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Abstract
While moral psychology research has extensively studied decision making using moral
dilemmas, such high-conflict situations may not fully represent all moral decisions. More-
over, most studies on the effect of conflict have focused on nonmoral decisions, and it is
unclear how it applies to the moral realm. The present mixed-method research investigates
how conflict impacts moral compared to nonmoral decision making. In a preregistered
empirical study (N=42), participants made moral and nonmoral decisions with varying
levels of conflict while their mouse trajectories were recorded. Results indicate that moral
decisions were more stable in the presence of conflict, while still seeking compromise.
In addition, decisions were more affected when conflict got higher. Mouse-tracking data
further indicate that some factors are impacting the decision process earlier than others,
supporting the relevance of tracing methods to dig into finer-grained decision dynamics.
We also present a computational model that aims to capture decision mechanisms and
how conflict and morality influence decision making. The model uses dynamic neural
fields coupled with sensorimotor control to map a continuous decision space. Two model
versions were compared: one with greater perceptual weight for moral information, and
another with earlier processing of moral versus nonmoral information. The simulated data
more successfully reproduced empirical patterns for the second version, thus providing
insights into the underlying decision processes for both moral and nonmoral decisions, in
the presence of conflict or not.
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1 Introduction
Consider a simple everyday decision: a person deciding to help her friend. This decision
would no longer be as straightforward if it involves losing 100C. Indeed, one may anticipate
a more conflicted and longer decision: the decision becomes more challenging, as individ-
uals must weigh personal loss against potential harm to a relationship. Moreover, the same
conflictual element (i.e., losing 100C) should not have the same impact regarding decision
difficulty in a nonmoral situation, such as enjoying your favorite beverage and losing 100C.
These examples illustrate how conflict may affect decision-making processes, with effects
varying depending on whether the situation involves moral considerations or not.

1.1 Effect of conflict on decisions
Conflict arises when two (or more) irreconcilable elements are pushing in different direc-
tions or toward different alternatives (Evans et al, 2015; Cheng and González-Vallejo, 2018;
Gürçay and Baron, 2017). The absence of a clear preference results in decisions perceived
as more difficult. Conflict is even conceived as a psychological dimension of decision diffi-
culty (Cheng and González-Vallejo, 2018) and those concepts are often associated (Anderson,
2003).

The effect of difficulty in decision making has been widely studied, especially in con-
sumer research (Ratneshwar et al, 2003; Luce et al, 1999; Krosnick, 1991). More difficult
decisions are often more extreme on a response scale (e.g., of Likert type), extremization
being used as a simplifying strategy (Ford et al, 1989). The concept of more extreme decisions
may not appear intuitive to readers familiar with the traditional two-alternative forced choice
paradigm. However, employing a continuous response scale may prove more suitable for dis-
cerning subtle influences on decision outcomes that might not be discernible in forced binary
responses, such as extremization of answers. At the processing level, increasing difficulty
in decisions leads individuals to use reduced processing strategies to limit cognitive effort
(Paquette and Kida, 1988). Precisely, they tend to use simplifying strategies (e.g., choos-
ing status quo, or relying on first impression) to make the decision task more manageable
(Ford et al, 1989). Thus, when facing difficult decisions, decision makers avoid compensatory
evaluation and instead select the alternative that is most attractive on whatever dimension is
difficult to trade off (Luce et al, 1999). These strategies, leading to extremize answers, can
rely on the phenomenon of satisficing: people often engage in sub-optimal decision making
strategies to reduce cognitive effort (Barge and Gehlbach, 2012). Despite these simplifying
strategies, decision conflict still results in longer response times (Tyebjee, 1979). A limita-
tion of past research when transposed to moral psychology is that difficulty has often been
operationalized with cognitive load - which is not equivalent to the intrinsic difficulty of the
decision itself. Besides, most research has focused on decisions regarding product purchase,
and favored an effort/accuracy trade-off approach (Paquette and Kida, 1988; Leong and Hen-
sher, 2012). These are important limitations as many everyday decisions do not necessarily
involve purchase decisions or accuracy, with objective right or wrong answers.

Furthermore, those studies only investigated conflict in nonmoral situations, while we
could expect different impact on moral decisions. Indeed, research has evidenced differ-
ences in decision making processes between moral and nonmoral situations (Moll et al, 2002;
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Van Bavel et al, 2012; Tassy et al, 2013), suggesting that morality leads to different percep-
tual processes (Gantman and Van Bavel, 2014; Brady et al, 2020; Gantman and Van Bavel,
2015), neural correlates (Sommer et al, 2010), and reasoning (Greene et al, 2001). However,
moral decisions have often been studied through moral dilemmas, a particular case inducing a
highly conflictual decision (Bauman et al, 2014). This results in a confound between morality
and conflict. Independently examining the influence of morality and conflict by comparing
moral and nonmoral conflictual decisions is therefore needed. This will be implemented and
tested in the present research.

1.2 Conflict in moral situations
In morality, findings suggest that people stand on extreme positions, unwilling to make com-
promises when decisions rely on moral convictions (Skitka and Morgan, 2014). Similarly,
some authors suggest the existence of protected values, which are those moral requirements
that one would hardly trade and that lead to strong positions (Bartels, 2008; Bartels et al,
2015; Dehghani et al, 2008), even though they may be malleable depending on the situation
(Iliev et al, 2009). Moral dilemmas (involving conflicting moral duties) are thus perceived as
difficult and leading to a hard-to-solve conflict between the different options (Hanselmann
and Tanner, 2008). Conflict will therefore be higher if the concerned attributes are harder to
trade-off because they both belong to the moral category, and lower if they do not belong
to the same category (e.g., moral reasons with nonmoral reasons). An example of the latter
would be a moral standard weighted against a monetary incentive. Two decision strategies
may emerge, depending on moral intensity. If there are great moral implications, as in moral
dilemmas, people are more likely to decide according to protected values and moral rules,
in a non-compensatory way, resulting in extreme positions (Skitka and Morgan, 2014). Con-
versely, if moral implications are less intense, as in most everyday moral decisions, moral
considerations may be more easily traded off, resulting in less extreme decisions in case of
conflict. In this vein, and contrasting with response extremization, research on social dilem-
mas showed that conflict between options rather leads to less extreme decisions, along with
slower response times (Kleiman and Hassin, 2011; Evans et al, 2015).

By default, everyday moral and nonmoral decisions are likely characterized by limited
moral intensity and limited conflict. To generate different levels of conflict, varying monetary
incentives can be introduced. A higher level of conflict in everyday moral and nonmoral deci-
sions is expected to result in less extreme, more nuanced decisions compared to a lower level
of conflict. Besides, as everyday moral decisions should elicit stronger positions and resis-
tance to compromises (Skitka and Morgan, 2014) compared to nonmoral decisions, moral
decisions should on average (regardless of level of conflict) be more extreme, less nuanced
compared to nonmoral decisions. In the current research, we aim to go beyond final responses
and response times, therefore adopting tracing methods to focus on decision processes.

1.3 Tracing conflict in decision making with mouse tracking
Decision making processes can be studied from a dynamical perspective using tracing tools
such as mouse tracking (Sullivan et al, 2015; Freeman and Ambady, 2011; Smeding et al,
2016; Koop, 2013). Mouse tracking gives access to the dynamic evolution of the decision,
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compared to paradigms recording only final decisions and response times. By asking partic-
ipants to move their mouse cursor from a fixed START button to the answer location, mouse
tracking gives insights into cognition. Notably, mouse tracking translates the competition
or conflict between alternative responses at the cognitive level into movements of the hand
which control the mouse on the screen (Freeman et al, 2011; Spivey et al, 2005). This allows
tracing the decision making process in real time from early stages onwards, revealing infor-
mation about all the steps, hesitations, and attractions to one or the other response option that
contribute to the final decision and response time (Hehman et al, 2015). Recent studies have
shown that process measures could be used to trace decision dynamics with graded responses
(using finger tracking in Dotan et al (2019), or mouse tracking in Gautheron et al (2023)),
to measure ambivalence (e.g., mouse-tracking in Buttlar and Walther (2018)) and decision
reversal (e.g., mouse-tracking in Koop (2013)) in moral decisions, as well as to manipulate
moral decision outcomes (using eye-tracking in Pärnamets et al (2015)). Mouse tracking is
therefore particularly well-adapted to trace how conflict impacts decision dynamics in moral
and nonmoral situations. This applies when empirically tracing human participants’ decision
dynamics, but also when simulating them. Indeed, from a computational perspective, conflict
can be modeled as the competition between two (or more) evidences in different locations
of the decision space (i.e., the space where the model is evolving) (see section "Modeling
conflict" in the Model part below). Hence it simulates how different elements are voting in
different locations, and how they lead to the final decision by attracting preference to their
position location during the decision process.

1.4 Contribution of computational models of decision making: A focus
on Dynamic Neural Fields

Computational models of decision making provide complementary insights on the dynamics
of decision making and can be of substantial interest to understand complex decisions such
as moral decisions. Indeed, formal models allow studying latent subcomponents of decision
making that can hardly be observed in behavioral studies and explain how their interven-
tions in decision lead to a specific behavior (Crockett, 2016). For instance, the Drift Diffusion
Model (DDM) and the larger class of sequential sampling models propose the idea of a deci-
sion process corresponding to an accumulation of evidence for one or the other alternative
over time (Ratcliff and McKoon, 2008). This model has been successfully used to account
for psychological results (Ratcliff and McKoon, 2008; Ditterich, 2006; Metin et al, 2013;
Drugowitsch et al, 2012; Krajbich et al, 2015; Ratcliff and Tuerlinckx, 2002; Krypotos et al,
2015). Here we will focus on another class of models similar to sequential sampling mod-
els: Dynamic Neural Fields (DNF, Schöner and Spencer, 2016), that rely on a continuous
decision space with attractors that will guide the preference. A final, stable, and discrete deci-
sion is thus emerging from continuous and non-linear cognitive dynamics, with continuity
present in both time and space (Spivey and Dale, 2004). This model has successfully been
used for motor behavior (Erlhagen and Schöner, 2002) and visual attention (Rougier and
Vitay, 2006; Quinton and Girau, 2011). It is especially interesting as it encompasses DDM-
related models through parameter specification and facilitates the addition of a motor module
to generate mouse trajectories, similar to those obtained via mouse tracking paradigms with
human participants (Lepora and Pezzulo, 2015; Quinton et al, 2013). Subsequently, simu-
lated trajectories can be compared to human participant trajectories, together providing proof
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of concept for the plausibility of the computational model and a stringent test of decision
making processes underlying human decisions (Smeding et al, 2016).

Evidence accumulation models have been developed in the moral and social domains
(Falandays et al, 2021; Falandays and Spivey, 2020; Johnson et al, 2017) and to account for
conflict in decision making (Krajbich and Rangel, 2011; Krajbich et al, 2014; Sullivan and
Huettel, 2018). These models also predict that individuals with conflicting goals are slower
to reach a decision and are more likely to select an intermediate, nuanced response (Krajbich
and Rangel, 2011; Krajbich et al, 2014; Ratcliff and Smith, 2004; Klauer, 2014). However,
these models have not been used to compare moral and nonmoral decision making dynam-
ics at the recent exception of Falandays et al (2021). This work uses DDM to explore the
difference between moral dilemmas and nonmoral choices. Their findings suggest that the
specificity of moral dilemmas lies in higher conflict compared to nonmoral stimuli, with
dilemmas designed to generate balanced responses, probably resulting from conflicting evi-
dence. The encompassing class of sequential sampling models could more generally be used
to investigate how decisions may emerge as a trade-off in the presence of conflicting pieces
of evidence that compete for decision, manipulating and combining moral or nonmoral ele-
ments (such as monetary incentives) within stimuli. Direct competition between alternative
responses (and not only through attentional resources) can be modeled with DNF as well as
several sequential sampling models that integrate reciprocal inhibition between accumulators,
but not with independent DDM.

As some evidence points out that moral and nonmoral elements could be differently inte-
grated or lead to different decision processes (Gantman and Van Bavel, 2014; Brady et al,
2020; Gantman and Van Bavel, 2015; Sommer et al, 2010), we can expect such differences
to be reflected in the model parameter values. Additionally, moral content seems to be more
salient in perceptual streams, with a higher detection rate when the stimulus is perceptually
ambiguous Gantman and Van Bavel (2014). Another effect of moral content would be to elicit
fast moral intuitions that could be processed earlier compared to nonmoral content Haidt
(2001). These two phenomena—an amplified or earlier influence of morality-can be tested
and compared using modeling, relying on sequential sampling models to bring a fine-grained
understanding of how morality is processed during decision making, compared to nonmoral
elements, in the presence of conflict or not. In other words, we will develop different model
versions which, while remaining parsimonious, will integrate a different parameter to reflect
these phenomena. Comparison of these different model versions enables to weigh their rel-
ative validity, thereby providing proof of concept of how morality intervenes in decision
making.

1.5 Overview
Taking into account existing findings on how conflict influences decision making, and the
limited evidence specifically focused on everyday moral decisions, the present research aims
to investigate whether conflict is managed differently in everyday moral and nonmoral deci-
sions, resulting in distinct strategies and dynamics. By default, everyday moral decisions
should be characterized by limited moral intensity and limited conflict for most people. There-
fore, to generate conflict, we used a set of everyday actions from Van Bavel et al (2012) and
introduced a conflicting element in the form of monetary gains or losses. We operational-
ized conflict intensity as a small versus high monetary gain or loss, with amounts tailored

5



to the target undergraduate population, resulting in low versus high conflict for each deci-
sion. We hypothesize that for all actions, the greatest loss will discourage the action more
than the smallest loss (and more so than the two gain conditions), while the greatest gain
will encourage the action more than the smallest gain. Given the limited moral intensity of
the selected actions (such as telling a white lie or being honest), trade-offs should be accept-
able for both moral and nonmoral decisions, albeit less so for the former than for the latter.
Indeed, the influence of conflict on moral decisions should be smaller than on nonmoral
decisions, with more stable positions for moral actions, as the presence (versus absence)
of a moral component should still foster stronger positions and more resistance to compro-
mise (Skitka and Morgan, 2014). Therefore, nonmoral conflictual decisions should elicit less
extreme responses compared to moral conflictual decisions (Van Bavel et al, 2012), and be
more strongly impacted by a conflictual element. Additionally, the strength of the conflict
should also affect response extremity, with less extreme responses for low-conflict as opposed
to high-conflict decisions, and a greater increase in this effect for nonmoral decisions.

Conflict is also expected to impact decision dynamics, leading to longer response times.
Employing a mouse-tracking technique is particularly relevant to measure the effect of con-
flict on moral and nonmoral decision dynamics. Specifically, we anticipate that conflictual
decisions will result in trajectories that reveal the influence of the two conflicting elements,
with deviations from one side before transitioning to the other. Moreover, these dynam-
ics should differ between moral and nonmoral decisions, as some literature (Gantman and
Van Bavel, 2014; Haidt, 2001) suggests an earlier and facilitated processing of moral con-
tent. Modeling is then particularly relevant to test those assumptions on underlying moral and
nonmoral decision mechanisms. Notably, an intriguing query arising from our experimental
design—which combines a nonmoral monetary incentive condition with an action that can
either be moral or nonmoral—is whether the presence of a moral component compels indi-
viduals to interpret all elements from a moral perspective, subsequently processing them all
as moral elements. Indeed, those stimuli elements (action and monetary incentive condition)
correspond to the different factors, or evidence, taken into consideration in the decision: when
at least one of them belongs to the moral domain, the decision is subsequently moral. Alterna-
tively, it is plausible that the nonmoral condition is still processed distinctly—as a nonmoral
element-while the action, in contrast, is processed as a moral element (exerting a greater or
earlier influence). This conundrum highlights the intricacies of moral cognition in decision
making processes. We therefore tested, using a reference DNF model, whether using the same
parameters for moral and nonmoral components in conflict situations would be sufficient to
fit human decisions. If so, expected differences in parameters should reflect differences in
decision mechanisms between moral and nonmoral decisions. On the contrary, if such basic
reference model is unable to fit human data correctly, additional parameters can be integrated
to improve the fit. To keep the models as parsimonious as possible, we implemented two aug-
mented versions of the reference model, each incorporating a single additional parameter to
account for the specific influence of moral elements in decision making, either through an
amplified or an earlier impact. These two versions posit that it is solely the moral compo-
nent, rather than the entirety of the decision, that undergoes specific processing. Comparison
of these different model versions enables to weigh their relative validity, thereby providing
proof of concept of how morality intervenes in decision making.
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2 Empirical study on human participants

2.1 Participants
Forty-two undergraduates (24 females, 18 males) took part individually in the study in
exchange for course credits. Mean age was 25.8 years (SD = 6.6). Participants provided
written informed consent before participation and the project was approved by the local
ethics committee (CER-USMB). We estimated sample size based on statistics reported by
Trémolière and Bonnefon (2014) and, as we did not find similar studies investigating inter-
action effects of interest, we estimated interaction effect sizes from data collected during a
pretest phase of the experiment. We used PANGEA tool (Westfall, 2015), and performed a
sequential analysis based on Lakens’ recommendations (Lakens, 2014). We performed our
first analysis at 42 participants, and obtained a significant effect for conflict and morality (p-
value below the interim threshold at 0.017). We therefore stopped data collection. The study
and data collection were conducted in accordance with the ethical principles of the Ameri-
can Psychological Association and the Declaration of Helsinki. All measures, manipulations,
and exclusions are disclosed, and all participants were retained in analyzes. All data were
collected prior to analysis. Preregistration is available on the Open Science Framework at the
following link https://osf.io/6juex/?view_only=96c88938c98240b7bda1cfc9c0eaeed0.

2.2 Materials
One hundred and nine actions were translated from Van Bavel et al (2012). They consisted
of short items with similar length for moral and nonmoral items (e.g., “write an email” or
“vandalize a park”). Items were categorized as moral or nonmoral based on two criteria.
First, depending on whether they include moral lexicon, for example "vandalize" or "cheat".
Indeed, moral terms have specifically been used to identify moral content in natural language
(Hopp et al, 2021), and more generally to compare moral and nonmoral decisions (Tassy et al,
2013; Moll et al, 2002; Van Bavel et al, 2012). They may also be used to ensure that moral
considerations are intervening in decisions, as seen in studies with moral dilemmas (Greene
et al, 2001; Broeders et al, 2011; Liu and Ditto, 2013; Crockett, 2013; Kahane, 2015). Second,
a characteristic of moral actions is the common belief that they would lead to a beneficial
outcome if universally adopted. This phenomenon, universalization, is another indicator of
moral content (Levine et al, 2020). Accordingly, we used the distribution of answers (from
"nobody" to "everybody") to the universalizing question "how many other people should do
the action?" on the same set of items obtained from the study of Van Bavel et al (2012) to
refine the moral/nonmoral categorization.

These actions were subsequently associated with a condition of gain or loss with two
different amounts of money to elicit low versus high conflict: a small (1C) and a high amount
(100C). See Fig. 1 for an illustration. However, as actions could endorse either a positive or
negative valence, conflict would occur according both to the action valence and the money
gain or loss condition. Indeed, conflict is induced when the positive valence of the action
is associated with the condition of losing money (-100C, -1C), and reciprocally when the
negative valence is associated with the condition of gaining money (+1C, +100C).
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2.3 Procedure
The design was a 2 (action: moral, non-moral) × 2 (monetary condition: gain, loss) × 2
(amount of money: 1C, 100C) partially crossed within-participant design. The item set was
indeed divided in quarters and each participant saw only three quarters to have a reasonable
experiment time, resulting in four different between-participant item subsamples (which were
not expected to have any significant influence on results). Each action was displayed one at a
time on a screen when the participant clicked on the "START" box and remained so until the
participant responded. Responses consisted in deciding whether the participant would do the
action on a scale going from “Not at all” on the left, to “Absolutely” on the right. For each
response, participants used a slider of varying width that became visible inside a horizontal
bar once the trial was initiated, then following the mouse cursor along the x-axis of the screen
(see Fig. 1). The slider had a linear color gradient to blend with the white background, and
the most contrasting color corresponded to where the cursor pointed. The width of the slider
varied with time: it decreased when the participant did not move the mouse and increased
when they did, with a trial considered failed if the slider fully disappeared (reaching zero
width). This feature encouraged quick answers and continuous moves (a prerequisite to ana-
lyze mouse trajectories (Hehman et al, 2015)). This new version of classical mouse-tracking
paradigms has previously been developed for moral statements and scenarios, for which pro-
cessing time is often longer than images or single words typical of most mouse-tracking
studies (Gaboriaud et al, 2022; Gautheron et al, 2023).

After reading instructions, participants completed two training blocks. Training block 1
included six food images to learn how to use the slider paradigm with simple images (to
be categorized as liked or disliked). Training block 2 presented 6 actions in their different
versions (gain or loss of small or large amounts of money for each action), exactly as in the
testing blocks. The remaining actions for these testing blocks were randomly presented within
six blocks of 52 items. Each block ended with a self-paced break preceded by an attention
check consisting in asking participants to either answer all right or all left on the answer scale.
Upon completion, participants were thanked and fully debriefed.

2.4 Results
2.4.1 Analytic procedure

For effects to be comparable and averaged across positively and negatively valenced actions,
x-coordinates (X(t)) were remapped based on valence. As individual differences regarding
valence can be expected, we estimated for each participant each action’s valence. We expected
a natural order of final x-coordinates for the decision (-100C, -1C, +1C and +100C), from
the greatest loss (discouraging the action and leading to responses towards “Not at all”, cor-
responding to X = −1) to the greatest gain (encouraging the action and leading to responses
towards “Absolutely”, X = 1) (see Fig. 1). We therefore computed for all actions the median
of x-coordinates for all conditions. Valence categorization was subsequently based on the sign
of this median, which was negative (resp. positive) for negatively (resp. positively) valenced
actions. This method implies that conflict is derived from the raw dependent variable and
is defined as a within-participant within-action variable. To compare all conflict trials, we
reversed the answer scale of all negatively valenced actions to only have positive medians (i.e.,
remapped to the right side of the scale). With such recoding, all effects of conflict go in the
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Fig. 1 Illustration of how valence is calculated for each action based on the median obtained from answers in all
conditions.

same direction, although within and between participants variability is expected. A monetary
loss in conflict with positively valenced actions should push responses towards the left side
of the scale, resulting in negative shift in coordinates. A monetary gain in conflict with neg-
atively valenced actions should push responses towards the right side of the scale, resulting
in a positive shift in coordinates, becoming negative once remapped. This remapped variable
(X ′ for only the final coordinate, X ′(t) for dynamic coordinate during decision process) will
be the one used for all analyzes, as we focus on the shift of decision rather than raw decisions.

Mixed models were used to correctly estimate the different effects, hence allowing gen-
eralization at the participant and action levels. analyzes were performed using R language,
lme4 package Bates et al (2015) and associated packages (e.g., DHARMa for diagnostics and
emmeans for comparisons). Morality of the action (M , contrast coded -0.5 = nonmoral vs. 0.5
= moral), presence of conflict (-1C/-100C when action positively valenced, or +1C/+100C
when action negatively valenced; C, contrast coded -0.5 = non conflictual vs. 0.5 = conflict-
ual), strength of conflict (S contrast coded -0.5 = 1C vs. 0.5 = 100C) were fixed factors, and
participants (P ) and actions (A) random factors.

2.4.2 Remapped final responses

The following maximal model specification was used (in R format):
X ′ ∼ M ∗ C ∗ S + (M ∗ C ∗ S|P ) + (C ∗ S|A) + (C|A : P )
Results are illustrated in Fig. 2 as a function of morality, conflict, and strength of conflict.

Results indicate a main effect of morality, with more extreme answers for moral (M = 0.58,
SE = 0.03) compared to nonmoral actions (M = 0.33, SE = 0.04), b = 0.25, SE = 0.03,
χ2 = 63.46, p < .001, 95% CI [0.19, 0.32], d = 0.56. A main effect of conflict was found,
with less extreme responses for conflictual (M = 0.23, SE = 0.03) compared to non-
conflictual (M = 0.68, SE = 0.04) actions, (b = −0.44, SE = 0.05, χ2 = 88.82, p < .001,
95% CI [−0.54, −0.35], d = −0.98), and a main effect of strength of conflict, with less
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extreme responses for the high-conflict condition (M = 0.39, SE = 0.03) compared to the
low conflict condition (M = 0.52, SE = 0.03), b = −0.13, SE = 0.02, χ2 = 43.03,
p < .001, 95% CI [−0.17, −0.09], d = −0.29. Hence, less extreme (or more nuanced)
decisions were found for nonmoral decisions, conflictual decisions, and when the conflict is
more pronounced.

A two-way interaction effect between conflict and morality was observed (b = 0.45,
SE = 0.05, χ2 = 80.37, p < .001, 95% CI [0.35, 0.54], d = 0.49) with nonmoral
actions being more impacted than moral actions by the presence of conflict. Simple main
effects further indicate that there was no significant difference between moral and nonmoral
actions in the no-conflict case, b = 0.03, SE = 0.02, t(66.42) = 1.95, p = .06, 95% CI
[−8e − 04, 0.06], while this difference was significant in the presence of conflict, b = 0.48,
SE = 0.05, t(90.47) = 8.67, p < .001, 95% CI [0.37, 0.59]. Therefore, conflict exerts
a more substantial influence on nonmoral decisions, with this effect becoming increasingly
pronounced as the strength of the conflict escalates. Thus, the presence of conflict led to sig-
nificant changes in answers in all conditions, but with more nuanced or even reversed answers
for nonmoral actions compared to moral actions.

The interaction between morality and strength of conflict is also significant, with more
nuanced answers for nonmoral items compared to moral items in the low conflict condition,
with an increase of this phenomenon in the high conflict condition (b = 0.14, SE = 0.03,
χ2 = 28.56, p < .001, 95% CI [0.09, 0.18], d = 0.15). The last interaction between the
presence of conflict and its strength shows that the effect of conflict is amplified when the
conflict is high rather than low, with more nuanced answers in high conflict condition only
when conflict is present, and there is no significant difference in the no-conflict condition
(b = −0.42, SE = 0.05, χ2 = 86.77, p < .001, 95% CI [−0.51, −0.33], d = −0.46).

The three-way interaction between all the fixed factors was also significant (b = 0.38,
SE = 0.06, χ2 = 41.28, p < .001, 95% CI [0.26, 0.49], d = 0.21). Precisely, the effect of
morality, with more nuanced answers for nonmoral compared to moral actions, was ampli-
fied in the high-conflict condition (100C, b = 0.32, SE = 0.04, t(90.37) = 8.39, p < .001,
95% CI [0.24, 0.40]) compared to the low-conflict condition (1C, b = 0.19, SE = 0.03,
t(83.67) = 6.27, p < .001, 95% CI [0.13, 0.24]), with even more nuanced answers in the
high-conflict condition in the presence of conflict, for both moral (b = 0.38, SE = 0.05,
t(88.3) = 7.98, p < .0001, 95% CI [0.29, 0.48]) and nonmoral (b = −0.26, SE = 0.06,
t(73.1) = −4.07, p = .0001, 95% CI [−0.38, −0.13]) decisions. Hence, decisions are all
the more nuanced as they are nonmoral (vs. moral) and highly (vs. lowly) conflicted (vs.
non conflicted). Even if statistically robust, these results could be attributed to differences in
response distributions between samples of nonmoral and moral actions. For instance, given
the large inter-item variability observed, a few moral items may have saturated the response
scale, with no potential for compromise even in the high conflict condition, resulting in more
stable responses for moral actions on average. Although this would still reflect actual differ-
ences in processing and decision-making for the selected moral vs. nonmoral actions, these
differences could be attributed to sampling biases. The following analyses eliminate this pos-
sibility by turning responses in the low conflict condition into a model predictor, making it
possible to test the effect of conflict for nonmoral and moral actions which lead to the exact
same response in the near-absence of conflict.
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Fig. 2 Remapped final answer in the empirical study as a function of morality, conflict, and strength of conflict. Error
bars correspond to SE. Left: condition of low conflict (1C at stake). Right: condition of high conflict (100C at stake).

2.4.3 Final responses conditioned by answer extremeness

As preregistered, to consolidate conclusions while simplifying the interpretation and speci-
fication of the analytical model, we also introduced separate variables for high (X ′

100 with
100C at stake) and low (X ′

1 with 1C at stake) gain/loss, the latter serving as a baseline condi-
tion with low conflict intensity. This allowed to directly test changes in decisions based on the
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presence of conflict (C ; +100C vs. -100C depending on action valence), presence of moral-
ity in actions (M ), conditioned upon responses in the low conflict conditions (X ′

1 for +1C or
-1C), using the following model specification:

X ′
100 ∼ M ∗ C ∗ X ′

1 + (M ∗ C ∗ X ′
1|P ) + (C ∗ X ′

1|A) + (1|A : P )
Results confirm the significant interaction between morality and conflict already observed

in the previous unconditional analyses (b = 0.46, SE = 0.05, χ2 = 72.90, p < .001, 95%
CI [0.35, 0.56], d = 0.47); there is no significant difference between moral and nonmoral
answers in the no-conflict condition (b = −0.03, SE = 0.01, t(97.86) = −1.94, p = .06,
95% CI [−0.06, 0.0006]), but a positive effect of morality in presence of conflict (b = 0.52,
SE = 0.06, t(81.87) = 9.20, p < .001, 95% CI [0.41, 0.63]). In presence of conflict, there
is a significant effect of morality for answers made in the extreme, as the moral decisions that
were already extreme can only be more nuanced but to a lesser extent compared to nonmoral
decisions (b = 0.65, SE = 0.08, t(83.32) = 8.28, p < .001, 95% CI [0.50, 0.81]). When
answers were made close to the middle of the response area, having a higher conflict did
not have a significant effect on moral decisions (b = 0.056, SE = 0.04, t(41.8) = 1.39,
95% CI [−0.03, 0.14], p = .17), but led to change the side of the answer for nonmoral
decisions (b = −0.33, SE = 0.54, t(51.1) = −6.16, 95% CI [−0.44, −0.22], p < .001).
A graphical representation of these results and associated response distributions are provided
in supplemental files. Together, findings confirm a different effect of conflict depending on
whether the decision is moral or not, which is not explained by the extremeness of moral
decisions itself. In other words, whether they are already extreme or more nuanced, decisions
with a moral component result in more stable positions compared to decisions without a moral
component.

2.4.4 Response times

Regarding response times, we ran the following model, which was not preregistered:
log(RT ) ∼ M ∗ C ∗ S + (M ∗ C ∗ S|P ) + (C ∗ S|A) + (C|A : P )
We observe a main effect of conflict with participants being faster for non-conflictual

decisions (M = 2.34, SE = 0.12) than conflictual ones (M = 2.55, SE = 0.14) (b = 0.09,
SE = 0.01, χ2 = 37.55, p < .001, 95% CI [0.06, 0.11], d = 0.17), and also an effect of
strength of conflict with faster answers in the low conflict (M = 2.39, SE = 0.13) vs. high
conflict (M = 2.50, SE = 0.13) condition (b = 0.05, SE = 0.009, χ2 = 25.01, p < .001,
95% CI [0.03, 0.07], d = 0.09). A significant two-way interaction effect was found between
the presence of conflict and its strength (low or high) with even longer response times in
presence of conflict in the high-conflict compared to the low conflict condition (b = 0.05,
SE = 0.02, χ2 = 7.01, p = .0081, 95% CI [0.01, 0.09], d = 0.05). Thus, the presence
of conflict leads to longer decisions, and even longer when the conflict is high. No other
interaction was significant.

2.4.5 Mouse trajectories

We analyzed mouse trajectories, for which we averaged mouse coordinates over time bins.
We conducted this analysis after filtering trajectories where we could observe biased mouse
movements (i.e., more than 10 back and forth movements), hence reducing noise in the data
(for more details, see supplemental files). These trajectories no longer indicated hesitations
but a strategy to extend trial time. They amounted to 35% of the trials. We used the same linear
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mixed model as in the main analysis on final responses, but for each time step (for consis-
tency and comparison purposes). To reduce the number of tests through time, analyzes were
performed on time bins on time-normalized trajectories, each time bin corresponding to 5%
of the entire decision process duration. Time therefore runs between 0% when clicking on the
START button to 100% when clicking on the final response. We only report significant effects
over more than 2 successive time bins, hence correcting for multiple testing with dependen-
cies over 20 time bins. In addition, to check for potential biases that could result from time
normalization when participants or items highly differ in response times distributions, we
estimated the same model on raw trajectories, starting from the initial click on the START
button (0 second) until 2 seconds of decision time. Beyond controlling for methodological or
analytical biases, this allows knowing when, during the process, the different conditions lead
to significant bifurcations, while still comparing decisions that were made quickly. Results on
time-normalized trajectories are represented on Fig. 3, while the convergent pattern for raw
time analyses is illustrated in the supplemental files.

Regarding the main effect of morality, trajectories tend to split at 65% of the decision
duration (b > 0.05, SE > 0.03, χ2 > 11.99, d > 0.17) and from 1s (b > 0.04, SE > 0.02,
χ2 > 6.37, d > 0.16), with more extreme positions for moral decisions. For the conflict main
effect, non-conflictual decision trajectories were significantly more extreme from 65% of the
trajectories (b < −0.06, SE > 0.02, χ2 > 14.73, d < −0.20) and 1.2s (b < −0.03, SE >
0.009, χ2 > 14.43, d < −0.10). The main effect of conflict strength became significant from
75% (b < −0.02, SE > 0.01, χ2 > 6.33, d < −0.07) and 1.7s (b < −0.03, SE > 0.01,
χ2 > 9.11, d < −0.07), with more extreme positions in the high conflict condition.

The interaction effect between morality and conflict showed more extreme positions for
moral decisions going even more extreme in presence of conflict from 65% of the trajectories
(b > 0.06, SE > 0.02, χ2 > 11.02, d > 0.10) and 1.3s (b > 0.06, SE > 0.02, χ2 > 14.68,
d > 0.09). The interaction between morality and conflict strength was significant from 90%
of the trajectories with even more extreme position in the moral and high conflict condition
(b > 0.05, SE > 0.02, χ2 > 5.69, d > 0.06), but was not significant in the two first
seconds of the decision. The interaction between conflict and its strength showed even more
extreme positions for highly conflictual decisions from 70% of the trajectories (b < −0.07,
SE > 0.02, χ2 > 17.53, d < −0.12) and 1.5s (b < −0.08, SE > 0.02, χ2 > 18.95,
d < −0.10).

Finally, the three-way interaction between morality, conflict, and strength was significant
from 75% (b > 0.12, SE > 0.04, χ2 > 10.47, d > 0.08) and 1.3s (b > 0.11, SE > 0.03,
χ2 > 6.12, d > 0.07). This interaction, similarly to the one obtained on final responses
analysis, consists in more extreme trajectories for moral vs. nonmoral decisions, that are even
more extreme when conflicted, and, again even more in high conflict condition. Precisely,
conflictual decisions are those where hesitations and deviations from the center are earlier
and more pronounced (beginning at 25%, b > 0.12, SE > 0.005, t > 2.48), compared to
non-conflictual decisions where trajectories deviate significantly at a later time (beginning at
55%, b > 0.45, SE > 0.005, t > 2.48). Particularly interesting, we also observe a significant
decision reversal for highly-conflictual nonmoral decisions, going from a positive mean from
40% to 50% of the trajectory, peaking at 50% (b = 0.039, SE = 0.014, t(38.89) = 2.72, p =
.0097, 95%CI [0.01, 0.07]), to a negative mean beginning at 80% of the trajectory increasing
until the end (b < −0.13, SE < 0.06, t < −4.20). This means that the mouse cursor was
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Fig. 3 (A) Estimated marginal means on filtered empirical mouse trajectories as a function of morality, conflict, and
strength of conflict. Error bands correspond to 95% CI. (B) Final answer distribution for conflictual / nonconflictual
moral decisions. (C) Final answer distribution for conflictual / nonconflictual nonmoral decisions.

attracted toward one side of the response area, before bifurcating on the other side in the
middle of the trajectories. Regarding nonmoral conflictual decisions, they are significantly
diverging from the center from 40% to 55% of the trajectory (b < 0.031, SE < 0.012,
t < 2.65) and 1.1s (b = 0.36, SE = 0.015, t > 2.42), whereas they start at 60% when
there is no conflict (b > 0.06, SE > 0.016, t > 4.04) and also at 1.1s (b > 0.05, SE >
0.015, t > 3.51). On the other hand, moral conflictual decisions are significantly diverging
from the center earlier, from 30% (b > 0.19, SE > 0.07, t > 2.64) and 0.5s (b > 0.14,
SE > 0.004, t > 3.25) of the trajectory, whereas deviations become significant from 45%
(b > 0.02, SE > 0.008, t > 2.74) and 0.6s (b > 0.016, SE > 0.007, t > 2.14) when there
is no conflict. Globally, moral decisions significantly deviate from the center earlier (from
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35%, b > 0.018, SE > 0.006, t > 2.73), than nonmoral decisions (from 55%, b > 0.036,
SE > 0.011, t > 3.21).

2.5 Discussion
Results on final responses indicate that conflict leads to nuance for both moral and nonmoral
decisions, an effect that is stronger as strength of conflict is more important. Notwithstanding
this shift for moral and nonmoral decisions, moral decisions were more stable, with this shift
being less pronounced compared to nonmoral decisions.

Concerning response times, longer response times were observed in the presence of con-
flict (vs. no conflict), and even more so when conflict was high (vs. low). This finding is in
line with an interpretation in terms of cognitive load and increased deliberation induced by
conflict, but here induced by stimuli per se. However, as no main effect of morality was found,
findings do not align with more reasoning demands, given greater implication, when a moral
component is included.

Overall, mouse-tracking data indicate that some factors are impacting the decision pro-
cess earlier than others. First, contrasting with findings on response times, we observed that
moral decisions deviated earlier than nonmoral decisions. Given that there was no signif-
icant response time difference between moral and nonmoral decisions, this result suggests
that moral content is processed faster than nonmoral content, supporting the relevance of dig-
ging into finer-grained decision dynamics. Second, regarding normalized mouse trajectories,
we observed earlier deviations from the center for conflictual decisions, albeit not confirmed
with raw time trajectories. Third, highly conflictual nonmoral decisions initially followed
the pattern of non-conflictual nonmoral decisions before deviating in the opposite direction,
presumably due to the monetary gain/loss condition affecting the decision later, or a bias
encouraging answering toward the right answer (i.e., "Absolutely"). It is also important to
note that a substantial amount of data was excluded from the analyses due to oscillating trajec-
tories. Given our repeated measures design and mixed model analyses, this did not generate
any singularity or unbalancing of data across conditions. While this mouse-tracking design
has already been successfully used to study moral decision-making (Gautheron et al, 2023;
Gaboriaud et al, 2022), the presence of conflict in the present study might have increased the
need for such oscillatory strategy in order for participants to prolong trials. We assume that,
depending on the difficulty of the decision task, the basic time constraint may be adjusted to
avoid these strategies, while still encouraging constant mouse movements.

To strengthen these empirical results with a complementary approach and further under-
stand moral and nonmoral decision-making mechanisms in conflictual or nonconflictual
cases, we built a computational model. Notably, it could explain how the earlier processing of
moral content could lead to more stable final positions in conflicted decisions. Additionally,
an intriguing query arising from our experimental design—which combines a nonmoral mon-
etary incentive condition with an action that can either be moral or nonmoral—is whether the
presence of a moral component compels individuals to interpret all elements from a moral
perspective, subsequently processing them all as moral elements. Alternatively, it is plausible
that the nonmoral condition is still processed distinctly—as a nonmoral element-while the
action, in contrast, is processed as a moral element (exerting a greater or earlier influence,
as illustrated in empirical mouse trajectories). The implementation of these features in differ-
ent model versions may therefore inform about underpinning decision processes and may be

15



a substantial help in understanding how moral and nonmoral elements are integrated during
decision.

3 Model
As detailed in the introduction, we used a sequential sampling model allowing to study under-
lying decision mechanisms, especially how and when the evidence is accumulated. A motor
module was incorporated to this model, tracing decision processes in mouse movements (sim-
ilarly to empirical data). By running simulations, outputs can directly be compared with all
the empirical data of interest: final decisions, response times, and mouse trajectories. Through
this model, we proposed an operationalization of decisional conflict, projecting moral and
nonmoral elements (or stimuli components) in a common decision space and putting them
in competition. Those elements correspond to the different factors, or evidence, taken into
consideration in the decision. When at least one of them belongs to the moral domain, the
decision is considered as moral, then possibly leading to process nonmoral elements in a sim-
ilar way to moral elements. The model thus represents how different elements are voting for
different locations in the decision space, and how they lead to the final decision by attracting
the preference to their position during decision process. Relying on the same dynamics, the
model is able to represent how different information pieces aggregate when they are voting
for close locations, reinforcing preference and commitment to answer at this specific location,
or converging to an intermediate location as a trade-off between conflicting information.

In a first step, we compared parameter values fitted either for moral or nonmoral decisions,
following the assumption that they underlie distinct decision processes. Thus, even if the
decision process occurs within the same space (e.g., going from ’absolutely willing’ to ’abso-
lutely not willing’ to take the action) and may rely on the same underlying mechanisms, the
processing and integration of the different elements may nevertheless diverge between moral
and nonmoral decisions. This specific moral decision processing would hold true, even when
not all decision elements pertain to the moral domain (i.e., when a moral action is associated
with a nonmoral monetary incentive). Indeed, the mere presence of a single moral element is
sufficient to categorize the decision within the moral domain, and this categorization could
influence the processing of other nonmoral elements. In a second step, we tested the need for
additional parameters to describe how moral or nonmoral elements may intervene differently
(i.e., with facilitated or earlier processing) in the decision making process, while still sharing
the same decision space.

3.1 Dynamic evolution
Based on the neural fields theory Schöner and Spencer (2016), the core of the present model
is governed by a stochastic integro-differential equation:

τ
∂u(x, t)

∂t
= −u(x, t) +

∫
X

ω(x − x′)σ(u(x′, t))dx′ + i(x, t) + ε(x, t) (1)

where u is the activation vector of the units, τ is the time constant used to control the inte-
gration speed of the system, i is the input, ω is the lateral kernel function defining how units
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interact (exciting or inhibiting each others), σ is an activation function (nonlinear ReLU oper-
ation) used to avoid negative values and to determine when units exchange information, ϵ
corresponds to Gaussian noise. X is the input decision space (the space of the neuronal field
where the decision takes place) ranging from -1 to 1 (arbitrary scale with symmetric extremes)
and x is the valence parameter of u, such that u(x, t) is a function of "valence" and time. Also,
the decision space does not necessarily correspond to the answer space (the set of response
options provided). An example of this discrepancy might occur when a participant’s true pref-
erence is more extreme (e.g., "detest") than the available options (e.g., "dislike"). To address
this, we set a decision space larger than the answer space, in a way that participants’ true feel-
ings, even more extreme ones, are considered, even though they can only choose from limited
options (see Fig. 4 for an example). Subsequently, a mapping is then operated to select the
available alternative that most faithfully corresponds to the decision or preference in the deci-
sion space. This specification relies on the idea of a decision space as borderfree as can be
the neurobiological space (physically through neuronal connectivity over the entire brain, and
theoretically with the conceptualization capacity allowing to think “out of frame”). From a
computational perspective, it is also generally necessary to prevent border effects (as the lack
of connection near borders of the decision space leads to biased probabilities of convergence
on the associated decision).

For our model implementation and numerical simulation, we operated a spatial dis-
cretization (on a lattice of n units as an approximation of the continuous topology, of vector
form because the answer space in one-dimensional) and temporal discretization (integration
scheme of Euler-Murayama) giving for each position j in the decision space:

∆uj = ∆t

τ
(−uj + ω ∗ σ(u) + i)) + ∆W (2)

During this discretization, the time step ∆t must be small enough to make the approxima-
tion of the Euler-Murayama scheme good enough (here taken equal to 0.005 seconds). The
Gaussian noise is discretized and integrated into a Wiener process W (with ∆W = ϵ

√
∆t/τ ).

The units interact with each other thanks to a weight function ω of a lateral-inhibition
type neural field (in equation 1). The equivalent convolution kernel in equation 2 is modeled
as a constant global inhibition combined with a local Gaussian excitation profile aiming to
obtain a unique final decision (i.e., a single emergent activation bump over the vector u; see
equation 3). It models the fact that we tend more to hesitate between two answers that are
close (that is to say, we won’t hesitate between “Not at all” and “Completely”, but more likely
between “Not at all”, and “Not really”). In total, three different parameters make it possible to
specify this kernel: the amplitude (named A) and dispersion parameters (a) of the excitatory
Gaussian, and the global inhibition amplitude (B):

ω(∆x) = Ae− ∆x2
2a2 − B (3)

Parameters A and B control the intensity of the competition between the two choices,
that is to say in what proportion (accordingly to the energy of the input) the contribution of
an evidence will increase the activation of the corresponding unit, similarly to the drift in the
DDM. The parameter a, meanwhile, controls the spatial scale of the activation bump. In other
words, the system will rapidly evolve by letting a so-called activation bump emerge, with
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Fig. 4 Example of how unit activations can evolve during decision process. At the beginning, units are not activated.
While input information is integrated, a bubble of activation begins to form somewhere in the decision space (i.e., the
unit space), until reaching the activation threshold (here equal to 1) that triggers the final decision. At each iteration,
the barycenter determines the current preference (represented as the green slider) in the answer space (represented as
the response bar going from ’Not at all’ to ’Absolutely’). As implemented in the model, the decision space is here
larger than the decision space to account for more extreme reasoning that may not be present in response options.

all the units under this bump strongly activated and those around inhibited. Parameter a thus
manages the size of this bubble, or the number of neighboring units strongly activated at the
same time.

The Wiener process W models different kinds of stochastic variations, likewise the dif-
fusion in DDM/LCA. This could include, not exhaustively, noise in the input (inter and
intra-individual variations), noise in the decision process (influence of the experimental con-
text, or the influence of the previous trial), noise due to the evaluation metric on the output
(uncertainty in the measurement of the trajectory, or the fact that the trajectory is only an
indirect measure of the decision-making process), or any noise in neural signals. The time
constant τ affects the speed of response. The lower it is, the faster the integration of informa-
tion, but also the higher the noise integration. Finally, the input vector i incorporates bumps
positioned where the evidence supports associated responses on the answer space. It thus
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corresponds to the information that is taken into consideration and which will guide the pref-
erence toward an alternative or a region in the answer space. It can be diffuse, as an evidence
can vote for an extended region if not precise and/or certain. An illustration of the evolution
of the u(x) vector during the decision process is presented in Fig. 4.

3.2 Modeling conflict
Conflict arises when two (or more) irreconcilable elements are pushing in different directions
or toward different alternatives in the decision. We set up our experiment in order to have the
action and the condition with money at stake each voting for a location in the answer space
(the continuum between ’Not at all’ and ’Absolutely’). They were sometimes in agreement
in the same direction, sometimes in the opposite direction. We model the conflict as the phe-
nomenon of two (or more) bumps / sources in input competing across different locations in
decision space (the space where the model is evolving) (see Fig. 5 for an illustration). With
the previously introduced lateral kernel and adequately chosen model parameter values, this
competition process leads to the emergence of a single attractor in the decision space. The
distance between the two bumps in input leads to induce more or less conflict, with very dis-
tant bumps leading to high conflict, and reversely less distant bumps to low conflict. It thus
represents how different elements are voting for different locations in the decision space, and
how they lead to the final decision by attracting the preference to their position during deci-
sion process. Relying on the same dynamics, the model is able to represent how different
information pieces aggregate when they are voting for close locations, reinforcing preference
and commitment to answer at this specific location, or converging to an intermediate location
as a trade-off between conflicting information.

In order to model how different elements of the decision are impacting the decision pro-
cess, we considered that the action and the condition (gain/loss of money) were projected as
two Gaussians in the input vector. In order to determine where those Gaussians are situated,
we calculated their valence in order to have an idea of the polarity of each item. For that, we
used a set of rated valence words (Stadthagen-Gonzalez et al, 2017) and calculated the total
valence when the action encompassed more than one word. This simplification ensures that
we have a unique a priori valence for each action in our set of stimuli, as they relate to a single
idea if taken as a whole. We also used the variance of the set of rated valence words to spec-
ify the variance of the associated Gaussian. For the condition, we modulated the valence of
the words ’gain’ and ’loose’ according to the amount of money at stake. For that, we set plau-
sible a priori parameters. As our participants were students, we can easily assume that they
would always really want to gain 100C (or avoid losing 100C) but were way less interested
by gaining 1C (and be little affected by losing 1C). We therefore set an extreme value when
100C was at stake (value of 0.9 for a gain and -0.9 for its loss), and a moderate value, closer
to the neutral position, for 1C at stake (0.3 for a gain, and -0.3 for a loss). We also checked
for possible bias in valence distribution between moral and nonmoral items. We found that
the mean valence was significantly more positive for nonmoral items than for moral items
on the same scale used for the experiment (i.e., with ratings going from -1 to +1) (b = 0.52,
t(88.9) = −5.23, p < .001, 95% CI [−0.72, −0.32]). However, they did not differ in valence
extremeness (comparing extremeness for both negative and positive valences by computing
the absolute value) (b = 0.105, t(71.66) = −1.55, p = .13, 95% CI [−0.23, 0.03]).
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Fig. 5 Example of how conflict intervenes depending on the distance between locations associated to each piece of
evidence (here actions in the stimuli set). Conflict strength also directly depends on this distance, increasing when
the distance is high and reciprocally reducing when the distance is low.

Here, our focus is mainly on extremeness, given that the same analyzes as in the empir-
ical study were conducted. Hence, as we did not observe a significant difference between
distribution of valence extremeness or moral and nonmoral actions, this specification was not
sufficient to explain moral and nonmoral decision differences.

3.3 Modeling moral content
As evidenced in the literature (Gantman and Van Bavel, 2014; Moll et al, 2002; Brady et al,
2020; Van Bavel et al, 2012; Gantman and Van Bavel, 2015; Haidt, 2001), moral content could
be processed differently from nonmoral content. Modeling of decision-making processes can
shed light on mechanistic explanations of such differences through differences in parameter
values or parametrizations. Sequential sampling models could thus reveal underlying decision
components and functioning. However, the reference model introduced in section 3.1 and 3.2,
as it is, may not adequately or completely capture how morality is processed during decision.
A single additional feature may be needed (for testing a facilitated or early integration of
moral information), aiming at the most parsimonious model possible to explain the observed
pattern of responses in empirical data.

3.3.1 Version 1, amplitude model - Amplified moral perception

In order to model how moral factors could lead to more stable and stronger positions, we
decided to implement this phenomenon with an increased weight for moral evidence in the
decision process, as it seems that there is an increased perceptual awareness for moral ele-
ments (Gantman and Van Bavel, 2014). We thus specified the amplitude of the Gaussian in the
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Fig. 6 Example of how moral information could intervene differently in the decision making process, here with a
greater amplitude in the input signal.

input vector corresponding to moral actions as higher than for nonmoral components (non-
moral actions and conditions of gain/loss of money) according to a certain factor amplm (see
Fig. 6 for an illustration).

3.3.2 Version 2, delay model - Early moral integration

Other conceptual models consider that moral stimuli are processed faster, in an intuitive or
emotional way (Haidt, 2001). Even if this idea has been nuanced, emphasizing the importance
of the situation in how intuitive or rational is moral cognition (Monin et al, 2007), the intuitive
response could occur especially when facing strongly morally-laden stimuli (such as "mur-
der" or "cheating"). Corroborating this hypothesis, empirical trajectories showed an earlier
significant deviation from the center for moral decisions compared to nonmoral decisions.

We also implemented this version of the model - with an earlier impact of moral fac-
tors in the decision-making process, in order to compare the fit and results from the two
extended models. The nonmoral factors thus appear in the input after a certain number of
iterations (modeled with the delay parameter). This specification (earlier impact of moral
elements) leads to a stronger influence of moral elements, due to nonlinear bifurcations in
our DNF-based dynamical system. Disregarding stochastic variability, at any given time dur-
ing the decision process simulation, more evidence should be accumulated for locations in
the input with a stronger or earlier activation, giving them a competitive advantage, leading
to an increased self-excitation and inhibition of alternative decisions. The two extended ver-
sions of the original model are therefore both linked to the “saliency” of moral content, but in
different ways. Indeed, their dynamics differs: the impact of nonmoral elements on decision
process is delayed compared to the first model version, thus impacting decision temporality.
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This could be reflected through response times and in a finer grained manner in generated
decision trajectories.

For the two versions (amplitude and delay models), we suppose that the underlying deci-
sion mechanism is the same for moral and nonmoral decisions (i.e., that there is no variation
in the internal parameter values of the model). We assumed that the minimal addition of a
single parameter could be sufficient to explain the impact of morality on decision-making.
This approach relies on the idea of a specific processing of moral elements, contrasting the
assumption that the whole decision process could be impacted by moral situations.

3.4 Motor part
The model has also been enriched with a motor part to generate mouse trajectories during
the decision-making process, with the aim of reflecting decision making dynamics found in
human mouse-tracking data.

We used a method inspired from Lepora and Pezzulo (2015), and Quinton et al (2013)
(eq. 5 & 6), where the model for mouse trajectory production takes as input a preferential
position or temporary answer at each time. The trajectory is then produced by the attraction
of the cursor to this position.

In our DNF-based model, the position is calculated as a barycenter in the decision space
in the following way: at each time step, the units have a certain activation uj . The position
xtgt is the weighted average of units position according to their activation:

xtgt =
∑n

j=1 xjuj∑n
j=1 uj

(4)

Each xj thus corresponds to a position on the decision space, that will be remapped in
the response axis. The target position xtgt reveals the preference in the response space, given
the actual gathered evidence and decision step. Hence, this specific point is attracting the
mouse cursor in order to have an adequacy between the position of the mouse and the deci-
sion preference when the final decision will be taken (e.g., through a mouse click in human
experiments).

To model this attraction, we based our model on the following equation, discretized
temporally in the same way as the equation of the global system:

dxp

dt
= −k(xp − xtgt) (5)

with xp the mouse coordinate on screen and xtgt the coordinate computed out of the DNF
part of the model at each time step. Here the time step dt is the same as in the equation
equation 2. The stiffness k (if using the metaphor of a physical spring) makes it possible to
control the speed at which the cursor is attracted by the calculated final position: the higher
it is, the faster the cursor will move. This parameter is dynamic as it depends on the mean
activation of all units, associated to a scaling parameter λ to control maximal movement
speed. It models the fact that the higher the unit activations are, the higher is the preference
for the corresponding choice area, and thus the faster the movement will be to reach this area.
It is defined as:
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k = λ

n

n∑
j=1

uj (6)

3.5 Final decision - stop criterion
In order to simulate the final mouse click in response areas, we consider that the decision is
reached when (i) at least one of the units is sufficiently activated - with a corresponding set
threshold (dynamic criterion determined by the non-linearity and parameters in equation 2,
which also corresponds to the formation of a stable bubble of activation); (ii) and reaching the
target position with the mouse in the motor part was achieved (motor criterion is met when
the difference between the target and the current cursor coordinates is smaller than a certain
value).

These two criteria correspond to the convergence in the differential equations controlling
both the decision and motor components of the model. A time limit is also set to interrupt the
simulation if needed, in order to prevent configurations in which the model would not reach
convergence quickly enough. Indeed, very long decision times and trajectories seldom occur
in empirical data, as humans regulate their behavior to satisfy task constraints.

3.6 Results
3.6.1 Model fit

The model parameters of interest are the convolution kernel parameters A, B, a, the noise
ε, the time constraint τ and the scale parameter λ. The remaining parameters are set to a
priori fixed values, derived from previous model fits, obtained on similar paradigms but dif-
ferent tasks, relying on the flexibility and robustness of DNF models dynamics (Gautheron
et al, 2023). The parameter number is then reduced at the minimum to reduce the model’s
complexity and computational processing time required for fitting. To fit human data and be
able to compare the different versions of our model, we calculated the root-mean-square error
(RMSE) between the empirical and model generated final response coordinates.

3.6.2 Reference model - Moral and nonmoral decisions as two different
decision processes

First, we applied our reference model without introducing any specific differentiation for
moral and nonmoral items. Then, this model assumes that the presence of a moral situation
compels individuals to interpret all elements from a moral perspective, subsequently pro-
cessing them all as moral elements. We therefore conducted independent fitting of model
parameters for moral and nonmoral decisions, thus facilitating a comparison to ascertain
whether the whole underlying decision-making processes might differ between moral and
nonmoral situations.

We can observe that the model fit errors are very similar (see Table 1), which can be
interpreted as a fraction of scale size (and error of 0.11 corresponding to 5.5% of scale or
screen width). When focusing on parameter values, we notice that in nonmoral decisions, the
convolution kernel amplitude seems to be higher (bigger A value) than for moral decisions,
then giving more weight to input evidence. Also, for both models, a value is minimal (not 0
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Model Parameters A B a ε τ λ amplm delay RMSE
Only
moral Fitted 4.11 3.08 0.05 0.05 3.64 0.55 - - 0.11
Only

nonmoral Fitted 4.51 2.82 0.05 3.97 0.98 0.91 - - 0.14
Amplitude

model A priori 0.9 0.4 0.2 2 0.9 0.2 2.5 - 0.16
Delay
model A priori 0.9 0.4 0.2 2 0.9 0.2 - 15 0.28

Table 1 Values of parameters and error for model fitted only on moral and nonmoral decisions, and for
amplitude and delay models.

to prevent simulation issues). This limits the integration of close input evidence and favors
a "selection behavior". Nonmoral decisions also seem to be much noisier (possibly reflect-
ing higher variance in decisions). Finally, there is a faster integration of the information for
nonmoral decisions, with a smaller τ value. However, the τ value does not alone determine
the convergence speed of the decision, as it also depends on A and λ parameters and input
distribution.

However, our attempt to fit the reference model on moral decisions did not yield realis-
tic results, particularly in generating plausible trajectories and final answer distribution (with
a substantial portion of the simulated trials corresponded to extreme final responses, i.e.,
x = 1 values). On the other hand, when applied to nonmoral decisions, the fitted model
demonstrated coherent results. Meanwhile, we did not observe a significant difference in
extremeness between moral and nonmoral inputs. This suggests that the reference model may
fail in accurately accounting for moral decisions. Hence, the underlying assumption of this
model, that morality affects the whole decision process rather than only moral components
processing, can be questioned, although our simulation results do not invalidate this possi-
bility. It therefore seemed relevant to introduce and test additional parameters, to account for
differences in how moral and nonmoral information influenced the decision making process
when reading the stimuli. Those additional features assume that the nonmoral condition is
processed distinctly - as a nonmoral element, while the action, in contrast, is processed as a
moral element when moral.

3.6.3 Additional feature for moral information processing

For this part, we used a priori values for all the reference model parameters. In fact, this time
we do not assume different values for moral and nonmoral decisions, as the processing dif-
ference between them would lie at the element level (action or condition). Instead, we used
values obtained from the model fit of a previous study, where participants had to make deci-
sions in a similar experimental design (Gautheron et al, 2023). Those values are presented
in the Table 1. We then chose the value of the additional parameter explaining difference in
moral processing (amplm for the amplitude model and delay for the delay model) in a way
to minimize RMSE, because we had no a priori information helping to estimate their val-
ues. For the sake of clarity, we reported only effects of interest for the two model versions,
while detailed results replicating our full reporting on human data can be found in supplemen-
tal files. Particularly, we do not present here analyzes of final responses conditioned by the
extremeness of the answer. Potential biases that must be tested and eliminated in empirical
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human studies can indeed be eliminated by design in computational models. Also, following
the conflict modeling approach presented earlier, we did not find any significant difference in
aggregated valence between nonmoral and moral items (as reported at the end of section 3.2),
removing a possibly confound from the expected pattern of results.

Analysis on final responses
Version 1, amplitude model - Amplified moral perception. This version of the model was
able to reproduce qualitatively empirical results with a RMSE of 0.16 and a amplm param-
eter equal to 2.5 (see Table 1 and Fig. 7). Notably, the different effects of interest observed
in the empirical study were also found: (i) main effect of conflict, where answers are more
nuanced in presence of conflict (b = −0.35, SE = 0.006, χ2 = 2984.10, p < .001, 95% CI
[−0.37, −0.34], d = −1.54); (ii) main effect of an increased strength of conflict (b = 0.05,
SE = 0.003, χ2 = 223.44, p < .001, 95% CI [0.04, 0.05], d = 0.21); (iii) interaction effect
with increased difference between moral and nonmoral conditions in high-conflict case com-
pared to low-conflict case (b = 0.02, SE = 0.006, χ2 = 6.41, p = .01, 95% CI [0.004, 0.03],
d = 0.04); (iv) no significant difference in no-conflict case between moral and nonmoral
trials (b = −0.005, SE = 0.04, t(91.99) = −0.12, p = .91, 95% CI [−0.09, 0.08]); (v)
finally, a bigger impact of conflict on nonmoral items, whereas moral decisions seem to be
more stable even in conflictual situation (b = 0.28, SE = 0.01, χ2 = 468.00, p < .001,
95% CI [0.26, 0.31], d = 0.61). Also, the main effect of morality was significant (b = 0.14,
SE = 0.05, χ2 = 8.54, p = .0035, 95% CI [0.04, 0.23], d = 0.59), as well as the interaction
between conflict and its strength (b = −0.29, SE = 0.008, χ2 = 1409.39, p < .001, 95% CI
[−0.30, −0.27], d = −0.62). Then, moral decisions were more extreme than nonmoral deci-
sions, while the presence of conflict led to more nuanced decisions—and even more nuanced
decisions when the conflict was high rather than low.

Version 2, delay model - early moral integration. This version of the model could also
reproduce empirical effects with a RMSE of 0.28, and a delay of 15 iterations (see Table 1
and Fig. 7), corresponding to 75ms. The error is higher than in the amplitude model, seem-
ingly because decisions are less extreme. However, as we used a priori values, they may not
minimize the error of this model version. Notably, the introduction of a delay could signif-
icantly alter decision processes, compared to the fitted model, which would consequently
change the optimal parameter values. This model was similarly able to account for: (i) main
effect of conflict, where answers are more nuanced in presence of conflict ( b = −0.28,
SE = 0.004, χ2 = 4513.51, p < .001, 95% CI [−0.29, −0.27], d = −1.64); (ii) main
effect of an increased strength of conflict (b = 0.04, SE = 0.003, χ2 = 185.36, p < .001,
95% CI [0.04, 0.05], d = 0.24); (iii) interaction effect with increased difference between
moral and nonmoral conditions in high-conflict case compared to low-conflict case (b = 0.01,
SE = 0.006, χ2 = 5.13, p = .02, 95% CI [0.002, 0.03], d = 0.04); (iv) no significant
difference in no-conflict case between moral and nonmoral trials (b = 0.05, SE = 0.03,
t(92.01) = 1.66, p = .10, 95% CI [−0.009, 0.11]); (v) finally, a bigger impact of conflict
on nonmoral items, whereas moral decisions seem to be more stable even in conflictual sit-
uation (b = 0.10, SE = 0.008, χ2 = 146.91, p < .001, 95% CI [0.08, 0.12], d = 0.30).
Similarly to the amplitude model, the main effect of morality was also significant (b = 0.10,
SE = 0.03, χ2 = 11.85, p < .001, 95% CI [0.04, 0.16], d = 0.58), as well as the interaction
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Fig. 7 Remapped final answers obtained with the model (A: amplitude model, B: delay model), for moral and non-
moral conditions, and when conflict present or absent. In each subfigure, the left panels corresponds to the condition
of low conflict (close attractors), and the right the condition of high conflict (distant attractors). Error bars correspond
to SE.

between conflict and its strength (b = −0.22, SE = 0.004, χ2 = 3035.61, p < .001, 95%
CI [−0.23, −0.22], d = −0.65).

Response time
Given the time-continuous nature of differential equations 1 and 2, real time decision-making
is directly embedded in the model. In the time-discretized computational implementation,
response times are simply obtained by multiplying the time step parameter value with the
number of iterations of the model, as it represents the time needed for the decision process
to integrate stimulus information and converge to a final decision. It is worth noting that the
models have been fitted only on final answers, which does not include the response time in the
fit criteria, so that time scaling (e.g., through parameters τ and λ) obtained from earlier data
is required to generate plausible response times. A matching response time pattern between
empirical and simulated trajectories would then support the validity and forecasting capability
of the model.

Version 1, amplitude model - Amplified moral perception. Response times of this model
version showed similarities with those obtained during the experiment. In particular, we
observe, similarly to empirical data, shorter decisions for non-conflictual condition (b = 0.26,
SE = 0.01, χ2 = 572.65, p < .001, 95% CI [0.24, 0.28], d = 1.74), and for low-conflict
condition (b = 0.12, SE = 0.01, χ2 = 153.86, p < .001, 95% CI [0.10, 0.14], d = 0.80).
We also found interaction effects between the presence of conflict and its strength (high or
low) (b = −0.10, SE = 0.02, χ2 = 26.56, p < .001, 95% CI [−0.14, −0.06], d = −0.33),
between the presence of conflict and morality (b = −0.20, SE = 0.02, χ2 = 85.74,
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p < .001, 95% CI [−0.25, −0.16], d = −0.67), and between the strength of the conflict
and morality (b = −0.10, SE = 0.02, χ2 = 26.56, p < .001, 95% CI [−0.14, −0.06],
d = −0.33). Moreover, unlike in empirical data, we observed a significant effect of moral-
ity, with shorter moral decisions (b = −0.61, SE = 0.03, χ2 = 595.10, p < .001, 95% CI
[−0.66, −0.56], d = −4.04).

Version 2, delay model - early moral integration. We found the same pattern as in the ampli-
tude model. Precisely, shorter decisions for non-conflictual condition (b = 0.18, SE = 0.008,
χ2 = 559.23, p < .001, 95% CI [0.17, 0.20], d = 1.31), and for low-conflict condition
(b = 0.14, SE = 0.005, χ2 = 798.95, p < .001, 95% CI [0.13, 0.15], d = 1.03). We
also found interaction effects between the strength of the conflict and morality (b = −0.05,
SE = 0.01, χ2 = 26.04, p < .001, 95% CI [−0.07, −0.03], d = −0.19). However, there
was no significant interaction between the presence of conflict and its strength (high or low)
(b = −0.004, SE = 0.01, χ2 = 0.14, p = .71, 95% CI [−0.03, 0.02], d = −0.01), and
between the presence of conflict and morality (b = 0.005, SE = 0.02, χ2 = 0.10, p = .76,
95% CI [−0.03, 0.03], d = 0.02). Moreover, unlike in empirical data, we observed a very
significant effect of the morality, with way shorter moral decisions (b = −0.18, SE = 0.02,
χ2 = 60.55, p < .001, 95% CI [−0.22, −0.13], d = −1.29).

Mouse trajectories
As the model was designed to generate mouse trajectories, we were able to compare tra-
jectories generated for each condition, using the same time bin analyzes as in the empirical
data analyzes. Again, dynamic parameters of mouse trajectories that are of interest here were
not included in the fitting criteria. Therefore, results presented below derive from model
predictions informed by theory and a priori input distributions.

Version 1, amplitude model - Amplified moral perception. Results can be seen on Fig. 8.
First, nonmoral trajectories were significantly deviated from the beginning to the end of the
trajectory (b < 0.30, SE < 0.036, t < 8.21, p < .001), as well as moral trajectories
(b < 0.43, SE < 0.029, t > 14.82, p < .001). In particular, nonmoral highly conflictual
trajectories significantly deviate from the middle only from 10% to 45% of the trajectories
(b > −0.032, SE < 0.015, t < −2.14, p < .04). Then, in all conditions, except for high
conflict nonmoral condition, trajectories deviate from the very beginning until the end. The
difference between moral and nonmoral trials was significant since the first time bin to the
end of the trajectories (b < 0.13, SE < 0.05, χ2 < 8.24, p < .0041, d < 0.58), as well as
the presence of conflict (b > −0.35, SE < 0.006, χ2 < 3066.07, p < .001, d > −1.53),
the strength of the conflict (b < 0.05, SE < 0.003, χ2 < 225.69, p < .001, d < 0.20), and
the interaction between morality and conflict (b < 0.28, SE < 0.01, χ2 < 471.35, p < .001,
d < 0.60). Hence, the main effects of morality, presence of conflict, and conflict strength,
as well as the interaction effect between morality and conflict were also significant from the
beginning of the trajectories.

Version 2, delay model - early moral integration. The simulated trajectories for this version
of the model are presented in Fig. 8. This time, due to delayed integration of nonmoral factors,
nonmoral trajectories were deviated from the center only from 40% to the end of the trajectory
(b < 0.19, SE < 0.023, t(89.68) < 8.25, p < .001), compared to moral trajectories that
are significantly deviated from the beginning (b < 0.29, SE < 0.018, t(89.68) > 15.78,
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Fig. 8 Mean simulated trajectories for each condition (A: amplitude model, B: delay model). Error bands correspond
to 95% CI.

p < .001). Again, the nonmoral highly conflictual trajectories never come to significantly
deviate from the middle. The difference between moral and nonmoral trials was significant
since the first time bin to the end of the trajectories (b < 0.10, SE < 0.03, χ2 < 89.02,
p < .001, d < 1.00), as well as the presence of conflict (b > −0.28, SE < 0.004, χ2 <
4543.53, p < .001, d > −1.62), and the interaction between morality and conflict (b < 0.10,
SE < 0.008, χ2 < 145.81, p < .001, d < 0.29). The strength of the conflict becomes
significant from 20% of the trajectories (b < 0.04, SE < 0.003, χ2 < 181.17, p < .001,
d < 0.23). Again, the main effects of morality, presence of conflict, and the interaction effect
between morality and conflict were significant from the beginning of the trajectories, while
the effect of conflict strength appears later.

3.7 Discussion
Our attempt to fit the reference model on moral decisions did not yield realistic results, par-
ticularly in generating plausible trajectories. On the other hand, when applied to nonmoral
decisions, the fitted model demonstrated coherent results. Meanwhile, we did not observe a
significant difference in extremeness between moral and nonmoral inputs. This suggests that
the reference model may fail in accurately accounting for moral decisions. Hence, the under-
lying assumption of this model, that morality affects the whole decision process rather than
only moral components processing, can be questioned, although our simulation results do
not invalidate this possibility. It therefore seemed relevant to introduce and test additional
parameters, to account for differences in how moral and nonmoral information influenced the
decision making process when reading the stimuli.
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The two versions of the model each introducing a single additional parameter were able
to reproduce empirical effects in the final responses analysis. We observed a substantial dif-
ference of goodness of fit between the two versions, the amplitude model being closer to the
empirical data. However, as we used a priori parameters (not directly fitted on each model
version) it just might have favored the amplitude model. To confirm this, we manually tuned
the parameters to minimize the error of the delay model and obtained an error similar to the
amplitude model’s one. In the amplitude model, we were able to explain differences in the
effect of conflict between moral and nonmoral decisions only by changing the weight of the
evidence taken into consideration (amplitude of the bumps in input). This means that the dif-
ference of treatment of the information would just give more weight to information when it
recognizes it as moral; or moral information has intrinsically more weight when processed.
This could explain the perceptual saliency of moral stimuli (Gantman and Van Bavel, 2014).

On the other hand, we were also able to reproduce empirical final answer results with the
delay model involving a delayed integration of nonmoral factors compared to moral factors.
This could indicate that more stable moral decisions could also be caused by an earlier con-
sideration of moral elements. This earlier perceptual consideration of moral elements could
result from the moral pop-out effect (Gantman and Van Bavel, 2014), suggesting a facilitated
perceptual awareness of morally-laden stimuli that could lead to their earlier processing. The
delay minimizing the difference between empirical and modeled data (i.e., nonmoral evidence
being processed 75ms after moral evidence) can be informative of the actual time difference
between moral and nonmoral processing, but should be considered with caution. Indeed, we
used fixed a priori values for other parameters based on earlier studies to test the predictive
value of the model instead of fine-tuning parameters to fit empirical data. Also, we were able
to find similar patterns of results for response times, except for the effect of morality. Indeed,
the model presented significantly shorter response times for moral trials, whereas this effect
was not significant in empirical data.

The major difference between the two versions of the model really appears when we
look at simulated trajectories. Not surprisingly, in the delay model, we notice through visual
inspection, confirmed by analytical results, that nonmoral decision trajectories show a delayed
deviation from the center. This deviation is present in empirical data, albeit less pronounced.
On the other side, this difference in the timing of deviations does not appear in the amplitude
model. Hence, these results would rather favor the delay model, or a model integrating fea-
tures of both versions (i.e., an earlier and an enhanced impact of moral factor in the decision
process). Yet, a model combining both versions was not tested here, as it would also yield
higher complexity through additional parameters, thus possibly leading to overfit of the gen-
eral data pattern. Also, we can see that, globally, deviations from the center appear earlier than
in the empirical mouse trajectory. Indeed, in our implementation of the model, the different
factors are influencing the decision process since the beginning, or almost (all conditions are
significantly different from 0 since the first time bin in the amplitude model, except for the
nonmoral highly conflictual condition). In empirical data, participants first need to integrate
the information, by reading the sentence, understanding it, etc., exploiting it progressively
to make their decision. For a more realistic model, it is possible to set the influence of the
different factors after a certain iteration step. However, we are not interested in this part of
the decision process, which is mainly driven by decision noise, and since it would require
introducing additional parameters.

29



Globally, our model specifications were quite straightforward, as we resumed evidence
taken into consideration in the decision making process as a mere instant summation of one
or more words’ valence. However, the sentence processing during decision making is unde-
niably more complex. More developed models could take it into account by integrating a
natural language processing module. The simplicity of our model is nevertheless a strength,
as a simple mechanism with simple inputs could reproduce and explain a substantial part of
empirical results. Furthermore, the a priori specification of the model succeeded in reproduc-
ing empirical effects. Moreover, it did not only account for final decisions, but also for their
dynamics by reproducing response time and mouse trajectories patterns.

4 General Discussion
Findings of the empirical study suggest that, when conflict arises in everyday decisions, indi-
viduals tend to find compromise, as higher level of conflict resulted in less extreme decisions,
for moral and nonmoral situations. Moreover, when facing a moral situation, participants
made more stable decisions, less affected by the presence of conflict than nonmoral decisions.
As such an interaction pattern could be explained by differences in samples of nonmoral and
moral actions, we alleviated confounds and refined our results by conducting conditional anal-
yses. We were therefore able to confirm our conclusions by estimating the effect of conflict
at the item-by-participant level, comparing the extremeness of responses given in presence of
high vs. low conflict. These effects on empirical data were reproduced through two versions
of our computational model, each implementing a different processing of moral elements
compared to nonmoral ones. The first version, the amplitude model, implemented a greater
amplitude for moral factors. The second version, the delay model, implemented an earlier
impact of moral factors compared to nonmoral factors. These models were set a priori, rein-
forcing their general applicability and bolstering the validity of their predictions. Importantly,
they were devised separately from the experiment itself. The models therefore serve a double
purpose: they help to test the validity of assumptions regarding the underlying decision-
making process and to illustrate how such processes might impact the dynamics and final
outcomes of decisions. Specifically, we examined how conflict can influence decisions, as
manifested by multiple evidence supporting different options, leading to the selection of one
option over others or a compromise between them. The models revealed how various pieces
of information aggregate to form a compromise. By adding distinct processing for moral and
nonmoral factors, we were able to examine and provide possible explanations for the greater
stability in moral decisions observed in empirical results, especially when conflict arises.

Response times also showed interesting patterns, in line with the literature. In particular,
we found that conflicted decisions resulted in longer response times in the experiment, as well
as in both model versions. Observing this result in the models supports their validity, as only
the final decisions and not the mouse trajectories nor decision dynamics were used in the fit
criteria. Notably, the implementation of decision conflict in both models successfully repro-
duced associated empirical dynamics, with decisions taking more time to integrate evidence
voting for distant (more conflicting) responses in the decision space. The formal model pro-
vides a mechanistic account of conflict and response time differences, as such situations lead
to stronger competition between distant inputs, through mutual inhibition rather than exci-
tation between response options. Additionally, despite the experiment revealing a marginal,
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non-significant effect of morality on response times, with nonmoral decisions taking descrip-
tively more time, this effect was substantial and significant in both versions of the model. It
is noteworthy that this difference can be explained by the lack of simulated inter-participant
variability, facilitating the generalizability compared to the empirical data when using mixed
effect models with both participants and items random factors. Indeed, even simulating the
same number of observations (number of conditions, participants and trials), the inferential
tests applied to the simulated data yield higher statistical power due to reduced variance.
Hence, the potential mechanistic explanations offered by the model warrant further examina-
tion in subsequent empirical studies, with experimental designs calibrated to test the model
predictions with sufficient statistical power. Finally, when focusing on the decision dynamics,
we observed empirically earlier deviations for moral decisions, and for conflictual decisions.
The earlier influence of morality was only reproduced in the delay model, not in the amplitude
model.

Taking into account all these results, we would rather favor the delay model, with a pro-
cessing delay between moral and nonmoral factors, as simulated trajectories were more in
accordance with empirical results. However, it is not contradictory with the existence of both
decision mechanisms leading to a difference between moral and nonmoral decisions. We also
suspect that one mechanism over the other could have more effect depending on the situa-
tion. For example, in the moral decision making literature, the dual-process model supposes
that moral rules are processed earlier than moral considerations for consequences or impli-
cations (Greene et al, 2008; Bartels, 2008). Hence, the earlier intervention of moral factors
in the decision may occur especially when moral intensity is high (e.g., moral dilemmas).
Reciprocally, for situations where the moral dimension is salient, the moral factor may have a
bigger weight in the decision process. Testing these different assumptions would be a relevant
avenue for future research.

Despite its mixed-method contributions, the present research is not without limitations. A
first technical and empirical limitation lies at the mouse-tracking paradigm level, as we col-
lected a non negligible proportion of mouse trajectories exhibiting a problematic oscillatory
pattern. This pattern appeared as a strategy to lengthen the trial duration, as the mouse cursor
shrank over time. While we already discussed that the removal of these problematic trajecto-
ries did not globally impact statistical validity, it is still a feature of the paradigm that should
be improved to avoid this situation in subsequent studies, by adapting the shrinking pace of
the slider, for instance.

At the more theoretical level, one could argue that the conflict experienced in moral and
nonmoral situations is not equivalent, as the same condition (same amount of money) was
used in both cases. Indeed, the moral action may have greater implications than the nonmoral
action and might require a more significant incentive to produce the same level of conflict
(e.g., harming someone as a consequence, thus involving a moral aspect). This is consis-
tent with the literature suggesting that decisions are more difficult when conflicting attributes
belong to the same rather than different categories (Hanselmann and Tanner, 2008). Thus,
when a moral attribute conflicts with a nonmoral attribute, the decision should be easier than
when it conflicts with another moral attribute (i.e., moral dilemma case). This may be an
inherent aspect of moral decisions that is impossible to control experimentally. For example,
introducing a moral condition (involving harm or death) for moral items would have cre-
ated vastly different conditions between moral and nonmoral trials, complicating comparison
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while not definitively addressing the issue. However, this could explain why we were not able
to fit the reference model only on moral decisions, without specifying a specific processing of
moral factors. This suggests that moral actions would be processed differently from the non-
moral actions and conditions used in the experiment. The computational study contributes to
answer to the query arising from our experimental design, whether the presence of a moral
situation compels individuals to interpret all elements from a moral perspective, subsequently
processing them all as moral elements, or whether each elements are processed distinctly
as moral or nonmoral. Yet given that results from computational models directly depend on
their specification and parameter values, additional studies investigating this specific question
would be needed to further support this conclusion. In a similar way, the choice to consider
distinct moral and nonmoral elements was theoretically driven, and to guarantee parsimony
in both the computational and preregistered empirical designs as well as analyses. However,
there might be a continuum between moral and nonmoral decisions, for instance relying on
the degree of ’moral intensity’ (May and Pauli, 2002), which would be translated by varying
amplitudes and delays in the proposed computational models. Yet, estimating parameters at
the condition and action level for each stimulus would greatly complexify the model with-
out bringing any new notion or concept. Even if neglecting between-participant variability in
moral sensitivity (i.e. consideration of the morality of a situation, see Sparks, 2015), quan-
titative estimates of moral saliency of individual words, conditions or actions would involve
complex natural language processes, and constitutes an avenue left open for further research.

5 Conclusion
In sum, conflict, as operationalized in the present research, tends to impact decision making,
encouraging compromise between the two conflicting elements for both moral and nonmoral
decisions. Conflict also lengthens decision times, and leads to earlier deviations in mouse tra-
jectories. Additionally, moral decisions happen to be more more stable, presumably because
they appeal to moral standards that are less flexible than nonmoral decisions.

The computational model associated with the empirical study offers a possible explana-
tion of how conflict intervenes in moral and nonmoral decision processes. First, conflict can
indeed be understood as a competition between two (or more) evidence taken into considera-
tion during the decision. Second, the difference between moral and nonmoral decisions may
be explained either by 1) moral factors having a more important weight on the decision pro-
cess; or 2) an earlier impact of moral processing. These two a priori versions of the model
were able to reproduce almost every effect observed in the empirical study. However, only the
second version accounted for empirically observed delayed deviations of nonmoral trajecto-
ries, compared to moral trajectories. We propose that the two described mechanisms could
both intervene more or less depending on the situation. The model thus serves as an interest-
ing basis to make predictions about the implication of conflict in moral and nonmoral decision
making. More importantly, these two model versions are compatible with specific process-
ing of moral elements during decision making rather than with a whole different underlying
decision process in moral situations.
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