision-making
have thrived independently in the literature for nearly five decades. While sequential sampling models (SSM) focus on response
times and keypresses in binary decisions in experimental paradigms, dynamic neural fields (DNF) focus on continuous sensorimotor
dimensions and tasks found in perception and robotics. Recent attempts have been made to address limitations in their application to
other domains, but strong similarities and compatibility between prominent models from both classes were hardly considered. This
article is an attempt at bridging the gap between these classes of models, and simultaneously between disciplines and paradigms
relying on binary or continuous responses. A unifying formulation of representative SSM and DNF equations is proposed, varying
the number of units which interact and compete to reach a decision. The embodiment of decisions is also considered by coupling
cognitive and sensorimotor processes, enabling the model to generate decision trajectories at trial level. The resulting mechanistic
model is therefore able to target different paradigms (forced choices or continuous response scales) and measures (final responses
or dynamics). The validity of the model is assessed statistically by fitting empirical distributions obtained from human participants
in moral decision-making mouse-tracking tasks, for which both dichotomous and nuanced responses are meaningful. Comparing
equations at the theoretical level, and model parametrizations at the empirical level, the implications for psychological decision-
making processes, as well as the fundamental assumptions and limitations of models and paradigms are discussed.

Keywords: decision-making, sequential sampling model, leaky competing accumulator, dynamic neural field, embodied decision,
mouse-tracking

1. Introduction

There has been a long tradition to explain the dynamics of
decision-making by relying on mathematical and computational
models based on differential equations. Nevertheless, two ma-
jor branches of the associated scientific literature were spawned
from two different yet almost simultaneous origins: 1) cogni-
tivist sequentialsampling models (SSM) fitting behavioral data
from cognitive psychology (Ratcliff, 1978); 2) dynamic neural
field models (DNF) focusing on pattern formation and stabi-
lization in biological neural networks (Amari, 1977). Although
these seminal articles root in earlier research (e.g., LaBerge,
1962; Wilson and Cowan, 1973), they are at the core of associ-
ated theories that developed throughout the following decades,
and many of the derived models provided insights about de-
cision mechanisms (e.g., by representing the way information
is integrated and leads to a final decision, or the way different
factors intervene in the decision process). They are both as-
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sociated to sound mathematical and theoretical frameworks, in-
cluding optimal decision-making and Bayesian inference (Gold
and Shadlen, 2002; Bogacz et al., 2006; Gepperth and Lefort,
2016). They also received extended support from neurophys-
iological findings, allowing mechanistic accounts of decision-
making processes and therefore endowing them with predictive
capabilities (Crockett, 2016; White et al., 2010; Wijeakumar
et al., 2017).

Nevertheless, these two branches of research never really
cross-fertilized, as they traditionally focused on decisions of
different nature: a choice among qualitatively distinct alterna-
tives in cognitive psychology experiments for SSM, a percep-
tion or action to emerge from a continuous topology in sensory
or motor neural areas for DNF. Yet, their main difference lies
in the discrete vs. continuous nature of the underlying decision
space, and this paper is an attempt at bridging this long lasting
gap. For this purpose, we will introduce a unifying formula-
tion of the equations underlying SSM and DNF models, and
focus on the consequences of parameter choices for decision-
making dynamics. The resulting dynamics will be illustrated
on moral decisions, a domain which is well-adapted to both bi-
nary categorization (e.g., good vs. bad) and continuous scales
(e.g., how wrong). Finally, data generated by our full model
enriched with sensorimotor capabilities will be fit to human
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Figure 1: Illustration of decision-making in different empirical paradigms (top) and dynamical models (bottom). A) 2AFC paradigm where decision-making is
either reflected by a key press corresponding to the responses displayed on top (final decision and response time only) or through mouse-tracking where the mouse
starts in the bottom center area (red trajectory reflecting the decision process); B) Mouse-tracking enabled continuous response scale, with the mouse cursor hidden
but horizontal movements starting from the center of the scale reflected by the green slider movements; C) Decision-making dynamics with only 2 options (here
represented to the left and right of a dummy decision space). Darker green corresponds to lower energy and thus stronger attraction; D) With a continuous field
dynamics, attractors may emerge anywhere on the decision space, with the decision trajectory following the steepest valley in the dynamical landscape. In all panels,
starting from a neutral state (yellow plateau in panels C & D), the trajectory is first attracted to the right before converging to a response on the left side (red dot).

data collected with experimental paradigms that allow measur-
ing the dynamics of decision-making, therefore also contribut-
ing to bridge another existing gap between generative models
and empirical data (Stillman et al., 2018). To better understand
the stakes associated to the different classes of decision-making
models as well as their limits, we first turn to human decisions,
focusing on experimental paradigms typically used in empirical
sciences to study decision-making processes.

1.1. Empirical evidence and associated paradigms

Human decision-making has been extensively studied
through two-alternative forced choice experimental paradigms
(2AFC) in which the participant must choose between only two
distinct alternatives (Bogacz et al., 2006; Ratcliff and McKoon,
2008; Smeding et al., 2016). In fact, such binary response mode
could seem more appropriate to get a high correspondence be-
tween the operationalized binary construct and its presentation
(Levine, 2001), considering the natural tendency of expressing
in a dichotomous way, especially using language (with concepts
such asgood or bad, close or far, and so on). Notably, dichoto-
mous thinking has been proven to be useful in human cogni-
tion for categorizing information and reducing world complex-
ity (Berlin, 1990). Behind the apparent benefits of dichotomiza-
tion, it may nevertheless distort perceptions and representations
of a fundamentally continuous reality – where boundaries are
often not clear cut – thereby putting constraints on the decision
process. For example, studies on emotion perception showed
that categorical judgment modifies perception and mental rep-
resentations, in order to be consistent with the proposed cate-
gories (Satpute et al., 2016). Research indicates that the dis-
crete or continuous nature of task properties – which include
response mode – directly influences the decision-making pro-
cess (Leong and Hensher, 2012; Master et al., 2012), for in-
stance when relying on psychological constructs either defined

by continuous dimensions or discrete categories (e.g., person-
ality traits in Gonzalez et al., 2010).

Two or more alternative forced choices may not fit daily
decision-making where judgments or choices call for nuance
(e.g., choosing home decoration or how long to read a book)
(Kvam, 2019; Master et al., 2012). Yet, 2AFC has also been
a prominent paradigm in moral decision studies (Greene et al.,
2001; Cushman, 2008; Gawronski et al., 2017), whereas moral
decision processes are subject to rather diffuse influences and
do not usually rely on a clear set of moral rules consistent
across all situations (Kahane and Shackel, 2010). More specif-
ically, we could expect binary response mode to extremize the
decision process by amplifying the weight of some pieces of
evidence in order to guarantee convergence towards one of
the response alternatives; on the contrary, in absence of such
constraint when using a continuous response mode, balanc-
ing evidence leads to a propensity for nuanced responses, a
phenomenon for instance documented and coined extremeness
aversion in consumer research (Neumann et al., 2016).

The possibility that small fluctuations during the decision
process might get amplified and change the outcome could have
great repercussions in the case of moral decisions (see figure 1
for an illustration of the dynamics of decision-making). Yet
in this very domain, Pärnamets et al. (2015) tracked partici-
pants’ gaze on a 2AFC task, and showed that simply forcing
the dichotomous decision to be taken after fixating a given op-
tion was sufficient to increase its selection as the final decision.
The interplay between participants’ sensorimotor systems and
the experimental paradigm must therefore be taken into account
even when studying statements such as “Murder is sometimes
justifiable".

From a dynamical and broader perspective, the embded-
ding and relationships between continuous and discrete states,
as well as their complementarity and presence at different
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timescales, have been heavily reviewed in the past (Khona and
Fiete, 2022; Schöner, 2016; Dale, 2008; Dale and Spivey, 2005;
Bickhard and Richie, 1983; Pattee, 1974); this for instance ex-
plains how we turn continuous processes in the physical world
into various forms of discrete (embodied) representations in the
central nervous system. Nevertheless, this does not really ad-
dress the question of how humans are able to seamlessly switch
from continuous to discrete representations or behaviors, some-
times simply adjusting to minor changes in the way informa-
tion is presented or behavior is constrained. One possible way
is to study and model the dynamics of decision-making while
directly manipulating the nature of the task (Gautheron et al.,
2023).

Beyond final responses and response times, the dynamics of
decision-making have been studied through tracing techniques,
which include eye-tracking (e.g., in Pärnamets et al., 2015)
but also mouse-tracking (Spivey and Dale, 2006; Freeman and
Ambady, 2011). While eye-tracking informs on epistemic ac-
tions taken to collect information (in the sense of Kirsh and
Maglio, 1994), mouse-tracking informs on pragmatic actions
taken to literally reach a decision, and therefore provides com-
plementary information (Quétard et al., 2016). By asking par-
ticipants to move their mouse pointer from a fixed START posi-
tion towards response areas on top of the screen instead of sim-
ply pressing a button when a final decision has been reached
(see figure 1A), mouse-tracking provides a window into real-
time cognition (Spivey and Dale, 2006). Specifically, mouse
movements reveal underlying decision-making processes (e.g.,
hesitations, online preferences towards alternative responses)
through deviations of the mouse trajectory or direction changes
(Freeman and Ambady, 2011; Hehman et al., 2015). This is
the plausible consequence of the parallel activation and com-
petition between alternative targets, an hypothesis that has also
received neuroscientific support (e.g., Cisek and Kalaska, 2005,
for reaching). High temporal and spatial precisions make it pos-
sible to map decision processes onto mouse trajectories, and
study early effects as well as fine-grained differences even in the
social (Smeding et al., 2016) or moral domains (Koop, 2013).
In the moral domain, similar results were found using either a
standard 2D mouse-tracking paradigm or a 1D slider on which
the participant’s preference is traced throughout the decision
(Gautheron et al., 2024, 2023; Gaboriaud et al., 2022).

1.2. Neurocomputational models of decision-making

Dynamic competition between alternative responses –as
traced by the mouse-tracking technique in 2AFC paradigms–
is traditionally well described by Sequential Sampling Mod-
els (SSM) (Bogacz et al., 2006) which have been integrated in
theories of decision-making such as the decision field theory
(Busemeyer and Diederich, 2002). Within this class of SSM,
the prominent Drift Diffusion Model (DDM) represents the de-
cision process as an accumulation of evidence toward one or
the other alternative, triggering a decision when a given thresh-
old is reached (Ratcliff and McKoon, 2008). This model has
been successfully used to account for psychological results, of-
ten focusing on response times and accuracy (Ratcliff and Tuer-

Table 1: Terminology employed in the different branches of the scientific lit-
erature on dynamic decision-making (retained terms for the proposed unified
model in bold), depending on the discrete or continuous nature of space and
time in the models as well as the neurological or functional inspiration adopted.

Notation Associated terms
unit, neuron, column, node, accumulator

u activity, (mean field) potential, evidence, charge
?i / ?(x) coordinates, location, index
f (...) nonlinearity, activation function
k decay, leak, relaxation rate
e / s input, external stimulation, slope, drift
w weights, kernel, mutual (inhibitory) influence
ξ → W noise, random walk, Wiener / diffusion process
τ time constant, time scale
h resting level, resting potential

attractor, bump, peak, decision

linckx, 2002; Ditterich, 2006; Metin et al., 2013; Drugowitsch
et al., 2012; Krajbich et al., 2015; Krypotos et al., 2015).

The principle idea of the DDM was enriched in the
Leaky Competing Accumulator model (LCA) to better account
for neurophysiological observations (Usher and McClelland,
2001). Although a myriad of sequential sampling models de-
rived from the DDM have been elaborated, further specify-
ing the decision dynamics (Bogacz et al., 2006; Ratcliff and
Smith, 2004), we here opt to rely on the nonlinear-LCA equa-
tion (adapted from equation 2 in Usher and McClelland, 2001),
as they will be easier to relate to other classes of models:

dui =

ei − kui −
X

j

wi j f (u j)

 dt
τ

+ ξi

r
dt
τ

(1)

Given the fluctuating notations found in the literature, renam-
ing was performed to adopt a consistent terminology through-
out this paper, and a glossary of existing denominations is pro-
vided in table 1. In equation (1), time (t) is an implicit pa-
rameter of all terms. i and j index the set of units associated to
responses, usually of size 2 for models of two-alternative forced
choice tasks (i ∈ {1, 2}). ui corresponds to the activation of unit
i which is the quantity the model aims at simulating, with the
set of units being mapped to the set of response alternatives.
dui corresponds to the increase or decrease of activity ui over
dt. τ is the time constant controlling the reactivity of the unit;
combined with the decay rate k associated to the leak term, it
determines how fast the unit can relax to its resting level (here
u = 0) in absence of any input, and how fast it reacts to changes
in external stimulation. Given its redundancy with other pa-
rameters in the context of this paper, the decay rate will not be
kept as a free parameter (k = 1). More generally, these two
parameters are important to model temporal dynamics (e.g., re-
sponse times) and deal with stimulation or environment volatil-
ity. While wi j corresponds to self-excitation when i= j, it deter-
mines the mutual inhibition between units when i, j, i.e. how
much the activation of one unit reduces the activity of the other.
. ei is a deterministic external input to unit i (e.g., evidence from
current observations) which corresponds to the drift component
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in DDM models. ξi is a Gaussian noise term with zero mean
and variance σ2, which corresponds to the stochastic diffusion
component. The diffusion processes are also considered inde-
pendent across units, which holds for all models introduced in
the following sections. Finally, f is a nonlinear function, usu-
ally the rectified linear unit function (ReLU) which will be used
throughout this article. As its presence drastically complexifies
the mathematical analysis of the system, linearized versions of
the equation have often been implemented by simply replac-
ing f (u j) by u j in equation (1). Since the lack of nonlinearity
may lead to problematic and physiologically implausible posi-
tive feedback from negative activation (when multiplied by neg-
ative weights), the nonlinearity may be reintroduced outside the
equation to guarantee activity u remains positive at all times
(equation 4 in Usher and McClelland, 2001):

ui → f (ui) = max(ui, 0) (2)

Equation (1) is a stochastic differential equation, and the
dt/τ scaling term is associated to integrating the Gaussian noise
ξ(t) into a Wiener process (dWi = ξi

√
dt/τ). When turn-

ing to numerical approximation, a Euler-Murayama integration
scheme is generally used. The decision-making process is sim-
ulated using a discrete time step ∆t, until activity ui increases
beyond uthr, which triggers the response associated to the unit
that reaches the threshold. By adjusting the time constant (τ),
the amplitude of the drift and diffusion components (e and ξ) as
well as the threshold, it is possible to simulate decisions with
more or less time pressure and confidence in the selected re-
sponse.

Noteworthily, when adopting the ReLU nonlinearity, a
bounded nonlinearity (e.g., sigmoid or arctangent), or even
when carefully choosing parameter values in the absence of
nonlinearity, it is possible to prevent any divergence of the
activity for bounded external input (in [0, umax]). As a conse-
quence, when guaranteeing a strong enough inhibition between
units (wi j << 0 with i, j) and in presence of sufficient evidence
for the alternative responses (e >> 0), the system of equations
and associated activities (u1, u2) will converge to one of the
fixed-point attractors (umax, ϵ) or (ϵ, umax) respectively corre-
sponding to the selection of response 1 or 2 (with ϵ ≈ 0). This
reduces the importance of the activity threshold for triggering
the response, as the activity will stabilize on the final decision
and possibly even be maintained in absence of further evidence.

This dynamical system perspective on the differential equa-
tions underlying decision-making is not commonly adopted in
SSM research, but is prominent in the Dynamic Neural Field
(DNF) literature. Comparing SSM and DNF models from a
psychometric perspective, their main difference lies in the un-
derlying decision space. Indeed, SSM rely on a discrete set of
units mapped to alternative responses, while the DNF models
lie at the other end of the continuity spectrum, hence the con-
tinuous field (Amari, 1977), implemented by a theoretically in-
finite set of topologically organized units (e.g., cortical columns
in the brain). DNF have been classically favored to model
sensorimotor behaviors, for instance modeling covert (Rougier

and Vitay, 2006; Quinton and Girau, 2011) and overt visual
attention as well as memory (Fix et al., 2011; Grieben et al.,
2020; Carroll et al., 2014), perceptual estimation (Esnaola-
Acebes et al., 2022), motor planning (Erlhagen and Schöner,
2002; Schutte and Spencer, 2007), visuo-oculomotor behav-
iors (Quinton and Goffart, 2018) and applying them to robotics
(Erlhagen and Bicho, 2006; Schöner, 2016). The description
of percepts, their location in space, their dynamics as well as
motor commands all naturally fit continuous topologies. Nev-
ertheless and through the years, DNF models have extended
to higher level cognition (Schöner, 2020) and therefore inte-
grated in computer vision (Maggiani et al., 2018) and cognitive
robotics systems (Bicho et al., 2010).
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Figure 2: Representation of dynamic decision-making simulation and model
parameters (A, B, a, b, τ, ∆t, σ) using a near-infinite set of units for a DNF
model (curves in panel A, fields in B and C) or with only 2 units for an LCA
model (dots and dashed vertical lines). A) Lateral interactions w(x, t) f (u(x, t))
for units at x1 and x2 (blue for inhibitory, red for excitatory) resulting from
weighted connections between units and units activity at time t (dashed hor-
izontal line in panels B and C); B) Output activity u(x, t) of the model as a
function of space (horizontal axis) and time (vertical axis), summarized as the
trajectory of the activity barycenter (grey); C) Noisy input dynamics s(x, t) with
evidence appearing at different positions and times. After an initial attraction
towards the left (discrete option or part of the continuous decision space), the
increased evidence on the right of the spatial dimension leads to a change in
decision.

Still modeling a continuous decision process unfolding in
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time, decisions are associated to dynamic instabilities and to
the emergence of macroscopic, spatially structured and stereo-
typed bumps of activity (see figure 2B and Schöner, 2016).
In presence of static stimuli and given appropriate parameter
values, these bumps correspond to attractors of the associated
dynamical system. Similarly to binary-scale SSM, informa-
tion present in the external stimulation is integrated through
time and across units, but unlike SSM, DNF rely on population
coding to represent the decision (equations being usually dis-
cretized in time and space for numerical simulation). A stan-
dard one-dimensional and one-layer DNF is governed by the
following (stochastic) integro-differential equation:

τ
∂u(x)

∂t
= −u(x) +

Z
X

w(x − x′) f (u(x′))dx′ + s(x) + h (3)

where u(x) = u(x, t) is the activity at location x and time t (not
indicated in the above equation as a parameter to all terms).
s(x) is the external stimulation at location x, possibly combin-
ing deterministic and stochastic components : s(x) = e(x)+ξ(x)
(see figure 2C). As a consequence, X is the 1D topology over
which the external stimulation is mapped and the decision is
taken. Most parameters have similar interpretations to those in
equation (1), for instance f being the equivalent of the nonlin-
ear activation function found in typical connectionist models,
which prevents negative outputs and determines when units ex-
change information (e.g., when choosing a sigmoid rather than
ReLU function). Although important to control the nonlinear-
ity and bifurcations in the dynamical system, the resting level h
can be either integrated to the stimulation s or to the activation
function f , and is therefore removed in the following equations
for simplicity (equivalent to h = 0). Yet, given the continu-
ous nature of topology X, lateral connectivity weights w are not
constant (leading to a fixed inhibition between units as in equa-
tion (1)), but defined as a function of the distance between units
on X. The following Mexican hat kernel function is often used:

w(∆x) = Ae−(∆x/2a)2
− Be−(∆x/2b)2

(4)

The first Gaussian term allows nearby units to excite each other,
leading to the emergence of spatially coherent bumps of activ-
ity. Meanwhile, the second Gaussian term controls the inhi-
bition between distant units. Parameters A and B respectively
control the intensity of the excitation and inhibition, while pa-
rameters a and b control their range. Aiming at a unique local-
ized final decision, as it is the case in this article, guaranteeing
attractors with a single bump of activity is achieved by setting b
to + inf, thus turning the second term to a fixed global inhibition
−B (similar to the inhibitory weight in SSM). Lateral weights
are illustrated on figure 2A.

1.3. Sensorimotor models of decision-making
A final class of models of interest in the context of this article

rather focuses on how sensorimotor interactions with data col-
lection paradigms leads to decision trajectories that can be em-
pirically measured. Mirroring mouse-tracking or eye-tracking
techniques, these models aim at generating (realistic) mouse
movements (Lepora and Pezzulo, 2015; Falandays et al., 2021),

eye movements (Quinton and Goffart, 2018) or both (Quinton
et al., 2014). Even when considering the decision-making pro-
cess has converged to a final decision before any physical action
is implemented, time is required to initiate action and reach the
target position (e.g., on the response scale); depending on the
refinement of the process generating sensorimotor trajectories,
it may integrate stochastic components due to motor variability
or friction. Complex dynamics which are found in human tra-
jectories can be learned and integrated in simulated controllers
(Sigaud et al., 2011), but are usually not necessary to correctly
approximate trajectories observed in experimental paradigms.
At the core of most models used to simulate mouse trajectories
lies an unbiased linear feedback control system, which is the
simplest form of error-based controller (Bequette, 2003):

dppp
dt

= −κ(ppp − ptgtptgtptgt) (5)

where ppp = (x, y) represents the current coordinates of the
mouse pointer, and ptgtptgtptgt the target coordinates on screen. The
metaphor of a spring can be used to illustrate the dynamics
(see figure 4, although the simulated physics does not match the
spring dynamics): the further the mouse pointer is from the tar-
get coordinates the greater will be the attraction. The strength
of attraction is also controlled by the proportional gain κ (equiv-
alent to the stiffness for a spring). In addition to ppp depending on
time, ptgtptgtptgt may be updated during the decision process, complex-
ifying the trajectories by simulating hesitations and changes of
mind before converging towards a stable response. The same
holds for κ, which may be used to either normalize the position
error (ppp − ptgtptgtptgt) into a unit vector to be scaled by a speed con-
stant (i.e., only changing direction to fit spatial characteristics
of mouse trajectories as in Lepora and Pezzulo, 2015) or to re-
flect the certainty in the current decision during the decision by
increasing the speed (i.e., controlling the acceleration to also fit
the dynamics as in Smeding et al., 2016).

While all derived models are similar in essence, relying on
embodied frameworks of decision-making, as well as classi-
cal mechanics and control theory to simulate forces and move-
ments, they nevertheless focus on different aspects of sensori-
motor interactions. For instance, Lepora and Pezzulo (2015)
study how the parallel unfolding of decision and sensorimotor
processes influences mouse trajectories (e.g., simulating com-
mitment to a response through the positive feedback of observ-
ing self-generated motion towards the target position). Quinton
et al. (2014) rather focus on how the sensorimotor apparatus and
active perception mechanisms impact decision-making, while
Quinton and Smeding (2015) compare empirically observed
and simulated mouse trajectories depending on the level at
which competition between alternative responses occurs (sen-
sorimotor, conceptual or both). These all correspond to shal-
lower or deeper forms of embodiment, depending on whether
the sensorimotor components are direct constituents or exert an
indirect influence on the decision-making process. The current
article contributes to this line of research by focusing on the in-
fluence of constraints imposed on human-machine interactions
(e.g., computer mouse and experimental paradigm).
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1.4. Covering the wide spectrum of decision-making models
Beyond their differences in origins, aims and associated

paradigms, research works are found at the interface between
the previously introduced classes of models. Even if most SSM
have been used through the experimental paradigm of 2AFC
(Ratcliff and McKoon, 2008; Bogacz et al., 2006; Smeding
et al., 2016), they have been adapted to sets of discrete alter-
native options (Churchland et al., 2008; Krajbich and Rangel,
2011; Roxin, 2019) and to continuous scales, either approxi-
mating them using a vector of mutually inhibiting accumulators
(Ratcliff, 2018) or by progressively refining the response loca-
tion by accumulating evidence on a single unbounded response
dimension while also modeling decision trajectories (e.g., price
estimate in behavioral economics, perceived color or orienta-
tion in cognitive psychology, as in Kvam, 2019; Kvam and
Busemeyer, 2020). Reversely, there have been successful at-
tempts at applying DNF to discrete forced choice decisions
(e.g., perceptual classification and motor primitives in Erlha-
gen and Bicho, 2006; Schutte and Spencer, 2007), sometimes
relying on mouse-tracking dynamics (e.g., studying spatial re-
lationships in Lins and Schöner, 2019) or even modeling mouse
trajectories (Buss et al., 2011) and neuroimaging data (Wijeaku-
mar et al., 2017).

While DNF models are numerically approximated using a fi-
nite set of units, usually under the form of a lattice, but also non
regular topologies or adaptive sets (e.g., using Gaussian mix-
tures in Quinton et al., 2011), the assumed underlying topolo-
gies generally remain continuous, with a focus on sensorimo-
tor maps and visual tasks. While such implementations of
dynamic neural field dynamics maintain some of their prop-
erties in terms of selection and fusion of information (Forest
et al., 2022a), assumptions on the nature of the underlying mea-
sures can be relaxed. Between SSM and DNF models, there is
also a large class of models which relies on a graph of nodes,
each node roughly corresponding to a (nonlinear) accumula-
tor (or unit), the topology being this time implicitly defined by
the connections between the nodes. This for instance led to
the development of the dynamic interactive theory of person
construal (Freeman and Ambady, 2011), which is at the core
of the mouse-tracking developments in situated social cogni-
tion (Freeman et al., 2011; Smeding et al., 2016). A dual ap-
proach to altering the units spatial distribution is to deviate from
standard isotropic and stationary assumptions, either through
shifted projections (Quinton and Girau, 2011; Quinton and Gof-
fart, 2018) or heterogenous time or location-dependent kernels
(to make attractors appear at or drift towards specific parts of
the field; Kilpatrick et al., 2013; Cerda and Girau, 2010). Fur-
ther relaxing topological constraints (e.g., using Hopfield net-
works; Catenacci Volpi et al., 2014; Khona and Fiete, 2022)
still allows the emergence of discrete attractor states from con-
tinuous input states, but associated networks may lack the ex-
plainability of SSM and DNF models. Instead of learning or al-
tering underlying topologies, it is also possible to dynamically
constrain attractors through preshaping (i.e., pre-activating cer-
tain areas of the neural field; Erlhagen and Schöner, 2002;
Schutte and Spencer, 2007). Such extensions for both SSM and
DNF models require additional degrees of freedom, and do not

necessarily guarantee the emergence of attractors under all con-
ditions (e.g., when combining nuanced evidence with a binary
response mode); we thus chose in this article to focus on core
models from both literature to ease the transition and compara-
bility, at the cost of improved capabilities.

Since compatible with a dynamic, embodied and situated
approach to decision-making, models of sensorimotor interac-
tions in experimental paradigms have been coupled with SSM
(e.g., Lepora and Pezzulo, 2015; Falandays et al., 2021, for
mouse movements), DNF (e.g., Quinton and Goffart, 2018, for
eye movements) or intermediate graph-based models (Quinton
et al., 2014; Smeding et al., 2016). Variability and stochastic-
ity are then already embedded in the output activities of the
SSM / DNF models, used as input to a sensorimotor module,
in order the generate and update the target position as the de-
cision process unfolds. Furthermore, the numerical integration
of the stochastic component of the activity into the sensorimo-
tor behavior acts as a filter, producing smooth trajectories from
Wiener-like processes from equations (1) or (3). Already, the
time constant τ controls how smoothly information present in
the input (e) is integrated relatively to the noise (η). Whatever
the combination of models and parameters, smooth trajecto-
ries as well as stable and discrete decisions are emerging from
continuous and non-linear cognitive dynamics, with continuity
present in both time and space (either on continuous response
scales or through mouse trajectories; Spivey and Dale, 2004).

Most of the previous models also assume shared neurocir-
cuitry for behaviors that may appear as qualitatively different,
but may simply be qualified by different attractors in an under-
lying dynamical system; this may be the case for reaching on a
discrete vs. continuous response scales (Krajbich and Rangel,
2011; Schutte and Spencer, 2007) or performing saccades vs.
smooth pursuit eye movements (Quinton and Goffart, 2018;
Goffart et al., 2018). Given their theoretical and practical com-
patibility, this article therefore aims at bridging the gap between
these approaches to decision-making modeling, instead of sim-
ply opting for the class of model which best suits the needs of
the task at hand (which does not necessarily imply that a sin-
gle unifying model must cover all situations Dale, 2008). We
therefore harness the respective strengths of SSM and DNF lit-
eratures, integrating them under a unifying formulation, while
adding a sensorimotor component able to (re)produce mouse
trajectories in both binary and continuous response modes (sec-
tion 2). As a proof of concept and to test its validity, the pro-
posed model is fit to empirical human mouse-tracking data from
moral decision-making, a domain where hesitations are com-
monplace and where both extreme and nuanced responses are
meaningful when judging moral assertions (section 3). To our
knowledge, very few computational models have been applied
in the moral psychology field with such high-level and complex
stimuli (Dehghani et al., 2008; van Baar et al., 2019; Wallach
et al., 2010; Yu et al., 2019), even fewer based on SSM (Fa-
landays et al., 2021, using variations on the historical DDM).
To demonstrate the flexibility of the proposed model, we simu-
late mouse-tracking data collected with different paradigms and
response modes, then interpret and discuss model parametriza-
tions.

6



As an overview of the article, the objectives of the proposed
model are to: 1) bridge the gap at the theoretical level (hence
also terminological) between the SSM and DNF models, as well
as their associated scientific literatures; 2) account for empiri-
cal data and complex decision-making dynamics, applying the
model to mouse-tracking trajectories collected during human
judgment of moral assertions; 3) account for differences and
generate decision-making dynamics with both binary and con-
tinuous response modes; 4) account for differences and generate
continuous mouse trajectories in 1D or 2D paradigms; 5) pro-
pose explanations of the impact of paradigm constraints on the
underlying decision-making mechanisms through the interpre-
tation of fitted model parameters.

2. Model

At the core of the proposed model, we put a decision-making
module which is equivalent to a LCA in the SSM class of mod-
els when only 2 units are stimulated and their activity compete
for taking the final decision, but becomes equivalent to a 1D
DNF when the number units increases towards infinity. There-
fore, a single parameter can be used to reflect the continuous or
discrete nature of the response space into the decision dynam-
ics. Yet, information from possibly complex stimuli (e.g., writ-
ten moral assertions) need to be transformed to be processed
by this decision module. In turn, its outputs also need to be
converted into mouse movements to interact with the empirical
paradigm [e.g., reaching and clicking response alternatives, as
illustrated on figure 1.

2.1. Underlying topologies

To specify design choices for the proposed model and to
understand how simulated dynamics may fit human decision-
making behaviors, we beforehand need to define the different
topologies which are involved in the model and empirical tasks.
Information indeed propagates between the computer screen
(mouse pointer and input stimuli), the input device (mouse or
keyboard) and the decision-making system (human or model,
with their cognitive and sensorimotor components), therefore
circulating across the physical world and cognitive representa-
tions of the task (as illustrated on figure 3 and 4). Since complex
topologies might be needed and have been used in other works,
but simple ones will be used in this article, the term space will
be used to refer to any potential geometrical space or topology.

Stimuli space. In most sensorimotor cases, properties of in-
terest of stimuli can be mapped to neural populations which
approximate continuity (e.g., orientation, color, location in
Schöner, 2016). Yet even when considering small discrete sets
of units, continuity in the spatial dimension is turned into con-
tinuity of units activation by projecting input signals onto units
through receptive fields (considering the barycenter of units
weighted by their activity). Although not the focus of this ar-
ticle, it is often also possible to activate sets of units to map
more abstract properties of stimuli (e.g., semantic content of
linguistic stimuli, spatial relationships in Lins and Schöner,

Figure 3: Representation of the different topological spaces involved during
decision-making tasks on a computer using a mouse-tracking paradigm. A hu-
man participant perceives stimuli (not represented) displayed on the screen and
takes a decision while controlling the mouse pointer through her hand move-
ments, with both the decision dynamics and hand movements constrainted by
the available response alternatives (e.g., binary or continuous response mode).

2019). When the decision-making process operates on a single
dimension, input stimuli are usually also projected on a one-
dimensional topological space.

Decision space. This is where the cognitive component of the
decision process is realized, for instance relying on neural dy-
namics. As developed in section 1, SSM (resp. DNF) assume
an underlying set (resp. field) over which competition for the fi-
nal decision occurs. This ranges from a set of 2 units associated
to 2 alternative responses in 2AFC tasks for most SSM (Bogacz
et al., 2006) to higher-dimensional manifolds for DNF operat-
ing on multidimensional stimuli (e.g., Schöner, 2016; Quinton
et al., 2011). In most numerical implementations, the assumed
underlying continuous manifold is approximated as a regular
lattice, which therefore translates into a vector of units in the
1D case. As a consequence, both for binary and continuous re-
sponse modes, the computational model manipulates a discrete
set of units, usually of size 2 in equation (1) or sufficiently high
to approximate infinity when numerically solving equation (3).
Both sets give rise to topological spaces and we will consider
the segment on X ranging from -1 to 1, locations which map
extreme opposite decisions..

Motor space. This corresponds to the sensorimotor component
of the decision process (e.g., by moving the hand to click on
a chosen response). Precisely mimicking human hand move-
ments on a decision task in principle requires simulating neu-
ral, muscular and physical dynamics, including inertia, elastic-
ity and different types of friction forces. Yet for mouse move-
ments where visual servoing can be used to control the cur-
sor, much simpler models can be adopted as human efficiently
adapts to complex dynamics. Direct and inverse models can for
instance be combined to reliably reach targets (McNamee and
Wolpert, 2019) despite variations in size, required precision or
time constraints (here reaching towards a changing target re-
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sponse). Since motor control is not the focus of the current
article, and motor planning is still poorly understood at a com-
putational level, with ongoing debates on the nature of inter-
nal representations and models (McNamee and Wolpert, 2019;
Goffart et al., 2018), the basic linear feedback controller from
equation (5) is adopted.

Answer space. This space is specific to the chosen empirical
paradigm and maps response alternatives. In our model and
simulations, we relied on either a 1D or 2D space. The 2D space
corresponds to the classical MT paradigm, where participants
clicks at the bottom of the screen before reaching a response at
the top of the screen as illustrated on figure 1A. The alternative
slider paradigm with a 1D answer space is represented on fig-
ure 1B, where movements are only effective horizontally. For
both paradigms (classical MT and slider), the answer space can
be adapted to binary or continuous response modes, with dis-
tinct opposite responses areas in the binary case (as illustrated
on figure 1A) or a continuous response bar in the continuous
case (as illustrated on figure 1B). In all cases, the two most
extreme answers are located on the left and right sides of the
screen.

Coupling of all spaces. Information flows between those
spaces as the decision unfolds, with the participant simultane-
ously processing the stimulus, accumulating evidence for po-
tential responses and controlling the mouse on screen, con-
strained by the human-machine interactions and response areas
configuration. As a general principle, all spaces can be pro-
jected onto a single dimension corresponding to the final an-
swer space, going from one extreme response alternative (e.g.,
Disagree on figure 1) to the other (e.g., Agree). In the case
of a SSM model, the 2 units directly map to the extreme de-
cisions, while in the case of a DNF, the field maps the contin-
uum between them. Basically, activity built on the left half of
the field is evidence for responses associated to the left of the
screen, which in turn trigger movements towards the left. Yet
transformations to align the different spaces might be required
when propagating information. For instance, a person could
think that torture is sometimes acceptable while confronted to
binary options such as never acceptable and always acceptable
which would not correspond to her spontaneous nuanced opin-
ion, forcing a dichotomization of her response. On the con-
trary, someone deeply convinced that torture never is acceptable
would saturate a scale going from usually not acceptable to al-
ways acceptable, her deontological decision not being reflected
by the permitted response range.

Such issues need to be accounted for in the model, espe-
cially when switching between binary and continuous response
modes, while limiting the number of model parameters to pre-
vent overfitting. These conceptual issues stack with bound-
ary problems encountered with DNF models; indeed, when ap-
proaching the sides of the simulated discretized space, asymme-
tries appear as the excitatory neighborhood reduces relatively
to the global inhibition. This results in an absence of extreme
answers which does not reflect the psychological reality. The
usual and simplest technical solution to boundary problems is

to rely on a circular topology (Schöner, 2016), but connecting
and equating the right and left ends of the response scale would
be meaningless in the current context. Hence, we rather relied
on the idea of a decision space as border-free as neurobiological
space (Huth et al., 2012, and see top of figure 4), extending it
beyond the paradigm answer space (from x ∈ [−1, 1] to [−2, 2]).

2.2. Cognitive part - simulation of decision dynamics
At the core of the decision-making part of the model, we

adopt a discrete formulation compatible with both SSM and
DNF models. We hence propose to define the activity of a vec-
tor of units uuu = (ui)i∈J1,nK as follows:

τ
dui

dt
= −ui +

2
n

X
j

wi j f (u j) + si (6)

where the different terms fit earlier descriptions provided in sec-
tion 1.2. When only considering 2 units as in the LCA model
(n = 2), a factoring of constant k and reorganization of terms
lead to a merged version of equations (1) and (2). As the lat-
eral kernel function is usually symmetric and in the special
case of only 2 units, weight w12 = w21 = −w from equa-
tion (1) (also see points on figure 2A). On the contrary, as n
increases towards infinity, the discretized version approximates
a DNF dynamics over a continuous decision space X from equa-
tion (3); x ∈ [−1, 1] is approximated by indices i ∈ J1, nK
associated to a regular 1D-lattice on the decision space with
xi = 2(i − 1)/(n − 1) − 1. The same applies when relying on
an extended decision space to allow extreme decisions, simply
mapping the extended interval with n units (e.g., [−2, 2] as il-
lustrated on figure 4). The mutual influence between units is
normalized (scaled down by n/2), which corresponds to a spa-
tial discretization step ∆x′ substituted to dx′ from equation (3)
when approximating the neural continuum by a vector of units
(integration space [−1, 1] partitioned in n sub-intervals). As the
number of units grows (n → ∞), ∆x′ becomes smaller, its im-
pact on the dynamics reduces, simply improving the Riemann
sum approximation of the DNF integral. It also guarantees the
equivalence with equation (1) (since n/2 = 1 for a LCA model)
and makes parameter values comparable between model in-
stances relying on different numbers of units. Alternatively, to
keep the equation closer to a classical neural network formula-
tion, the scaling factor could be integrated in parameters A and
B which determine weights amplitude.

For efficient numerical resolution, equation (6) is temporally
discretized using Euler-Murayama integration scheme, and the
deterministic (ei) and stochastic parts (dWi) of input (si) can
be separated and vectorized. Also, using stationary weights
as defined in equation (4), the entire system of equations can
be written using matrix algebra with the product of vector uuu
with Toeplitz matrix www =

�
wi j

�
with (i, j) ∈ J0, nK2 imple-

menting a discrete convolution. Finally, to guarantee activity
remains numerically bounded despite the integration scheme
(e.g., kept positive to represent probability-like distributions),
non-linearity f is applied to the activity vector as a final oper-
ator, approximating the nonlinear dynamics through lineariza-
tion followed by truncation, therefore leading to the following
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algorithmic formulation:

uuu = f
 
uuu +

∆t
τ

 
−uuu +

2
n

wwwuuu + eee
!

+ ∆W∆W∆W
!

(7)

Once input at time t has been projected onto the decision
space, evidence for alternative responses is accumulated by
building up activity at corresponding locations. The activation
of each unit therefore depends on the amount of evidence in
the input for this specific location, but also on its interactions
with other units. For an increasing number of units (n), evi-
dence can therefore be considered as accumulating more for a
region of the decision space rather than a specific point or re-
sponse alternative. The model then shifts from qualitative to
quantitative decisions-making (from binary to continuous re-
sponse mode), in both cases representing the final decision as
the attractor on the underlying decision space. The inner non-
linearity f in equation (6) allows the network to act as a linear
integrator when u remains below threshold (e.g., if threshold in-
creased above 0 or when integrating a negative resting potential
h into the stimulation s), with lateral interactions only becoming
effective above threshold. While this is a behavior oftentimes
expected in DNF models, the outer nonlinearity in (7) derived
from SSM linearized and truncated formulations generates lat-
eral interactions at all times. For a nonlinearity f which pre-
vents negative activity (e.g., ReLU), the summation under the
excitatory part of the kernel added to the input must compensate
the inhibitory influence from further units for u to reach strictly
positive values. In presence of noise, the convergence to an
attractor reflecting a decision therefore requires a sufficiently
spatiotemporally coherent and strong stimulation. While this
behavior was sufficient for the tasks at hand in the current ar-
ticle, the nonlinearity should be integrated to guarantee other
documented DNF-like regimes are attainable.

The non deterministic part of the decision process modeled
by the Wiener process (integration of dWdWdW over time) not exhaus-
tively encompasses noise when processing stimuli (e.g., consid-
ering ∆t/τ × eee + ∆W∆W∆W) as well as noise in the neural system and
decision process (akin to the diffusion component of SSM).

2.3. Sensorimotor part - simulation of mouse trajectories

When the decision model is simulated and converges to an
attractor, the decision is represented as a distribution of ac-
tivity over the vector of units. Intuitively, this can be paral-
leled to a probability distribution over the decision space, i.e.
of giving the corresponding response if made possible given
paradigm constraints. Yet for complications and limitations of
direct probabilistic interpretations of DNF activity without tak-
ing accounts its dynamics, please refer to Gepperth and Lefort
(2016).

While the decision may be represented in a distributed man-
ner in the cognitive part of the model, pressing a key or control-
ling the mouse on the screen require generating a single physi-
cal command at any time. For this reason, and given the stereo-
typed attractors of the dynamical system (as a single symmetric
bump of activity), a barycenter of the DNF activity equivalent
to a maximum aposteriori estimate on probability distributions

is computed (unit coordinates xi in the decision space weighted
by their activity ui; Rougier and Vitay, 2006). Selecting the
location associated to the maximal activity instead would gen-
erate more noise at the begining of the decision trajectories,
but could be filtered out through motor planning and control
(see figure 5). Both maximum (threshold-based or paramet-
ric) and barycenter (summation-based or population-coding)
approaches have received supporting empirical evidence (Gof-
fart et al., 2018; Cisek and Kalaska, 2005) and our objective
was not to discriminate between motor projections or control
schemes in this article. In all cases, this process reduces the ac-
tivity vector uuu(t) to a scalar value at each time step, then mapped
to a xtgt(t) coordinate in the answer space:

xtgt =

P
uixiP
ui

(8)

This value corresponds to the current preference in the an-
swer space, given accumulated evidence and convergence of
the cognitive part of the model. As additional parameters for
projecting the decision space to the answer space were not re-
quired for the current application of the model, we simply as-
sumed here that both map the [−1, 1] interval. For simulat-
ing trajectories on a standard mouse-tracking paradigm, a 2D
position must be specified, simply combining the result from
equation (8) with the constant Y-axis coordinate where the an-
swer areas lie on screen: ptgtptgtptgt = (xtgt, ytgt). This target position
can then be injected in the standard error-based controller de-
scribed by equation (5), attracting the mouse pointer in order
to reach a match between the current mouse position and the
targeted answer. The time step ∆t to simulate mouse trajecto-
ries is not a free parameter of the model, since only used in the
computational implementation for the temporal discretization
of a theoretically continuous process. As a consequence, and
since chosen small enough to correctly approximate the nonlin-
ear dynamics of DNF in equation (7), the same parameter value
is used in equation (5) (∆t = 0.005 seconds).

The proportional gain κ makes it possible to control the speed
at which the mouse pointer is attracted by the target position,
with an adaptative gain introduced as follows:

κ =
λ

n

X
ui (9)

Complex trajectories may emerge as κ, ptgtptgtptgt and ppp evolve
through time until convergence of both the cognitive and senso-
rimotor parts of the model (both illustrated on figure 4). κ is also
directly proportional to the total activation of all units in order
to model the acceleration of mouse movements, since the higher
the activation, the stronger the preference and the lower the un-
certainty for the current decision (location in decision space).
Following equation (9), λ is a scaling constant used to adjust
the maximal speed that can be attained by the simulated mouse
pointer, assuming the activity vector uuu is bounded (guaranteed
within reasonable parameter value ranges in equation (6) and
(7)). Normalized time is generally used to study decision dy-
namics through trajectories (e.g., for mouse-tracking Hehman
et al., 2015; Freeman and Ambady, 2010), λ is therefore not
included in the set of free parameters of the model, as the time
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Figure 4: Components of the decision-making model coupling cognitive processing (right) and sensorimotor interactions (left). Stimuli are processed and projected
as an input (green) to the integro-differential equation (with numbered references in grey) controlling the decision-making process (red). Activity on both the stimuli
and decision spaces reflect evidence for the associated and possibly nuanced response. By aggregating the activity over the decision space, the dynamic decision
is then mapped and rescaled if necessary onto the answer space (purple, with shaded background limited within the [-1,1] interval on the decision space), in turn
attracting the mouse cursor to generate a response trajectory (blue), until a mouse click on the response scale (grey shaded area at the top) ends each trial.

constant τ already partially accounts for the temporal dynam-
ics of the system, directly impacting uuu and indirectly κ through
activity summation.

2.4. Final decision - stop criteria

In most decision-making empirical paradigms, the partici-
pant must press a key or reach and click on a response area
on screen to give her response. In both cases, the action ends
the current trial, determining the final response, response time,
and ending the trajectory (in the case of mouse-tracking) with
no possibility to turn back time and correct the provided re-
sponse. Empirical paradigms therefore introduce a convergence
constraint on the decision process, with the participant only
pressing a key or clicking on a response area when the deci-
sion reached a high enough level of certainty. We therefore
assume participants take the required time to select a final re-
sponse that matches their decision, and that such decision can
be considered stable and definitive. To simulate this process in
the special case of mouse-tracking paradigms, we consider that
the decision is reached when the three following conditions are
met:

1. The activity of at least one unit passes a fixed elevated
threshold. This usually corresponds to the formation of
a stable bump of activity, and the associated attractor be-
ing attained in the cognitive part of the model. This can be
guaranteed by exploiting the nonlinear dynamics of equa-
tion (7) and choosing the threshold in adequacy with f (in
combination with other parameters that control the feed-
back loops across units). Opting for a sigmoid instead of a
ReLU for f would simply turn this threshold into a toler-
ance (distance to the function maximal value of 1).

2. The sensorimotor part has converged to match the cogni-
tive part. This means that the distance between the cur-
rent mouse position (ppp from equation (5)) should be suffi-
ciently close to the current decision location in the answer
space (ptgtptgtptgt derived from equation (8)). While having a low
enough tolerance on the x-axis may be important as it de-
termines the precision of nuanced final response, the y-axis
is generally less relevant for mouse-tracking paradigms re-
lying on binary or continuous response mode; less so when
more than two alternatives are used and positioned in 2D,
albeit seldom (Freeman and Ambady, 2010, and associ-
ated online software documentation).

3. The mouse pointer lies within a clickable response area.
This is a strict criterion to simulated the actual graphi-
cal user interface used in human experiments, where the
current mouse position (ppp) should lie within available re-
sponse areas for the click event to be correctly processed.
These areas correspond to rectangles usually positioned in
the top-left and top-right corners of the screen for binary
response mode, or to a full width rectangle for continuous
response mode(see figures 1A and 1B).

Aforementioned thresholds and tolerances are considered as
hyperparameters and are not optimized in the current article,
as they should have little impact on the dynamics under rea-
sonable assumptions and when leaving other model parameters
free (e.g., not expecting reaching a decision or position with
near infinite precision when there is a lot of noise in the deci-
sion process).

Although they may seem partially redundant, these criteria
are actually complementary. Indeed, complex decision dynam-
ics in both human and simulations may lead to situations where
the mouse hovers on a clickable response area corresponding to
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the current preference (2 & 3 satisfied) but a stable decision has
not yet been reached (1 violated); or the mouse is on a click-
able response area and a stable decision has been reached (1 &
3 satisfied), but the participant changed her mind and the de-
cision process bifurcated toward another response location (es-
pecially with a continuous response mode, 2 violated); or the
cognitive and sensorimotor part converged (1 & 2 satisfied) to a
response that is not available (e.g., nuanced decision on a binary
response modeparadigm). As a consequence of this third situa-
tion where criterion 3 may remain violated (e.g., if the compu-
tational model never converges to an acceptable response), an
arbitrary time constraint is introduced, simply to prevent infi-
nite simulations and to discard the associated trials. This pa-
rameter should have no impact when adequate parameters are
chosen for the computational model, and is therefore simply
set to a large enough value that should guarantee convergence,
given other parameters that control simulation time (e.g., τ and
λ). Such constraint is therefore optional in the computational
model, as it is for humans, participants not wanting to spend
an infinite amount of time doing the experiment. Conversely,
while introducing temporal constraints may heavily influence
human decision dynamics (e.g., speed-accuracy trade-off when
imposing a maximal trial duration), such influences or biases
are not implemented in the model. Simulated trajectories satis-
fying or violating the different criteria are illustrated on figure 5
using non-optimal parameters.

2.5. Versions to account for different empirical conditions
The full model composed of the cognitive and sensorimotor

parts can adapt to different empirical configurations. Firstly,
while designed to fit 2D trajectories obtained using standard
mouse-tracking paradigms (see Figure 1A; Freeman and Am-
bady, 2010), it can be easily adapted to alternative paradigms.
This includes novel slider-based designs applied to moral stim-
uli (see Figure 1B; Gautheron et al., 2023; Gaboriaud et al.,
2022) that have been developed to address mouse-tracking re-
lated limitations (e.g., when presenting complex stimuli, as
pointed in Stillman et al., 2018). Such designs rely on a mouse-
tracking enabled continuous response scale, with the mouse
cursor hidden but horizontal (resp. vertical) movements starting
from the center of the scale reflected by a green slider move-
ments, hence generating 1D trajectories x(t) (resp. y(t)). Since
the decision model already only generates a single target coor-
dinate (xtgt from equation (8)), the mouse coordinates vectors
(ppp and ptgtptgtptgt) are reduced to scalars. When considering standard
computed mouse interactions, it is equivalent to consider that
y(t) = ytgt at all times, since the mouse starts on the slider and
that controlling the y-coordinate of an hidden cursor is both dif-
ficult and irrelevant for the task.

Secondly, focusing on the integration between the SSM and
DNF literature aimed in this article, our generative model is
able to produce trajectories for both binary and continuous re-
sponse modes. However, this capability highly depends on pa-
rameter values, conditioned by the number of units (n). The
difficulties are better illustrated when considering extreme con-
figurations, so that we will here only consider LCA-like (n = 2)
and DNF-like models (n → ∞). Crossing paradigm response
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Figure 5: Sample of simulated decisions (xtgt) and mouse trajectories (x) as
functions of time, replicating the exact configuration from figure 2, illustrat-
ing prototypical dynamics on the binary response mode design from empirical
Study 2. All trajectories correspond to a single stimulation scenario using a
DNF-like model, with only noise varying across trials. Since this configura-
tion corresponds to a ∞ unit model combined with binary response mode, ev-
idence must be accumulated near locations corresponding to the extremes of
the response scale to guarantee convergence. Equations (5) and (9) smooth out
trajectories (label E), with lateral movements initially prevented by the low av-
erage unit activity despite a large variability in center of mass (label A). Color
indicates areas where the simulated mouse can be clicked in order to select a
final decision, reflecting that criterion 3 may be satisfied before criteria 1 & 2
(label B). Most decisions converge on the right (due to stronger evidence later
during the trial) after deviating more or less towards the opposite side, generat-
ing classical decision paradigms and mouse-tracking RT distribution (label D).
However with this specific design, input scenario and parameter configuration,
a few of the simulations might take more time to converge (label C) or accu-
mulate enough evidence and bifurcate towards the opposite attractor (label B).

11



Table 2: Possible combinations of empirical constraints (binary or continuous
response scale) and parametrizations of the model (2 or ∞ number of units).

Units Response mode
Binary Continuous

2 OK Partial competition
→ ∞ Lack dichotomization OK (with rescaling)

modes and the number of units in the model gives rise to the
following 2 × 2 configurations:

• Binary response mode with n = 2 is the natural fit between
classical SSM models and 2AFC paradigms. In presence
of sufficiently strong inhibition between the two distant
units (determined by parameter B), the vector of activities
(u1, u2) either converges to (umax, 0) or (0, umax) as for the
original LCA. This precludes the simultaneous activation
of opposite units and prevents stable nuanced responses.

• Continuous response mode with n = 2 requires generating
nuanced decisions from only two units. Nuanced decisions
can either be the consequence of a shared activity across
distant units (see process illustrated on figure 1C) or of a
bump of strongly active units at intermediate positions on
the decision space, inhibiting units closer to the extremes
(see final state illustrated on figure 1D or 2B). With only
two units available, shared activity is therefore required.
To this end, stop criteria can be relaxed to allow answers in
absence of full convergence of the cognitive part, but this
solution is unsatisfactory from a human decision modeling
perspective (since the answer corresponds to a non final
decision); or the nonlinear competition between units must
be dropped from the model in order for stable attractors
(u1, u2) with u1 , 0 and u2 , 0 to exist, which conflicts
with most of the SSM literature.

• Continuous response mode with n → ∞ is the other natu-
ral fit when dealing with decisions on continuous topolo-
gies (such as those usually encountered in sensorimotor
systems, e.g., object location or direction of movement).
For near-continuous configurations (n ≫ 2), strong global
inhibition (B) guarantees the convergence to a localized at-
tractor and thus well-defined decision as a single bump of
activity. While parameter A in equation (4) controls the re-
ciprocal excitation between nearby units, parameter a de-
fines what nearby or localized mean, thus the scale of the
activity bumps and granularity of decisions (i.e., the num-
ber of neighboring units that can be strongly activated at
the same time). A system forced to take a unique decision
should sooner of later be more likely to hesitate between
nearby responses (e.g., Not at all vs. Not that much) rather
opposites (e.g., Not at all vs. Completely).

• Binary response mode with n → ∞ may be simply imple-
mented by dichotomizing target coordinates, but generated
trajectories cannot match empirical trajectories (as devel-
oped in Lepora and Pezzulo, 2015); a more satisfying so-
lution is to generate attractors at the borders of the decision

space. Border effects preventing extreme answers in DNF-
like models (e.g., due to weaker self-excitation, unstable or
asymmetric attractors) are easily dealt with by extending
the decision space or rescaling coordinates from the deci-
sion to the answer space (as illustrated on figures 2 and 5).
Yet, preventing nuanced answers is less trivial and requires
additional model parameters (e.g., tweaking of weights w
to alter the distribution of possible attractor locations).

Among these 4 versions, only those where the number of
units matches the number of available answers (in bold in ta-
ble 2) are able to produce the type of continuous decision-
making dynamics expected on binary and continuous response
mode mouse-tracking paradigms, at least without further com-
plexifying the model.

In practice, we used n = 50 for the DNF-like version of the
model, as a trade-off between the accurate approximation of a
continuum neural field (n → ∞) and computational complex-
ity. Even though the algorithmic complexity in O(n2) for the
1D convolution can be reduced (e.g., through kernel restriction,
singular value decomposition and Fourier transform in Quinton
et al., 2011), simulating a single trial by solving the equations
remains sequential. Also, optimizing parameters for different
versions of the model over many trials can be partially paral-
lelized, but remains intensive in terms of computational time.
As for the temporal resolution used when numerically solving
the differential equations, increasing the number of units be-
yond the chosen value has no qualitative impact and a negligible
quantitative impact on dynamics or final decisions.

3. Results

Beyond theoretical capabilities of the model characterized
in the previous section, we performed a quantitative fit to
empirical data relying on different mouse-tracking paradigms.
We could then qualitatively compare empirical and generated
mouse trajectories, but also parameters across paradigm set-
tings, using both n = 2 and n = 50 versions of the model.

3.1. Empirical data

We exploited the empirical data from Gautheron et al. (2023),
made freely available on OSF (https://osf.io/hqgfd/). The
mouse-tracking paradigm (classical 2D screen or 1D slider) var-
ied across two moral decision-making studies. These studies
relied on a the same set of 60 moral assertions adapted from
(Pärnamets et al., 2015), including sentence stimuli as "Murder
is sometimes justifiable" or "It is our duty to protect things of
beauty" (also see stimuli in figures 1 and 4). Within each study
and participant, each assertion was presented with the two re-
sponse modes (binary or continuous), with extremes responses
corresponding to "Disagree" and "Agree".

Study 1 (N=103 participants) relied on the standard mouse-
tracking screen configuration. In the binary response mode, the
two extreme response options were presented in the top-left and
top-right corners of the computer screen (see figure 1A). The
mouse 2D-trajectory (x, y)(t) was recorded for each trial from
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the time when participants clicked on the “START” button (po-
sitioned at the bottom-center of the screen), triggering the onset
of the stimulus, until they clicked on their chosen response at
the top of the screen. An online written feedback was given
when participants did not move quickly or regularly enough, so
that participants’ mouse movements would cover the whole de-
cision process after a quick learning phase. In the continuous
response mode (see figure 4), the only change was that extreme
options were connected by a single full-width response area, al-
lowing participants to click on any intermediate position (thus
nuanced answer). Moral assertions were presented in random
order within two blocks, each block associated to a response
mode, counter-balanced across participants. As responses were
displayed before the participant initiated trials, response mode
was expected to exert an influence from the very beginning of
mouse-trajectories, at a stage where a final decision has not yet
been made.

Study 2 (N=65) relied on a novel mouse-tracking design ad-
dressing limitations of mouse-tracking in presence of complex
written stimuli. Participants answered using an horizontal slider
with a “START” area placed in the middle. Once clicked upon,
the indication as well as the mouse cursor were replaced by a
color gradient of varying width which was controlled by the
participant (see figure 1B). In absence of movement, the gradi-
ent width was progressively reduced to induce time pressure on
the decision process (the trial being considered failed if the gra-
dient disappeared). Gradient color was used to indicate whether
the current slider location could be clicked to provide a final
response. If the gradient was green whatever the location of
the mouse, it signaled a continuous response mode; in binary
response mode, it turned from gray to green only when hover-
ing extreme response options written within the slider bar. As
a consequence and contrary to Study 1, participants could not
guess the condition before moving the mouse due to random-
ization of conditions across trials. The 1D-trajectory x(t) along
the slider axis was recorded for each trial (see figure 6 for a
sample of trajectories produced by human participants). While
the model inherently generates trajectories reflecting ongoing
preferences, a dynamically shrinking slider was empirically re-
quired to elicit continuous mouse trajectories that reflect the en-
tire decision process.

In both studies, an early difference between the two response
modes was confirmed in mouse-tracking trajectories, much be-
fore the final decision is made, reflecting the constraint induced
on the decision process. This could be attributed to a trivial dif-
ference in final response distributions (i.e. bimodal in binary re-
sponse mode, with nuanced responses that cannot be selected),
yet results were confirmed when analyses were conditioned
on final responses (Gautheron et al., 2023). Simply knowing
whether nuanced responses are available therefore seems to im-
pact both the cognitive and sensorimotor components of human
decision-making.

Psychologically, this translates into participants dichotomiz-
ing a potential response continuum into hermetic categories
when integrating and accumulating evidence throughout the de-
cision process in binary response mode. Given the SSM and
DNF properties, as well as their integration in our model, such
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Figure 6: Sample of mouse trajectories from Study 2. Participants respond and
move at different times (y-axis), with hesitations and changes of mind reflected
by lateral movements (x-axis), mouse coordinates bounded by screen limits
(e.g., trajectory with final response indicated by label 5). While the slider re-
mains green at any location in continuous response mode (1, 3 & 4), the slider
(varying width not represented here) is grayed out for nuanced response loca-
tions in binary response mode (2 & 5).

differences could be explained by paradigm-driven changes to
the number of active units or to kernel parameters. With only
two units or a narrow excitatory part of the kernel (low a pa-
rameter), mainly competition between units occurs. On the
contrary, with more units and a wider excitation among units,
merging of localized evidence may occur, leading to nuanced
decisions.

3.2. Quantitative fit to empirical data

Data obtained in Study 1 were used to provide informative
a priori input parameters for model simulations while minimiz-
ing dependence relative to evaluation; model evaluation was in-
deed performed by fitting generated mouse trajectories to Study
2 data (thus on an adapted empirical paradigm and different par-
ticipants). To specify the input vector eee in equation (7) for each
trial (e.g., given stimulus and response mode), a Gaussian pro-
file activity was generated to account for uncertainty and pro-
vide evidence for an extended region of the decision space. It
was centered on the response position on corresponding trials
in Study 1, back-transformed into the decision space. Given the
optimization performed on other parameters, the amplitude of
the Gaussian profiles was kept equal to 1. Beyond its position,
the shape of the input distribution may impact results, but the
standard deviation in case of a unimodal input did not and was
therefore kept constant for all conditions and stimuli (equal to
0.1). Indeed, the differential equation integrate and filter out the
input signal to conform to the kernel shape.
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To assess the effectiveness of the model to reproduce deci-
sion dynamics, we fitted empirical mouse trajectories using a
method combining the averaging of trajectories from Hehman
et al. (2015) with an optimization criterion and procedure in-
spired by Ratcliff and Tuerlinckx (2002). It consisted in time
normalizing trajectories (vertical scaling of individual trajecto-
ries on figure 6 so they all end at the same time) before aver-
aging x-coordinates within spatio-temporal bins (equivalent to
grid cells on figure), making it compatible with the 1D slider
design used in Study 2. The same procedure was applied for
each stimulus and response mode with human and simulated
trajectories, which could then be compared using a χ2 goodness
of fit statistic. The χ2 was used as a fit criterion to minimize
(since equal to 0 for a perfect match between binned distribu-
tions) as classically used for fitting response times distributions
with SSM despite its limitations (Ratcliff and McKoon, 2008;
Ratcliff and Tuerlinckx, 2002). This approach led to an ac-
ceptable bias-variance trade-off, balancing observations across
cells, limiting the influence of outliers (e.g., extreme response
times) while reducing the large inter-trial variance through av-
eraging (present in both human and simulated data) as well
as the number of parameters. The number of intervals in the
spatiotemporal histogram (5 × 10 grid aggregating millions of
points) was also chosen to maintain a good enough resolu-
tion while smoothing out the stochasticity in the optimization
process. Due to the time normalization step, any similarity
between empirical and simulated response time distributions
(mean, variance or shape) cannot be attributed to the model
fitting procedure, and may support the model validity. An il-
lustrative density distribution is provided on the right of fig-
ure 5, but should not be directly compared to classical SSM
results. Indeed, response times here depend on parameters in
both the cognitive and sensorimotor parts of our model, there-
fore benefiting from additional degrees of freedom but also en-
compassing other constraints (further developed in Gautheron
et al., 2024).

Reparametrization was performed to prevent singularities
and unrealistic settings (e.g., instantaneous integration of infor-
mation when τ → 0), by introducing lower or upper bounds for
some parameters (Quinton, 2010). Manual initialization was
performed to start from a region of the parameter space pro-
ducing plausible trajectories given empirical data. Estimated
optimal parameters for both versions of the model are reported
in table 3, where χ2 optimal values (criterion to minimize) were
converted into Cramér’s V effect sizes for easier interpretation.
Indeed, while the χ2 statistic is rather inferential and has no
upper bound, V remains between 0 (perfect fit) and 1 (maxi-
mal divergence between relative frequency distributions) inde-
pendently of the sample size. Values of a and σ close to 0.05
reflect the optimizer at some point being constrained by a pri-
ori parameter boundaries, which were nevertheless required to
prevent singularities. Nevertheless, the low V values obtained
for both the binary and continuous response modes indicate a
satisfactory model fit.

To assess the robustness of results, we conducted a local sen-
sitivity analysis in order to quantify the influence of parameter
variations on model fit (±10% around optimal values reported

in table 3). While overfitting is unlikely given the ratio between
the 5 free parameters and 60 × 5 × 10 empirical mean coor-
dinates in each condition, asserting the stability of the model
behavior is key to establish its validity and generalizability po-
tential. Simulating thousands of datasets, we obtained Cramér’s
V ∈ [.033, .036] for binary and [.098, .100] for continuous re-
sponse modes, thus only slightly degrading performance in the
worst case. Values obtained below the V statistics reported in
table 3) reflect the difficulty of the optimization process, due to
both the non-linearity and stochasticity of the model.

Resp. mode n τ A B a σ V
Binary 2 3.00 75.3 25.3 0.06 0.05 .035

Continuous 50 2.67 88.5 23.5 0.05 2.62 .098

Table 3: Optimal parameter values (τ, A, B, a, σ) for n = 2 units (resp. n = 50)
following optimization of the fit of model generated trajectories to empirical
data in binary response mode (resp. continuous). The criterion to minimize is
reported as Cramér’s V effect size ∈ [0, 1].

3.3. Qualitative analysis of generated trajectories
For a wide range of parameter values including the opti-

mal ones reported above, the model was able to generate valid
mouse trajectories for each simulated trial. This means not
leading to singularities, divergence or failing on a single trial,
despite varying inputs (depending on stimulus and noise) and
paradigm settings (binary and continuous response modes, but
also classical 2D MT or novel 1D slider). This was achieved
by mainly changing a single parameter (from n = 2 to n = 50),
while relying on the same unifying equations and criteria. The
number of units, whatever they may represent in the brain, body
or mind of simulated participants, therefore seems critical in
this class of models to match paradigm constraints. Although
we made sure to safeguard against most singularities, this is no
small feat given the highly nonlinear dynamics and stochastic-
ity of the coupled differential equations. For the cognitive part,
activity could indeed either diverge (or at least saturate the neu-
ral field), converge to zero (resting level), or converge to a de-
cision incompatible with response mode. For the sensorimotor
part, the simulated mouse coordinates could diverge (leading to
the cursor getting stuck in screen corners), oscillate without sta-
bilizing on a response (violating the stop criterion) or converge
to an inadequate location (e.g., middle of the screen for both re-
sponse modes, or top-middle of the screen for binary response
mode).

Reversely to fitting the model to empirical data to find ade-
quate parameter values, we can exploit the unifying and gener-
ative nature of the model to propose mechanistic explanations
about differences between response modes based on differences
in parameters (Wilson and Collins, 2019). Sets of parameter
values are here comparable thanks to the normalization factors
integrated in equations (6) and (7). First of all, combinations
of n, A, τ and σ lead to different average convergence speeds,
with significant differences found in empirical data depending
on the design (Gautheron et al., 2023). A smaller time constant
(τ) may result in quicker response, but can easily be compen-
sated by an increased amplitude of the lateral interaction kernel
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(higher A) or by an increase number of units (e.g., n = 50 com-
pared to n = 2) in absence of normalization in equations (4),
(6) or (7). Indeed, both of these latter parameters increase
the amount of information exchanged by units, helping conver-
gence. The amount of noise (controlled by σ) may have con-
tradictory effects on the system, either facilitating bifurcations
in presence of balanced evidence for different response alterna-
tives, or slowing down convergence to a stable attractor (acting
as a perturbation relative to the integration of signal over deci-
sion space and time). Despite a large variability in simulated
decision dynamics, average response times for binary response
mode were shorter than for continuous response mode when re-
lying on optimal parameters. Since fit criteria were based on
normalized time, such differences are by-product of the model,
adding to its predictive capabilities.

The optimal values for σ constitute the most striking differ-
ence between the binary and continuous versions. For n = 2,
the fit of simulated to empirical trajectory distributions is pos-
sible in the near absence of noise. On the contrary, optimal
parameters lead to a low signal-to-noise ratio for n = 50 which
induces more hesitations, later changes during the decision pro-
cess, and of course reflect the larger variability in x-coordinates
given the continuous answer space. Given the fit criteria on
the distributions of x-coordinates in normalized timebins, these
differences naturally match empirical observations made on the
human participants’ datasets. Put differently, for similar kernel
parameters (especially A and B), a weaker noise for the binary
response mode means that each piece of evidence will be given
more weight in the decision process compared to the continu-
ous response mode. Psychologically, it could be interpreted as
a stronger need to converge towards one of the alternatives in
binary response mode; while with nuanced answers available,
participants would be more demanding regarding the evidence,
in order to refine their decision and increase the precision of
their final answer location.

4. Discussion and limitations

As for any optimization procedure, modeling choices and nu-
merical constraints impose limitations to the inferences that can
be drawn from parameters and simulations. For instance, pa-
rameter a is nearly identical for both versions of the model,
approaching the lower bound imposed to prevent singularities.
This means that lateral interactions among units are almost lim-
ited to inhibition (hence competition between options), without
the need for local excitation (absence of interpolation or mutual
reinforcement of coherent spatialized inputs). This is the clas-
sical functioning for n = 2, as opposite responses are expected
to compete for decision and action, much less for n = 50. How-
ever, to avoid introducing additional parameters and only ab-
sorb the large between-stimuli variability (here between moral
assertions), we provided a stationary and static unimodal in-
put to the system for each simulated trial. Relying on DNF
properties, a larger number of units in interaction act as a spa-
tiotemporal filter, especially in presence of white noise which
lacks spatial and temporal structure (Quinton and Girau, 2011;

Quinton, 2010). Doing so, we did not really put pieces of evi-
dence in competition, and rather relied on noise (with a large σ
value) to simply generate hesitations and deviations that might
actually result from fine-grained processing of assertions (from
orthographic elements to their moral semantics and implica-
tions). As hypothesized in the moral decision-making litera-
ture, it may well be that moral words are processed earlier or
faster (Gantman and Van Bavel, 2014), leading to a complex in-
terplay between complex sentence processing and decision dy-
namics. While the proposed unified model is perfectly adapted
to dynamic input (as illustrated on figure 2), introducing word-
level parameters (e.g., valence and timing) would have drasti-
cally reduced model parsimony without adding much value to
this article contributions.

In absence of fine-grained theory-driven models of how sen-
sory and linguistic information is processed in the context of
moral assertions, data were heavily aggregated in the statisti-
cal evaluation of the model. Indeed, mouse coordinates were
spatially and temporally binned, and histograms formed over
participants for each moral assertion. This process was needed
to make the hard problem of optimizing parameters in stochas-
tic integro-differential equations less hard; it led to an accu-
rate fit since the very large trajectory variability was reduced
through aggregation, following the central limit theorem. We
therefore minimally accounted for between-stimuli variability
by providing empirically derived inputs, but neglected between-
participant variability. As a consequence, most sources of
trajectory variability were integrated in the noise amplitude
(through parameter σ), therefore matching noise modeling in
the statistical model for which the fit to aggregated empirical
data was optimized. While the proposed model is able to gen-
erate hesitation and simulated changes of mind during the deci-
sion process (e.g., on figure 2C), there is no guarantee that such
phenomena appear under the same conditions and for the same
stimuli as in empirical data. Put differently, due to the nonlin-
earity and stochasticity of the model, parameters leading to an
optimal fit at the aggregated trajectories level do not necessar-
ily produce the best matching trajectories at the individual trial
level (e.g., lacking late bifurcations and changes in decision).

Nevertheless and beyond the fit to empirical distributions, we
proposed a generative model of decision-making dynamics and
mouse trajectories. The model is indeed able to generate plau-
sible trajectories at trial level, from which distributions can be
constructed through repeated simulations of trials (possibly in
different conditions or with different inputs/stimuli), parallel-
ing repeated measure designs in empirical studies. Although
SSM and DNF models are also generative, they do not usu-
ally integrate a sensorimotor component to simulate mouse tra-
jectories; reversely, models that focus on movement generation
generally do no account for decision-making dynamics at trial
level. These are also to be differentiated from models which
only focus on the description of distributions across trials, such
as the LATER model when remaining close to the SSM litera-
ture (Noorani and Carpenter, 2016), or most Bayesian models
used to model empirical decision-making data (as discussed in
Forest et al., 2022b).

Under its current formulation, the model does not encom-
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pass all mechanisms known to significantly impact decision-
making dynamics. While the decision process is represented
as a closed loop across spaces on figure 3, several reciprocal
arrows are missing. For instance, the sensorimotor component
of the model could be improved to better account for physi-
cal constraints, both in the motor apparatus of the agent and in
the environment (e.g., friction forces of the computer mouse).
These would for instance be required to account for Fitts’ law
which applies to most pointing devices (Fitts, 1954). Similarly,
while the slower convergence observed for continuous response
scales matches the logic of Hick’s law (Hick, 1952), it does not
account for all its variations and subtlety. Albeit the progres-
sive commitment towards response alternatives is reflected in
the emergence of basins of attraction (as developed in Lepora
and Pezzulo, 2015), other sources of nonlinearity and bifurca-
tions are missing. Through visual perception and interaction
with the paradigm, the agent may integrate the motor cost of
reaching and clicking on a response (e.g., mDDM in Falan-
days et al., 2021) or focus on a specific response alternative
through active perception and active sampling of information
(e.g., aDDM in Falandays et al., 2021; Quinton et al., 2014). As
the aforementioned models rely on SSM or DNF and are there-
fore clearly compatible with our proposed model, the associated
mechanisms were not embedded for parsimony purpose. These
mechanisms would indeed not have much contributed to our
focus on the continuum between models and decision spaces.
Research work is therefore still required to develop a fully in-
tegrated model and to collect adequate empirical data to test its
predictions.

5. Conclusions

We started by showing how SSM and DNF models evolved in
parallel in different (sub)disciplines and targeting different ob-
jectives, focusing on continuous vs. discrete spaces and tasks.
Several decades of development reduced the gap, with a core
feature of DNF being the emergence and maintenance of lo-
calized bumps of activity, and SSM progressively extending to-
wards tasks with multiple alternatives or continuous response
scales. Yet, the proposed generative model is a first attempt
at explicitly bridging the gap by unifying associated equations,
and integrating a sensorimotor component flexible enough to fit
different paradigms and response modes, simulating individual
decision and response trajectories. By relying on a spatially
vectorized form of the equations (i.e. simulating the activity of
a set of units), we diverge from the continuum field character-
istic of DNF, but generalize and extend representative instances
of the SSM class.

To demonstrate the potential of the model in terms of appli-
cability, we fitted empirical trajectory distributions collected in
moral decision tasks which are known to generate hesitations,
changes of mind, while remaining meaningful with both binary
and continuous response scales. To illustrate the potential of
our mechanistic model in terms of explainability (contrary to
most deep neural network models) and inference to be drawn
on human decision-making, despite limitations resulting from
the nonlinearity and stochasticity of the equations, parameters

were compared and interpreted across conditions. Results sug-
gest that relaxing response scale constraints (i.e. allowing nu-
anced responses) may impact the whole dynamical system in-
volved in the decision, and not only the sensorimotor control
of the mouse. Delayed bifurcations and late adjustments are
possible in continuous response mode, while the presence of
wider basins of attraction in binary response mode may allow
the early processing of stimuli to have a stronger and irrevert-
ible impact on decisions (e.g., principles, emotions or intuitions
evoked by moral stimuli, see Koop, 2013; Greene et al., 2008).

Drawing back from its specific application to moral decisions
using sentence-based stimuli, the proposed model is generic
enough to be applied to many empirical paradigms. This goes
beyond applying it to 1D sliders or 2D classical mouse-tracking
by having movement on the y-axis impact the dynamics. It
also goes beyond answering on a binary or continuous response
scale by adjusting clickable areas, or presenting the scale as a
chromatic slider or rectangles on top the screen. Instead of re-
lying on mouse movements, finger trajectories on touch screen
may be produced and collected, leading to similar response pat-
terns and dynamics Dotan et al. (2019). Even key presses could
be simulated in the same way, simply trading the sensorimotor
component of the model for a simpler effector implementation
(e.g., simulating delays between commands and key presses).

Researchers often consider that the cognitive system simply
adapts to empirical constraints, with two alternative assump-
tions: psychometric choices on response scales hide the rich-
ness and nuanced nature of a continuous mind; or conversely
mouse trajectories are artifacts of the paradigm, only reflecting
the shallow embodiment of decisions and hiding the discrete
nature of cognitive representations. We would rather focus on
the interplay between all the components that are involved and
may in the end constitute or allow the emergence of a decision-
making system adapted to the current situation. Stimulus, deci-
sion, motor and answer topologies all participate in the defini-
tion of the decision system, with some combinations more ef-
fective than others. The resulting system in turn constrains deci-
sion trajectories which emerge from the interactions of the neu-
ral and sensorimotor systems with human-machine-interfaces
and paradigms.

Even a simple visual task can combine a myriad of continu-
ous and discrete spaces, with distributed processes unfolding in
overlapping periods, at different rates and with different delays
(Goffart et al., 2018), while also being considered continuous or
discrete in time. For instance in a visual search task, these pro-
cesses range from linguistic stimulus and visual features pro-
cessing, saccadic motor control and object localization, context
and object categorization, to generating a response trajectory
to indicate whether a target object was found or not (Quétard
et al., 2016). The model proposed in this article is therefore
a step to discriminate and study the complementary roles of
the many spaces in which decision processes are dynamically
shaped, and to study the emergence of discrete representations
from continuous activity (joining research tackling the symbol
grounding problem since Harnad, 1990).

At a more theoretical level, adopting socially situated (Smith
and Semin, 2004), dynamical system (Spivey and Dale, 2004)
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or interactivist perspectives on cognition (Buisson and Quin-
ton, 2010), it comes as no surprise that the task context (includ-
ing the empirical paradigm) impacts decision dynamics. This
research work nevertheless contributes to questioning the def-
inition of a decision and its boundaries: 1) in time, through
the study of the dynamics which determines and precedes the
final answer; 2) in space, beyond the limits of a constrained
response scale; but also 3) at the interface between the neural
and the physical, involving sensorimotor interactions with the
environment.
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