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Abstract. Several cryptographic schemes, including lattice-based cryptography and
the SHA-2 family of hash functions, involve both integer arithmetic and Boolean logic.
Each of these classes of operations, considered separately, can be efficiently imple-
mented under the masking countermeasure when resistance against vertical attacks is
required. However, protecting interleaved arithmetic and logic operations is much more
expensive, requiring either additional masking conversions to switch between masking
schemes, or implementing arithmetic functions as nonlinear operations over a Boolean
masking. Both solutions can be achieved by providing masked arithmetic addition over
Boolean shares, which is an operation with relatively long latency and usually high area
utilization in hardware. A further complication arises when the arithmetic performed
by the scheme is over a prime modulus, which is common in lattice-based cryptography.
In this work, we propose a first-order masked implementation of arithmetic addition
over Boolean shares occupying a very small area, while still having reasonable latency.
Our proposal is specifically tuned for efficient addition and subtraction modulo an
arbitrary integer, but it can also be configured at runtime for power-of-two arithmetic.
To the best of our knowledge, we propose the first such construction whose security
is formally proven in the glitch+transition-robust probing model.
Keywords: Secure addition over Boolean shares · Robust probing · Area-efficient
masking · Lattice-based cryptography

1 Introduction
Cryptographic schemes are designed with the primary objective of being secure in a black-
box model, which assumes that an attacker has no information about the data processed
internally by the scheme and only knows its output and/or input data. However, this
constraint is rarely met, and attackers can often exploit additional information, such as the
time it takes to complete an operation or the power consumption of the device under attack.
These methods, known as side-channel attacks [KSWH98], can easily allow an attacker
to recover a secret key unless countermeasures are explicitly taken against these attacks.

In particular, vertical side-channel attacks consist in observing multiple cryptographic
operations on the same secret data and combining the information contained in these traces
to recover the secret or part of it. A well-studied and provably secure way to counter this
class of side-channel attacks is the masking, or secret-sharing countermeasure [CJRR99,
PR13], which consists in splitting each secret information into several pieces, known as
shares, randomly chosen so that learning a subset of the shares does not reveal any informa-
tion about the secret, but the computation can still be performed on the entire set of shares.

The first formal basis for evaluating the security of these circuits, the t-threshold probing
model, was introduced by Ishai, Sahai and Wagner [ISW03]. An important limitation of this
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notion was that it did not take into consideration the effects of glitches and transitions, two
imperfections of physical circuits that made the model insufficient in practice. Their work
was consequently extended by Faust et al. [FGP+18] to account for this kind of defects,
giving the robust-probing model. Other leakage models such as the noisy-leakage model
[CJRR99, PR13], which describes side-channel leakage as a noisy function of the processed
secrets, are closer to practice but more difficult to study theoretically. The work of Duc et
al. [DDF14], among others, bridges the gap by providing a reduction from the threshold-
probing model to the noisy-leakage model, a result extended upon by Cassiers et al.
[CFOS21]. Since the practical relevance of the threshold-probing model is thus being estab-
lished in its robust version, several works have proposed incremental security notions to allow
for the secure construction of complex masked circuits from smaller components (so-called
gadgets) using a composition approach: in particular, the work of Cassiers and Standaert
[CS21] which proposes trivial composability in the glitch+transition-robust probing model.

In recent years, the field of lattice-based cryptography has regained interest since it
allows to construct cryptographic schemes that are resistant to quantum computers, while
this property is not satisfied by the currently used asymmetric cryptography. In the context
of lattice-based cryptography, many types of operations are used within a cryptographic
algorithm, that require different masking schemes for an efficient and secure implementation
[FBR+22, BGR+21]. Consequently, secure conversions between these masking schemes
are a prerequisite for secure implementations of these algorithms [FBR+22]. In hardware
implementations, these conversions are costly in terms of area, latency, or both: resource
sharing is therefore critical for low-cost implementations. Reusing hardware in this context
has been partially shown by Fritzmann et al. [FBR+22], but they valued high performance
over low area, which is undesirable in the context of embedded systems.

Our contribution We describe an area-efficient masked circuit computing secure modu-
lar addition over Boolean shares. The proposed hardware gadget can be configured at run-
time for addition or subtraction, either modulo a publicly known arbitrary integer or modulo
a power of two. We prove first-order security for this construction in a robust-probing model
accounting for glitches and transitions. Then, we synthesize it as an application-specific
integrated circuit (ASIC), and show that it exhibits no leakage in simulation.

Outline We start by introducing in Section 2 the background underlying this work. In Sec-
tion 3, we describe our proposed construction and formally prove its security, and we high-
light in Section 4 how our work compares with the state of the art. We then perform a leak-
age assessment on simulated executions of our design in Section 5, and conclude in Section 6.

2 Preliminaries

2.1 Masking

Masking, also formerly known as secret sharing [CJRR99, PR13], is a countermeasure to
vertical side-channel attacks that consists in splitting a secret into two or more shares such
that no incomplete set of these shares holds any information on the secret, but all shares
can be combined into the secret. More formally, given a secret element x of a finite group
(G, ⋆), a sharing of x is a set of d elements x0, . . . , xd−1 of G such that x0 ⋆ · · · ⋆ xd−1 = x.

The choice of the group is what we call a masking scheme. In this work, we speak of
Boolean masking when the shares are elements of (Fn

2 ,⊕) for some integer n, of power-of-
two arithmetic masking when they are elements of (Z/2nZ, +), and of modulo-q arithmetic
masking when they are elements of (Z/qZ, +) for some arbitrary integer q.
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2.2 Notations and terminology
For a quantity represented by shares a0, . . . , ad−1, the set of all shares is represented by
a∗. The symbol without any share index, a, stands for the unmasked value: for Boolean
sharing, a =

⊕
i ai. For a set S ⊂ Fn

2 (where F2 is the field with two elements), we denote
by B2(S) = {(x, y) ∈ F2n

2 | x⊕ y ∈ S} the set of Boolean sharings of elements of S.
Since our equations mix bitwise logic operations with arithmetic computations, we

employ the following notation: Boolean XOR (sum in F2) is denoted by ⊕, Boolean
AND (product in F2) is denoted by · or juxtaposition; the one’s complement (Boolean
negation) of a is a. In contrast, + and − express arithmetic addition and subtraction
in Z. Arithmetic operations on bit strings assume a binary representation using two’s
complement for negative numbers, and Boolean operations are applied bitwise. As usual,
Boolean AND has precedence over Boolean XOR unless parentheses are used for grouping.

Consider two bit strings s ∈ Fm
2 and t ∈ Fn

2 . For 0 ⩽ i ⩽ m − 1, we denote by s[i]
the ith component of s. We represent by s ∥ t = u the concatenation of s and t, that is,
u[i] = t[i] if 0 ⩽ i < n and u[i] = s[i−n] if n ⩽ i < n+m. Furthermore, s>>p = v ∈ Fm−p

2
is s right shifted p times, that is, v[i] = s[i + p] for 0 ⩽ i < m− p. Note that bit strings
are considered in big-endian order, with higher indexes on the left.

If S is a set, a ← S denotes sampling uniformly at random the value of a from
set S. We denote by Reg[·] a register, which is a sequential gate delaying its input by
one clock cycle; given a shared value x∗ ∈ B2(F2) and a random bit r ∈ F2, we define
Refresh(x∗, r) = (x0 ⊕ r, x1 ⊕ r).

2.3 Security model
We want to formally prove the security of our constructions in a probing model that
represents as closely as possible the behavior of ASIC implementations of secure hardware,
in particular by including the effects of glitches and transitions. The former refers to the
progressive and uneven propagation of values across combinational logic, which causes the
gates to switch several times before reaching their final value, potentially leaking secrets
[FG05]. The latter reflects that logic gates and wires leak depending not only their logic
level, but also on their switching, in particular over successive clock cycles, which can also
cause vulnerabilities in masked implementations. We thus consider both hardware defects,
through the attacker model of glitch+transition-robust probing [CS21].

Since the direct security analysis of complex masked circuits is often infeasible, formal
security proofs usually rely on composability notions, where the overall circuit is split
into smaller individual gadgets for which the security properties are easier to prove. To
allow for unrestricted gadget composition in the glitch+transition-robust probing model,
Cassiers and Standaert introduced the Output Probe-Isolating Non-Interference (O-PINI)
notion [CS21], which is a stronger evolution of their earlier PINI notion [CS20]. We recall
the O-PINI notion in the specific context of our work, that is, for gadgets having two
shares and thus only targeting first-order security.

Definition 1 (Output Probe-Isolating Non-Interference [CS21, Definition 20 with t = 1]).
A gadget G with 2 shares is O-PINI if and only if for any probe I1 on its internal wires,
there exists a share index i so that the observations corresponding to I1 and probes on all
output shares of index i can be simulated using only the input shares with index i.

In the glitch+transition-robust probing model, each of the probes mentioned in Defini-
tion 1 must be extended across both glitches and transitions within the considered gadget.
A glitch-extended probe on a net leaks the value of all combinational inputs contributing
to the value of the net. A transition-extended probe on a net leaks both its current value
and its value at the previous clock cycle. The combination of the two is done by first
transition-extending each probe, then glitch-extending the resulting set of probes.
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The circuit model of Cassiers and Standaert [CS21] is based on the one of Ishai et al.
[ISW03], with added notions that allow for reusing physical gates to implement different
logical functions across clock cycles. We only give a high-level overview of this model here,
and refer the reader to [CS21] for formal definitions. At the core of this model are the
notions of structural gates and structural wires, which describe the physical configuration
of the circuit, including the latency of sequential gates (flip-flops), as a directed graph.
On top of this physical view of a circuit, a logical one describes its behavior over time: a
circuit execution consists of replications of the gates of a structural circuit at each clock
cycle, with wires that connect these replicas according to the latency of the involved gates.

The notion of gadget in the model of Cassiers and Standaert is twofold: on one hand, a
gadget execution is a subset of the gates and wires of a circuit execution. Those wires whose
source is not included in the gadget are referred to as its inputs, and are partitioned into
tuples of d elements, d being the number of shares of the gadget. A gadget furthermore has
a set of outputs (taken from the outputs of its constituting gates), likewise partitioned into
sets of d shares. Disjoint gadget executions can be composed by linking outputs to inputs,
respecting the order of shares and ensuring that the composition graph contains no cycles:
the inputs of a gadget execution cannot depend directly or indirectly on one of its outputs.

On the other hand, the notion of structural gadget is introduced: it is a set of disjoint
gadget executions that are identical except for a translation in time, that is, that all use the
same structural gates and wires but at different clock cycles. Distinct structural gadgets
must not share any structural gates or wires among them. In the terminology of [CS21], a
structural gadget is said to be pipeline if its canonical execution uses each of its structural
gates and wires only once, which will be the case for all our elementary gadgets.

We note that there exist some automated tools to check the security of masked designs.
FullVerif [CGLS21], on one hand, analyzes composite circuits made of gadgets with
some known security properties, and checks the global security of the circuit through a
composition approach. IronMask [BMRT22] and SILVER [KSM20], on the other hand,
analyze the internal construction of gadgets to formally prove their security. However,
none of these tools seems to support O-PINI security yet, so they cannot be used to check
the glitch+transition-robustness of iterative circuits. This absence of automated tools for
our purpose is not a concern, since we prove the security of our individual gadgets by hand,
according to a security notion that allows for trivial composition.

2.4 Lattice-based cryptography
Lattice-based cryptography, a long-standing class of cryptographic schemes relying on
hard mathematical problems over lattices, has gained widespread interest in recent years
in the context of the development of post-quantum cryptography. Most notably, the US
National Institute of Standards and Technology (NIST) has initiated the standardization
of two lattice-based cryptography schemes, proposed under the names CRYSTALS-Kyber
[SAB+20] and CRYSTALS-Dilithium [LDK+20], to be respectively standardized as ML-
KEM [FIP23a] and ML-DSA [FIP23b]. An important aspect of these schemes is that
they embed Boolean logic and modular arithmetic operations, both of which must be
implemented securely when side-channel attacks are a concern. Satisfying this constraint
usually requires the implementation of secure operations for the conversion between
Boolean and arithmetic masking. It has been shown, among others, by Fritzmann et
al. [FBR+22] that masking conversions based on secure addition over Boolean shares
(SecAdd [CGV14]) offer ideal versatility and resource efficiency. Precisely, SecAdd and
its extension to modular addition proposed by Barthe et al. [BBE+18], allow to perform
both Boolean-to-Arithmetic and Arithmetic-to-Boolean conversion, where the arithmetic
masking may be either modulo a power of two or modulo a prime. This flexibility is
very welcome when implementing side-channel–resistant lattice-based cryptography on
embedded devices.
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2.5 Binary-addition algorithms

We briefly recall the main architectures for binary addition and highlight their characteris-
tics. The most basic architecture, the ripple carry adder [Mac61], is built from a chain of n
full adders (n being the number of bits of the summands): each, given as input one bit of
each summand and an input carry, computes an output bit and an output carry. The full
adders are chained, from least to most significant, so that each sends its output carry to
the next full adder. The main drawback of this architecture is its long propagation delay,
since the input carry ripples through n successive full adders before the sum is complete.

To speed up the propagation of the carry, a carry-select adder [Bed62] can be used:
the summands are divided into groups of a smaller width, and two sums are computed
for each group of bits: one assuming that the group input carry is set, the other assuming
that it is cleared. Then, depending on the actual input carry, the correct sum and output
carry are selected for each block. The carry-skip or carry-bypass adder [LB61] similarly
divides its input width into groups, but it computes a single sum for each group, once
the input carry is available. Only the carry propagation from one block to the next is
sped up, thanks to the precomputation of carry-skip and carry-generate signals for each
block.

While the three above architectures have linear latency, addition can also be computed
in logarithmic time, using a parallel-prefix adder: this architecture arranges carry-lookahead
logic in a tree of logarithmic depth to quickly propagate the carries over groups of increasing
size [Skl60]. The drawback of this construction is its larger area, which grows in O(n log(n)).

In unprotected implementations performing addition in a single cycle, it is clear that
the ripple-carry adder requires the smallest area and highest latency, while parallel-prefix
adders are among the largest and fastest [Mac61, LB61, WT90]. By configuring the size
of groups, a wide range of intermediate performances can be obtained from carry-skip,
carry-select, and similar architectures [Mac61, Bed62].

While generalizing this comparison to masked implementations is difficult, the available
literature confirms a similar trend in terms of area and latency, with slow but small masked
ripple carry adders and large but fast masked parallel-prefix adders (Table 7, Table 8).
We are not aware of any masked implementation of carry-select or carry-skip adders.
Previous works [SMG15, FBR+22, BG22, CGM+23] have shown that fully pipelined
parallel-prefix adders require a very large area, and converting them to iterative designs
while keeping resistance against glitches and transitions would require switching to iterated
glitch+transition-robust gadgets, which have higher area and latency than gadgets without
this property [CS21, KM22]. We thus do not expect that iterative implementations of
parallel-prefix adders can reach a sufficiently low area to be relevant in resource-constrained
implementations. This explains why we specifically investigate the ripple-carry adder,
whose specific advantages in the case of modular addition are discussed in Subsection 3.3.

3 Secure modular arithmetic over Boolean shares

In this section, we describe the construction of our masked circuit for secure addition and
subtraction. We first recall how modular addition can be performed using regular addition
followed by trial subtraction, and then describe how ripple-carry addition works. We then
introduce the nonlinear gadgets we use to implement this operation, prove their security
in the robust-probing model, and show exactly how they can be assembled into masked
modular addition. We briefly describe how related operations can be implemented with
the same circuit: modular subtraction, and both addition and subtraction modulo a power
of two. Finally, we recall how secure addition and subtraction can be used as the main
tool to implement conversions between Boolean and arithmetic masking.
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3.1 Modular addition using trial subtraction
Given an integer q < 2n, we can compute the sum of two integers a, b ∈ J0, q− 1K modulo q
by performing the sum without modular reduction, then subtracting q to attempt modular
reduction, and selecting which of these two results is valid based on the sign in the output
of the subtraction, as described in Equation 1:

(a + b) mod q =
{

(a + b)− q if a + b− q ⩾ 0,
(a + b) otherwise.

(1)

When using an n-bit adder with an output carry, the full precision of addition a + b can
be kept, but it is not the case for the subtraction of q since it would require subtracting
from an (n + 1)-bit quantity. It is however possible to express this condition in a different
way. Since a + b < 2q < 2n + q, modular reduction must be performed exactly when either
of the two mutually exclusive conditions in Equation 2 is true:

a + b ⩾ 2n or ((a + b) mod 2n) + (2n − q) ⩾ 2n. (2)

Modular subtraction is similar, except that the condition for selecting between the two
results is known directly after the first subtraction. If the carry is cleared, which happens
when the result is negative, then a modular reduction has to be performed by adding q to
the difference, as in Equation 3:

(a− b) mod q =
{

a− b if a− b ⩾ 0,
a− b + q otherwise.

(3)

3.2 Secure ripple-carry addition
We now describe the algorithm that we use for secure modular addition: as discussed
previously, we use ripple-carry addition since it best fits our aim of low area utilization.
We show in Algorithm 1 how ripple-carry addition is performed, based on shift registers to
rotate the operands by one bit at a time. An output carry is provided by the operation.

Algorithm 1: Ripple-carry adder over n bits
Input: augend ∈ Fn

2 , addend ∈ Fn
2

Output: sum ∈ Fn
2 , c ∈ F2 such that c ∥ sum = augend + addend

1 sum = 0 ∈ Fn
2 , c = 0 ∈ F2

2 for i = 0 to n− 1 do
3 z ∥ s = augend[0] + addend[0] + c ∈ F2

2
4 sum = s ∥ (sum >> 1)
5 augend = 0 ∥ (augend >> 1)
6 addend = 0 ∥ (addend >> 1)
7 c = z

8 end
9 return sum, c

Given the nature of carry propagation, repeated summation (accumulation) operations
can be intermeshed: in the case of modular addition where quantities a+b (which we call raw
sum) and (a+b)+(2n−q) (named offsetted sum) must be computed, the second quantity can
be computed simultaneously with the first, without waiting for the first carry to propagate.
Secondly, since shifting the operands right at each cycle frees their most significant bit,
the freed positions can store the newly computed bits of the sums. Finally, the choice in
Equation 1 can be implemented by computing the raw sum (a+b) and the bit-wise difference
between the offsetted and raw sums ((a + b)⊕ (a + b− q)), and optionally adding the latter
to the former. These transformations give Algorithm 2, which computes two simultaneous
ripple-carry additions and uses their output carries to perform the modular reduction.
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Algorithm 2: Addition modulo q using n-bit ripple-carry adders
Input: augend ∈ Fn

2 , addend ∈ Fn
2

Parameters: Modulus q < 2n

Output: sum ∈ Fn
2 such that sum = (augend + addend) mod q

1 c, d = 0, 0
2 for i = 0 to n− 1 do
3 z ∥ s = augend[0] + addend[0] + c ∈ F2

2
4 ξ ∥ ρ = s + (2n − q)[i] + d ∈ F2

2
5 augend = s ∥ (augend >> 1) // Shift augend and save new raw-sum bit
6 addend = (ρ⊕ s) ∥ (addend >> 1) // Save difference between raw and offsetted sum bits
7 c, d = z, ξ // Use the new carries as input for next iteration
8 end
9 return augend⊕ (addend if c⊕ d else 0)

3.3 Secure modular addition over Boolean shares
By implementing all operations of Algorithm 2 using masked gadgets over Boolean sharings,
we can compute modular addition securely over Boolean-masked values. This construction
is shown in Algorithm 3, where we assume the presence of secure gadgets SDFAm, which
securely computes the sum and carry bits at lines 3–4 of Algorithm 2 (where parameter m
successively holds the bits of 2n − q from least to most significant), and SMxn, which
outputs its first operand, conditionally XORed with its second operand (each have n bits)
depending on the value of the third (a Boolean sharing of a single bit).

Algorithm 3: Secure modular addition over Boolean sharings
Input: augend∗ ∈ B2(Fn

2 ), addend∗ ∈ B2(Fn
2 )

Parameters: n ∈ N, modulus q ∈ J1, 2nK where 2n is represented as the all-0 bit string
Output: sum∗ ∈ B2(Fn

2 ) such that sum = (augend + addend) mod q
1 c∗ = 0 ∈ B2(F2) // Initial carry for raw sum
2 d∗ = 0 ∈ B2(F2) // Initial carry for offsetted sum
3 for i = 0 to n− 1 do
4 m = (2n − q)[i]

// Compute the sum and carry bits for the raw and offsetted sums
5 s∗, z∗, δ∗, ξ∗ = SDFAm(augend∗[0], addend∗[0], c∗, d∗)

// Rotate the operand registers and store the sum bits at their top
6 augend∗ = s∗ ∥ (augend∗ >> 1)
7 addend∗ = δ∗ ∥ (addend∗ >> 1) // δ corresponds to ρ⊕ s in Algorithm 2
8 c∗, d∗ = z∗, ξ∗ // Use the new carries as input carries for next iteration
9 end

10 e∗ = c∗ ⊕ d∗ ∈ B2(F2)
11 return SMxn(augend∗, addend∗, e∗)

Fritzmann et al. [FBR+22] use a different approach for secure modular addition: by
assuming that modulus q has already been subtracted from one of the summands before
secure addition, the carry output by the first addition already indicates whether modular
reduction should be performed. The second secure addition then conditionally applies this
reduction by adding either q or 0. This method is more efficient in their work since it avoids
the need for a secure multiplexer. However, the two computationally expensive secure addi-
tions remain, and they can no longer be computed in parallel since the second depends on
the output carry of the first. That method would thus be highly suboptimal in our setting.

In Algorithm 3, we have intentionally hidden the latency of operations for better clarity.
This latency will be made explicit in Subsubsection 3.3.3. We now describe the inner
gadgets of secure modular addition, and prove their security in the robust-probing model.
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Figure 1: The SecDualFullAdder gadget. Given masked inputs a, b, input carry c, and input
offsetted carry d, the SDFA operation of the gadget securely computes raw-sum bit s, offset
bit δ, output raw carry bit z, and output offsetted carry ξ. Each edge is a 2-bit bus. Node
⊕m indicates Boolean addition of m (the ith bit of the negated modulus) to the first share.

Algorithm 4: SecDualFullAdder
Input: Shares a∗, b∗ ∈ B2(F2) with latency 0, shares c∗, sL,∗, zL,∗ ∈ B2(F2) with latency 1,

shares d∗ ∈ B2(F2) with latency 2
Parameters: m, γ ∈ F2, E = (E0, E1) ∈ (F4

2 → F2)2,
F = (F0, . . . , F5) ∈ (F4

2 → F2)2 × (F3
2 → F2)2 × (F2

2 → F2)2,
Gm,γ = (Gm,γ

0 , . . . , Gm,γ
3 ) ∈ (F3

2 → F2)2 × (F2
2 → F2)2

Input randomness: r0, . . . , r7 ∈ F2
Output: Shares s∗, z∗, δ∗ ∈ B2(F2) with latency 2 and shares ξ∗ ∈ B2(F2) with latency 3,

such that s = E(a, a⊕ b⊕ c, sL), z = F (A, B, c, zL), δ = d⊕m, ξ = Gm,γ(s, d, z)
1 A∗ = Reg[Refresh(a∗, r0)]
2 B∗ = Reg[Refresh(b∗, r1)]
3 T∗ = A∗ ⊕B∗ ⊕ c∗
4 S∗ = E0(A0, T0, sL,0), E1(A1, T1, sL,1)
5 Z0, Z1 = F0(A0, B0, c0, zL,0), F1(A1, B1, c1, zL,1)
6 Z2, Z3 = F2(A1, B0, c0), F3(A0, B1, c1)
7 Z4, Z5 = F4(B1, c0), F5(B0, c1)
8 T ′

∗ = Reg[T∗]
9 s∗ = Reg[Refresh(S∗, r7)]

10 z∗ = Reg[Refresh((Z0, Z1), r2)]⊕ Reg[Refresh((Z2, Z3), r3)]⊕ Reg[Refresh((Z4, Z5), r4)]
11 δ∗ = d∗ ⊕ (m, 0)
12 Ξ0, Ξ1 = Gm,γ

0 (T ′
0, d0, z0), Gm,γ

1 (T ′
1, d1, z1)

13 Ξ2, Ξ3 = Gm,γ
2 (T ′

1, d0), Gm,γ
3 (T ′

0, d1)
14 ξ∗ = Reg[Refresh((Ξ0, Ξ1), r5)]⊕ Reg[Refresh((Ξ2, Ξ3), r6)]
15 return s∗, z∗, δ∗, ξ∗

3.3.1 Secure sum and carry computation

We first study SecDualFullAdder, which implements the secure computation of the sum
and carry bits at line 5 of Algorithm 3. To get a glitch+transition-robust O-PINI gadget
having reasonable latency, we need to integrate all four computations into an atomic
gadget. Furthermore, in order to avoid unnecessary duplication of resources, the gadget
implements other operations: besides sum and carry computation (operation SDFA), it
provides register operations (SDFAin and SDFAcp with one and two cycles of latency
respectively) as well as a secure-selection operation (SDFAmx). We show in Figure 1 a
schematic representation of the gadget and describe in Algorithm 4 the logic equations
that are common to all operations1, using black-box functions E, F and G, which are

1The algorithm listings specialized to each of the four operations of the gadget are given in Appendix A.
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Table 1: Unmasked output equations of SecDualFullAdder based on configuration

Output SDFA SDFAin SDFAcp SDFAmx

s a⊕ b⊕ c sL a sL
z a · b⊕ b · c⊕ a · c zL b a⊕ b · c
δ d⊕m d⊕m d⊕m d⊕m
ξ (s · d⊕ s ·m⊕ d ·m)⊕ γ · z 0 d 0

public parameters. The unmasked computation carried out by each operation is specified
in Table 1, with Table 2 fully defining the contents of the black-box functions to achieve it.

One full execution of SDFA needs to spread over four cycles so it can achieve its target
security (robust O-PINI). The inputs and outputs are distributed over these cycles to
minimize the overall latency of secure modular addition, by presenting a single cycle of
latency from the carry inputs (c and d) to the corresponding carry outputs (z and ξ).
Initially, sharings of one bit of each summand are provided through the a and b inputs,
and immediately refreshed. After a first register barrier, the raw input carry, c, is provided,
and the masked computation of the raw sum and carry bits (S, Z) is performed. These are
refreshed and registered in the second barrier, after which they are output as s and z. A
second, independent sharing of s is stored as T ′, to be used for the nonlinear computation
of the offsetted carry bit, Ξ. This computation also involves the input offsetted carry, d,
which is provided at the same cycle. After the third register barrier, the refreshed shares
of the offsetted carry, ξ∗, are output.

To simplify the composition diagram, two additional linear computations are integrated
within SDFA, although they could be performed externally without affecting the security
proofs: the computation of the offset, δ = d ⊕m, and the Boolean addition of the two
carries z and ξ in the last execution of SDFA, to decide whether modular reduction should
be performed (see line 10). This latter result overwrites the ξ output of SDFA when
parameter γ equals 1.

The correctness of this gadget is easily checked by recursively evaluating equations,
for instance for output ξ of the SDFA operation:

ξ0 ⊕ ξ1 =
3⊕

i=0
Ξi = (T ′

0 ⊕ T ′
1 ⊕ d0 ⊕ d1) ·m⊕ (T ′

0 ⊕ T ′
1) · (d0 ⊕ d1)⊕ γ · (z0 ⊕ z1)

= ((S0 ⊕ S1)⊕ d) ·m⊕ (S0 ⊕ S1) · d⊕ γ · z = (s ·m⊕ s · d⊕ d ·m)⊕ γ · z

which corresponds to taking the carry bit of s + d + m, and furthermore adding it with z
over F2 when γ = 1.

We now prove the security of SecDualFullAdder in the model of [CS21].

Proposition 1. SecDualFullAdder is glitch-robust O-PINI.

Proof. We list in Table 3 the glitch-extended probes on output shares of SecDualFullAdder.
Now, consider any of the internal probes listed in the first column of Table 4. Without

loss of generality, we will consider the probe in the last row of the table: Ξ′
2, that is, the

result of refreshing Ξ2 with r6. This probe is of particular interest as its extension involves
cross-domain terms, which are the limiting factor to the security of nonlinear gadgets.

The probe glitch-extends to probes on T ′
1, d0, and r6. We now build a simulator for

the extended probe on Ξ′
2 as well as extended probes on outputs having share index 0,

from the knowledge of input shares with index 0: a0, b0, c0, d0, sL,0, zL,0.
The simulator first samples at random all the values listed in the second column, namely,

T ′
1, r6, S′

0, Z ′
0, Z ′

2, Z ′
4 and Ξ′

0. This sampling is indistinguishable from the actual gadget
execution since each of these values is blinded with (or is a) fresh random bits, respectively
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Table 2: Parameterization of SecDualFullAdder depending on configuration

Internal function SDFA SDFAin SDFAcp SDFAmx

E0(A0, T0, sL,0) T0 sL,0 A0 sL,0
E1(A1, T1, sL,1) T0 sL,1 A1 sL,1

F0(A0, B0, c0, zL,0) A0 ·B0 ⊕A0 · c0 ⊕B0 · c0 zL,0 B0 A0 ⊕B0 · c0
F1(A1, B1, c1, zL,1) A1 ·B1 ⊕A1 · c1 ⊕B1 · c1 zL,1 B1 A1 ⊕B1 · c1
F2(A1, B0, c0) A1 · (B0 ⊕ c0) 0 0 0
F3(A0, B1, c1) A0 · (B1 ⊕ c1) 0 0 0
F4(B1, c0) B1 · c0 0 0 B1 · c0
F5(B0, c1) B0 · c1 0 0 B0 · c1

Gm,γ
0 (T ′

0, d0, z0) (T ′
0m⊕ d0m⊕ T ′

0d0)⊕ γ · z0 0 d0 0
Gm,γ

1 (T ′
1, d1, z1) (T ′

1m⊕ d1m⊕ T ′
1d1)⊕ γ · z1 0 d1 0

Gm,γ
2 (T ′

1, d0) T ′
1 · d0 0 0 0

Gm,γ
3 (T ′

0, d1) T ′
0 · d1 0 0 0

Table 3: Glitch extension of probes on output shares of SecDualFullAdder. Prime symbols
represent the refreshed value of the corresponding quantity, e.g. Ξ′

2 = Ξ2 ⊕ r6.

Share index Glitch-extended probes on output shares

0 s0 = S′
0, z0 = Z′

0 ⊕ Z′
2 ⊕ Z′

4, δ0 = d0 ⊕m, ξ0 = Ξ′
0 ⊕ Ξ′

2

1 s1 = S′
1, z1 = Z′

1 ⊕ Z′
3 ⊕ Z′

5, δ1 = d1, ξ1 = Ξ′
1 ⊕ Ξ′

3

Table 4: Simulation of a glitch-extended internal probe of even index in SecDualFullAdder
together with all extended probes on output shares having index 0. All input shares with
index 0 (a0, b0, c0, d0, sL,0, zL,0) are known. Prime symbols represent the refreshed value
of the corresponding quantity, e.g. Ξ′

2 = Ξ2 ⊕ r6. Public parameters m and γ are known.

Glitch-extended Values simulated Notes
internal probes by random sampling

A0 = a0 ⊕ r0, B0 = b0 ⊕ r1 r0, r1, r7
T ′

0 = T0 = A0 ⊕ B0 ⊕ c0 Z′
0, Z′

2, Z′
4, Ξ′

0, Ξ′
2

S′
0 = E0(A0, T0, sL,0) ⊕ r7

Z′
0 = F0(A0, B0, c0, zL,0) ⊕ r2 r0, r1, r2 Compute A0 = a0 ⊕ r0, B0 = b0 ⊕ r1

S′
0, Z′

2, Z′
4, Ξ′

0, Ξ′
2

Z′
2 = F2(A1, B0, c0) ⊕ r3 A1, r1, r3 Compute B0 = b0 ⊕ r1

S′
0, Z′

0, Z′
4, Ξ′

0, Ξ′
2 A1 is blinded with r0 (not probed)

Z′
4 = F4(B1, c0) ⊕ r4 B1, r4, S′

0, Z′
0, Z′

2, Ξ′
0, Ξ′

2 B1 is blinded with r1 (not probed)

Ξ′
0 = Gm,γ(T ′

0, d0) ⊕ r5 T ′
0, r5, S′

0, Z′
0, Z′

2, Z′
4, Ξ′

2 T ′
0 is blinded with r0 and r1 (not probed)

Ξ′
2 = Gm,γ(T ′

1, d0) ⊕ r6 T ′
1, r6, S′

0, Z′
0, Z′

2, Z′
4, Ξ′

0 T ′
1 is blinded with r0 and r1 (not probed)
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r0 ⊕ r1, r6, r7, r2, r3, r4, r5. Then, Ξ′
2 can be computed from these values and d0, which

is a simulator input. In turn, it is clear from Table 3 that these values are sufficient to
compute the glitch-extended probes on outputs having share index 0.

The other lines of Table 4 likewise indicate the values which must be sampled to
simulate any other internal probe having even index. Similarly, any internal probe having
odd index, together with extended probes on outputs with index 1, can be simulated from
the input shares having index 1: the equivalent of Table 4 for odd-index probes is derived
by toggling the parity of the index of all quantities in the table except for random bits.

Proposition 2. SecDualFullAdder is iterated glitch+transition-robust O-PINI.

Proof. Since SecDualFullAdder is pipeline and glitch-robust O-PINI, by [CS21, Lemma 2],
it is also iterated glitch+transition-robust O-PINI.

3.3.2 Masked multiplexer and dual-register gadget

The summands must be stored in a shift register in order to be sent bit by bit to
SecDualFullAdder; moreover, as discussed earlier, the same shift registers are progressively
loaded with the calculated bits of the raw sum and the offset (the exclusive-or of the raw
and offsetted sums). Furthermore, modular addition and subtraction involve optionally
XORing the offset with the raw sum, this selection being performed securely. To save
area, we implement both the shift registers and the secure selector using the same physical
registers, as two configurations of a single gadget, which we call SecMuxn for n-bit size.

The construction of the SecMux2 gadget is given in Figure 2 and its internal equations
are laid out in Algorithm 5. In the secure-multiplexer configuration (SMx), the gadget
takes a Boolean sharing s∗ of a single bit, as well as Boolean sharings a∗ and b∗ of two n-bit
quantities at the next cycle, and outputs a sharing of either a or a⊕ b depending on s by
computing a⊕ bs (where s is broadcast to all bits of b). In the dual-register configuration
(SDR), the gadget refreshes its a and b inputs into output sharings x and y after a one-cycle
delay. Input s is ignored, and output z is unused. We highlight that the two configurations
of the gadget use the same Boolean operators internally, only with different operands:
where SMx operates on the shares of s, SDR instead uses public constants 0 and 1. Thus,
they can be implemented using the same set of structural gates, with a public parameter
to override the secret inputs with constants when implementing SDR. Proving the security
of the gadget in the SMx mode is thus sufficient.

Proposition 3. SecMux is glitch-robust O-PINI.

Proof. Let us consider an internal probe on the input of register y0[j] for some arbitrary
(but fixed) j ∈ J0, n− 1K. As before, this probe is of particular interest because it involves

Refresh
r0

Refresh
r1

Refresh
r3

Refresh
r2

Refresh
r4

s

H
a[0]

b[0]

X[0]

Y [0] ⊕ z[0]
x[0]

y[0]

H
a[1]

b[1]

X[1]

Y [1] ⊕ z[1]
x[1]

y[1]

Figure 2: The SecMux2 gadget over 2-bit values: given Boolean sharings of a ∈ F2
2, b ∈ F2

2
and s ∈ F2, this gadget outputs as z ∈ F2

2 a sharing of either a or a⊕ b depending on the
value of s. Outputs x ∈ F2

2 and y ∈ F2
2 are only used when this gadget is configured to

implement a dual register instead of secure selection.
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Algorithm 5: SecMuxn

Input: Shares s∗ ∈ B2(F2) with latency 0, shares a∗, b∗ ∈ B2(Fn
2 ) with latency 1.

Parameters: gadget ∈ {SMx, SDR}
Input randomness: r0, . . . , r2n ∈ F2
Output: Shares x∗, y∗, z∗ ∈ B2(Fn

2 ) with latency 2, s. t.
{

gadget = SMx ⇒ z = a⊕ bs

gadget = SDR⇒ (x, y) = (a, b)1 S∗ = Reg[Refresh(s∗, r0)]
2 if gadget = SMx then v = 0 else v = 1 // Public override
3 for i = 0 to n− 1 do
4 X0[i] = a0[i]⊕ b0[i] · S0 · v
5 X1[i] = a1[i]⊕ b1[i] · S1 · v
6 Y0[i] = b0[i] · (S1 | v)// | is Boolean OR
7 Y1[i] = b1[i] · (S0 | v)
8 x∗[i] = Reg[Refresh(X∗[i], ri+1)]
9 y∗[i] = Reg[Refresh(Y∗[i], ri+n+1)]

10 z∗[i] = x∗[i]⊕ y∗[i]

X∗[i], Y∗[i] = H(a∗[i], b∗[i], S∗)

11 end
12 return x∗, y∗, z∗

Table 5: Glitch extension of probes on output shares of SecMuxn.

Share index Glitch-extended probes on output shares

0 x0[i], y0[i], z0[i] = x0[i]⊕ y0[i]

1 x1[i], y1[i], z1[i] = x1[i]⊕ y1[i]

a crossing between share domains. We place the probe at the input of the corresponding
register barrier, so that it glitch-extends through combinational logic according to the
first cell in the last row of Table 6. We can then simulate this extended probe, as well as
extended output probes on share 0 of each output (their extension is shown in Table 5),
from the knowledge of inputs with share index 0, by sampling at random the values listed
in the second cell of the same row: S1, rj+n+1 for the chosen j, all x0[i] for i ∈ J0, n− 1K,
and all y0[i] for i ∈ J0, n − 1K \ {j}. Sampling all of these quantities independently at
random makes the simulation indistinguishable from the actual gadget execution, since in
the latter case each value is blinded with fresh random bits. Finally, the simulator can
compute y0[j] from its actual expression in Algorithm 5 since all terms of the expression
have been simulated. Likewise, outputs (z0[i])0⩽i<n can be computed as z0 = x0 ⊕ y0.

The proof proceeds likewise for any other internal probe having even index, and is easy
to adapt to probes having odd index by toggling the parity of all share indexes.

Proposition 4. SecMux is iterated glitch+transition-robust O-PINI.

Proof. Follows from [CS21, Lemma 2] as SecMux is pipeline and glitch-robust O-PINI.

3.3.3 Composition into secure modular addition

We show in Figure 3 the overall execution of the modular addition, based on the above
defined gadgets. We call the composite gadget SecAddq. At the top of the figure are
represented iterated executions of a single SecMux structural gadget, initially configured
as a dual register (labeled as SDR) that holds the operands and results, and configured as
a secure multiplexer (labeled as SMx) at the end of the algorithm, to perform the selection
between the raw sum and the offsetted sum, in accordance with line 11 of Algorithm 3.
The iterated executions of SDR are interconnected through a shifter, which implements
the operation at lines 6 and 7 of Algorithm 3: shifting both operands right by one bit, and
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Table 6: Simulation of a glitch-extended internal probe of even index in SecMuxn to-
gether with all extended probes on index-0 output shares. All input shares with index 0
((a0[i])0⩽i<n, (b0[i])0⩽i<n, c0, s0) are known. The extended probes listed in the first
column are placed at the input of the corresponding register barrier, and glitch-extend
back to the inputs or to the previous register barrier.

Glitch-extended internal probes Values simulated by
random sampling

Notes

S0 = s0 ⊕ r0 r0, (x0[i])0⩽i<n,
(y0[i])0⩽i<n

Each x0[i], y0[i] is blinded with fresh random-
ness

x0[j] = a0[j] ⊕ b0[j]S0 ⊕ rj+1

(j is fixed)
r0, rj+1, (x0[i])i ̸=j ,
(y0[i])0⩽i<n

Compute S0 = s0 ⊕ r0, x0[j] = a0[j] ⊕ b0[j] ·
S0 ⊕rj+1; each other x0[i], y0[i] is blinded with
fresh randomness

y0[j] = b0[j]S1 ⊕ rj+n+1

(j is fixed)
S1, rj+n+1,
(x0[i])0⩽i<n,
(y0[i])i ̸=j

Compute y0[j] = b0[j]S1 ⊕ rj+3; each other
x0[i], y0[i] is blinded with fresh randomness; S1
is blinded with r0, which is not probed

setting their most significant bit to the sum bits s and δ output by SecDualFullAdder. Since
this gadget is obviously share-isolating, it is also robustly O-PINI [CS21, Proposition 1].
The multiplexers that direct the flow of data between gadget executions are not represented:
being robustly O-PINI by the same argument, their presence and position have no influence
on the security of the composite gadget.

At the bottom, iterated executions of a single SecDualFullAdder structural gadget are
shown: in the SDFA configuration, they perform the computation of the sums one bit at
a time, in accordance with line 5 of Algorithm 3. Each execution gets its input carries
c and d from the output carries z and ξ of the previous execution, except for their first
execution, which gets 0 as input carries.

Due to the two-cycle latency from the a and b inputs of SecDualFullAdder to its s and
δ outputs, the shift registers only need to store n − 2 bits of each operand or result at
the middle of the sum execution, which is done with the SecMuxn−2 gadget. However,
this situation is problematic at the beginning of the computation, while the pipeline of
SecDualFullAdder is not full, and at its end, when the secure selection implementing
modular reduction is performed. Both problems are solved by storing the extra bits inside
the flip-flops already present in SecDualFullAdder. This explains the SDFAin configuration
of the gadget at the first cycle, to store the most significant bit of each summand before
the sum, and provide them one cycle later at its s and z outputs so they can be assigned
to the most significant bit of the dual register. Likewise, toward the end of the addition,
the SDFAcp configuration of SecDualFullAdder stores the least significant bit of the sums
for two cycles, until the carry output of the offsetted sum is available.

When performing the modular reduction, the two extra bits must not only be stored,
but the selection operation done by the secure multiplexer must also be performed on them.
To do so, we use two properties of the design. First, the SecDualFullAdder gadget, which
is no longer in use for ripple-carry addition at this stage, can be used to store one extra
bit of each sum, and to perform the selection between them using logic that is compatible
with the carry-computation logic. We denote this configuration by SDFAmx. Second, the
two-cycle latency of the secure multiplexer (considered from the selection input to the
result output) allows to fit two consecutive executions of SDFAmx in the same timespan,
thereby doing the selection for the two missing bits of the sum.

Several aspects of the composite gadget have not been represented: in addition to
the already mentioned multiplexers, whose presence is implied by the difference in wiring
from cycle to cycle, some inputs and outputs of the gadgets have been omitted when they
hold no relevant data. Since all gadgets are robustly O-PINI, how these omitted inputs
and outputs are wired has no influence on the security of the composition. Finally, the
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Figure 3: Gadget execution of secure modular addition (SecAddq). SDR and SMx are
two configurations of the same SecMuxn−2 gadget. Thin wires carry a sharing of a single
bit; thick wires, a sharing of two bits; double wires, a sharing of n− 2 bits. Numbers in
brackets indicate the binary weight of the values carried on a wire. All gadgets are O-PINI,
white ones being share-isolating. Parts of some gadget executions are not represented due
to their output values being discarded.

logic supplying the prime modulus one bit at a time to SecDualFullAdder and governing
the configuration of gadgets (choosing, for instance, between the dual-register and the
secure-multiplexer functions of SecMux) is not shown: since this logic only processes public
parameters, it has no impact on security. This leads us to our main result, Theorem 1.

Theorem 1. Structural gadget SecAddq is glitch+transition-robust O-PINI.

Proof. SecAddq is a structural gadget composition (its composing structural gadgets share
no structural gates or wires). Since all its composing structural gadgets are iterated
glitch+transition-robust O-PINI (by Proposition 2, Proposition 4, and the share-isolating
characteristic of the other gadgets), the result follows from [CS21, Corollary 1].

3.4 Other secure summing operations
The SecAddq operation described in Subsubsection 3.3.3 can be adapted into secure
modular subtraction SecSubq with small adjustments that can be enabled or disabled at
runtime. Comparing Equation 3 with Equation 1, the following changes can be listed: the
computation of the raw result must be performed through subtraction (a− b) instead of
addition (a + b); the computation of the offsetted result must add q instead of subtracting
it; and, the selection between the raw and offsetted results must depend on the carry
output by the raw subtraction, instead of the exclusive-or between the two output carries.

These modifications are implemented in the following way: by complementing the b input
of SecDualFullAdder when in SDFA configuration (which is achieved by complementing
one share of the value) and inputting a nonzero carry at the beginning of the sum execution,
subtraction is computed instead of addition. Then, the last execution of SDFA is modified
so that it copies the complement of its z output into its ξ output, which is achieved
by configuring function Gm,γ=1 as Gm,1(T∗, d∗, z∗) = (z0, z1, 0, 0) and keeping Gm,γ=0

unchanged with respect to Table 2: this implements the modular-reduction condition in



Guilhèm Assael, Philippe Elbaz-Vincent 15

SecMux

SecDual-
FullAdder

Output
reorder

Controller

∨∨
1

z
x, y

[n − 3 : 0]

[0]

a, b

c, d

s, δ

z, ξ

a, b

[n − 2 : 1]summands

[0]

[n − 1]
sL, zL

0

s

sum

operation, start done

Figure 4: Simplified architecture diagram of our secure modular adder over Boolean shares.
Light-blue blocks with a bottom notch are sequential components, while orange blocks are
combinational only. Dashed lines carry control signals. Random bits are not represented.

accordance with Equation 3. Finally, instead of iterating over the bits of 2n − q for the
computation of the offsetted sum, the bits of q are used as source for the m parameter.

Furthermore, addition or subtraction can be computed modulo 2n (these operations
are named SecAdd and SecSub respectively) by setting q = 0 (i.e., by using parameter
m = 0 for all executions of SecDualFullAdder).

The latency of power-of-two operations may be reduced by three cycles by stopping the
execution of the algorithm as soon as the raw sum is available, and similarly, one cycle of
latency can be saved when doing modular subtraction instead of modular addition, since
the output carry of the raw sum is available one cycle earlier than that of the offsetted sum.
In both cases, the position and ordering of the result bits within the dual shift register
and SecDualFullAdder would be changed. We do not describe this solution in detail here.

The configurability among operations SecAddq, SecSubq, SecAdd and SecSub is avail-
able at runtime for a very low area overhead: 8.6 % with the above-mentioned timing
optimization, 0.4 % without2. As soon as the choice of operation is publicly known, this
runtime configurability has no security implications since it is achieved with share-isolating
gadgets (multiplexers, clearing or complementing of shares) inserted between the previously
described O-PINI gadgets. Our design thus includes all four operations natively.

A simplified architectural diagram of our configurable secure adder is show in Figure 4
to clarify the interconnections between the gadgets. A controller, that includes a cycle
counter and all the logic to generate the control signals (including the enumeration of the
bits of the modulus), chooses the configuration of the two gadgets at each cycle. It also
drives the multiplexers directing the flow of data between gadgets, and choosing the correct
ordering of the result bits for the requested operation. Disabling the timing optimizations
mentioned above removes the output-reordering unit, since in this case, all operations have
the same latency and the alignment of the result within the shift register is always the same.

3.5 Boolean-to-Arithmetic and Arithmetic-to-Boolean conversions
One core application of secure addition over Boolean shares is the implementation of secure
conversion between masking schemes, namely Boolean-to-Arithmetic (B2A) and Arithmetic-
to-Boolean (A2B) conversions. These conversion operations were first described by Goubin
[Gou01] in the restricted case of first-order masking. Later on, Coron et al. [CGV14]
showed a new method, applicable to any masking order, that relied on secure addition over

2Total area overhead for an ASIC implementation.
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Algorithm 6: Mod-q-Arithmetic-to-Boolean
conversion (A2Bq) using SecAddq

Input: a∗ ∈ J0, q − 1K2

Output: b∗ ∈ B2(J0, q − 1K) with
b0 ⊕ b1 = a0 + a1 mod q

1 m0 ← Fn
2 m1 ← Fn

2
2 augend∗ = a0 ⊕m0, m0
3 addend∗ = a1 ⊕m1, m1
4 b0, b1 = SecAddq(augend∗, addend∗)

// At this point b0 ⊕ b1 = a
5 return b0, b1

Algorithm 7: Boolean-to-Mod-q-Arithmetic
conversion (B2Aq) using SecSubq

Input: b∗ ∈ B2(J0, q − 1K)
Output: a∗ ∈ J0, q − 1K2 with

a0 + a1 mod q = b0 ⊕ b1
1 r ← J0, q − 1K m← Fn

2
2 addend∗ = r ⊕m, m
3 s0, s1 = SecSubq(b∗, addend∗)

// At this point s0 ⊕ s1 = (b− r) mod q
4 a0, a1 = s0 ⊕ s1, r
5 return a0, a1

Boolean shares. This solution was extended to modular arithmetic masking by Barthe
et al. [BBE+18] by using secure modular addition SecAddq instead of secure power-of-two
addition: the former being implemented with two consecutive executions of the latter.

We recall in algorithms 6 and 7 the implementation of A2Bq and B2Aq for first-order
security [FBR+22]. In the latter case, we slightly simplified the algorithm by using secure
modular subtraction SecSubq instead of negation modulo q and secure modular addition.

The corresponding conversions are carried out similarly in the case of power-of-two
arithmetic masking, by using SecAdd (respectively SecSub) instead of SecAddq (respectively
SecSubq) and sampling mask r from Fn

2 . Our circuit, that provides the four operations
SecAdd, SecSub, SecAddq and SecSubq, thus supports all four of these masking conversions.

4 Comparison with previous works

In this section, we compare the performance of our design with the literature. As we are
not aware of any previous work that directly implements secure modular addition, we start
our comparison in the context of power-of-two addition, and extend it to modular addition
by giving the actual performance of our work, and the estimated performance of previous
works in this context based on generic conversions from power-of-two to modular addition.
We report synthesis results both for an ASIC in a 40 nm technology (the primary target),
and for FPGA targets of the Artix-7 family (XC7A100T, speed grade -3) to ease the
comparison with previous works3. For area comparisons, we mainly focus on the number
of flip-flops used. Absent any better way to compare areas between different ASIC and
FPGA technologies, we consider this measurement a decent indicator of the overall area4.
For more accurate comparisons, we also give the ASIC areas in the gate-equivalent (GE)
unit, and the LUT counts of our FPGA implementations.

During synthesis, we took special precautions to prevent the synthesizer from optimizing
logic equations in ways that introduce vulnerabilities not present in the register-transfer
level description of the design. Practically, we isolated into a separate submodule the logic
equation defining each output share of nonlinear gadgets. Then, for the ASIC synthesis, we
selectively disabled logic optimizations across these module boundaries, while still allowing
other optimizations that do not compromise security. For the FPGA synthesis, we did not
find an equivalent synthesis option and had to disable all cross-boundary optimization.

Since our design is meant to be integrated into a larger circuit containing other secure
components, we assume a random number generator to be already present, and do not
take into account the additional hardware area needed for it.

3Spartan-6 and Artix-7 FPGAs have similarly-capable lookup tables: LUT counts should be comparable.
4The flip-flops take up 40 % of the overall area of our ASIC implementations.
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Table 7: ASIC Performance of first-order–secure 32-bit addition over Boolean sharings

Design Technology Flip-flops Area Latency Random Freq. Notes
kGE cycles bit/cyc. MHz

Ripple carry adder

Ours 40 nm CMOS 146 2.05 33 69 400 Mod-q add.: 36 cycles
Ours (no opt) 40 nm CMOS 146 1.90 36 69 400 No timing optimization
[CGM+23] Nangate 45 3100⋆⋆ 19.23 31* 32 Fully pipelined

Fully pipelined carry-lookahead adders

[CGM+23] Nangate 45 18.30 5* 374 Kogge-Stone
[CGM+23] Nangate 45 13.77 6* 172 Sklansky
[CGM+23] Nangate 45 12.07 9* 115 Brent-Kung

* Throughput of one addition per cycle. ⋆⋆ Figure absent from paper, estimated from the description.

4.1 Power-of-two addition
Thanks to the area efficiency of the ripple-carry adder architecture, we obtain a very small
hardware design that performs n-bit addition with a latency of n + 1 clock cycles. We give
in Table 7 and Table 8 the area utilization and latency we obtain for ASIC and FPGA
implementations respectively, compared with previous works. Our figures are for 32-bit
addition to match the literature; however, our work is better suited to the smaller integer
widths encountered in lattice-based cryptography, e.g. 12 or 23 bits [SAB+20, LDK+20].
When it includes the timing optimizations for subtraction and power-of-two operations,
mentioned in Subsection 3.4, the ASIC design takes up 2.05 kGE and executes power-of-
two operations in 33 cycles, and modular subtraction and addition in 35 and 36 cycles
respectively. Without these optimizations, all operations have a latency of 36 cycles, but
the design only occupies 1.90 kGE due to having less combinational logic.

The above ASIC synthesis results are reported for a target frequency of 400 MHz in
the worst PVT corner; however, adjusting the synthesis constraints allows to reach up
to 660 MHz at the cost of increasing the area by 50 % (or by 40 % for the design without
timing optimizations), still in the worst corner.

As expected, our ripple-carry adder has six to thirty times smaller area than previous
works based on pipelined parallel-prefix adders [SMG15, FBR+22, BG22, CGM+23], at
the expected cost of much higher latency. We also reduce the number of flip-flops by one
third with respect to the ripple-carry adder of Schneider et al. [SMG15], thanks to the use
of two shares per secret value instead of three for their threshold implementation. This
lower number of shares still achieves the same security order, and additionally benefits
from a proof of robustness against transitions and glitches, which is not explicitly the case
for [SMG15]. Indeed, threshold implementations are not robustly composable, and while
Schneider et al. discuss how they avoid transition-based leakage in a specific part of their
design, they do not provide a full robustness analysis5. With and without timing optimiza-
tion, our work uses 1.95 and 1.67 times as many LUTs as that of [SMG15], but it is difficult
to know how much additional logic it represents since they do not synthesize for ASIC.
Anyhow, this extra logic area is a low price to pay for the additional modular reduction.

Since the other designs from the state of the art are fully pipelined, they can perform
one addition per clock cycle in steady operation, compared to one addition per 33 or 32
clock cycles for our iterative ripple-carry adder and that of Schneider et al.. However, such
architectures are only possible for the highest-performance applications considering the

5Replacing the TI gadgets used by Schneider et al. with glitch-robust O-PINI gadgets to get provable
robustness against glitches and transitions is not directly possible since glitch-robust O-PINI gadgets
from the literature [CS21, KM22] have two or three cycles of latency, while the construction of [SMG15]
requires the gadgets in the carry-computation path to have a single cycle of latency.
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Table 8: FPGA Performance of first-order–secure 32-bit addition over Boolean sharings

Design Family Area Latency Random Freq. Notes
Flip-flops LUTs cycles bit/cyc. MHz

Ripple carry adder

Ours Artix-7 146 441 33 69 200 Mod-q addition: 36 cycles
Ours (no opt) Artix-7 146 380 36 69 250 No timing optimization
[SMG15] Spartan-6 223 227 32 4 101 Refreshes only at first cycle

Fully pipelined Kogge-Stone carry-lookahead adder

[SMG15] Spartan-6 1330 937 6* 31 62
[FBR+22] Artix-7 1323 2464 6* 454 Contains additional logic
TI [BG22] Spartan-6 1416 873 6* 32 228
HPC2 [BG22] Spartan-6 3981 2936 12* 249 176

Fully pipelined Sklansky carry-lookahead adder

TI [BG22] Spartan-6 1416 579 6* 41 174
HPC2 [BG22] Spartan-6 3166 1801 12* 119 153

Fully pipelined Brent-Kung carry-lookahead adder

TI [BG22] Spartan-6 2352 487 9* 31 280
HPC2 [BG22] Spartan-6 4317 1588 18* 74 173

* Throughput of one addition per cycle.

very large area occupied by fully pipelined adders. Our work, instead, definitely achieves
its primary goal of low area utilization.

In terms of randomness usage, our proposed construction requires 8 fresh random bits
per cycle for SecDualFullAdder and 2n− 3 for SecMuxn−2, that is, 2n + 5 bits per cycle in
total. At 69 bits per cycle, the randomness requirements of our construction are consistent
with the other listed designs, that range from 4 to 374 bits per cycle6. These relatively
high randomness requirements are due to using an iterative design, since it mandates using
O-PINI gadgets and sizing the amount of refresh bits based on the most costly iteration.7

4.2 Modular addition
As its primary objective, our architecture allows for performing secure modular addition
at nearly no extra cost with respect to power-of-two addition: the necessary area is
already included, and the latency is increased by three cycles only. This is in contrast to
previous works, which do not directly support modular addition. They must instead rely
on two parallel or consecutive power-of-two additions, which uses either double the area
(and double the per-cycle randomness), or double the latency with half the throughput.
Consequently, in this setting, our construction achieves an even closer cost/performance
ratio to high-performance designs from the literature: our design uses 5256 flip-flop×cycles
per modular addition, and the efficient construction of [FBR+22] would spend at least 2646
flip-flop× cycles (in steady state) for the same task. Our work thus compares unexpectedly
well with high-performance designs considering its focus on area minimization.

A similar comparison can be made with the ripple-carry adder of Schneider et al.
[SMG15]. In this case, we will study two constructions for modular addition: either the

6While the cumulative randomness requirements per addition of our solution is very high (2277 bits per
32-bit addition), we consider this figure of little importance: without expensive buffering, the random
number generator must provide the required per-cycle randomness, and cumulative randomness is irrelevant.

7Analysing the area required for randomness generation is beyond our scope; however, extrapolating
the research of Cassiers et al. [CMM+23] suggests that around 1.6 kGE would be required for a 138-bit
linear-feedback shift register providing 69 bits per cycle, or around 4 kGE for an unrolled Trivium cipher.
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raw and offsetted sums are computed in parallel, and secure selection between these two
results accomplishes the modular reduction (Subsection 3.1); or, using the solution of
[FBR+22], the offsetted sum is computed directly, and this result is conditionally added
with the modulus. The first solution will require the side-by-side instantiation of two
adders and a secure n-bit multiplexer, and add at least one cycle of latency to the whole
operation. The second one, instead, may reuse the same secure adder for both additions,
but it will double the latency and halve the throughput with respect to power-of-two
addition. Both solutions will thus use more than 14 272 flip-flop×cycles per 32-bit modular
addition, which represents nearly three times the overall cost of our proposal.

5 Leakage assessment
We have proved in Subsubsection 3.3.3 the security of our construction in a strong
security model that is robust against glitches and transitions. However, since hardware
implementations may have additional defects overlooked by this model, we give further
assurance in the security of our design by performing a leakage assessment in simulation.
Since this gate-level simulation is noiseless and it models the propagation delays within
the cells for each input condition (not the routing delays, as simulation is before place-
and-route), we expect better fidelity with this approach than by porting the design to an
FPGA for validation.

We thus synthesize the secure adder for n = 12 bits with prime modulus q = 3329,
for a 40 nm CMOS technology, and annotate it with gate-timing information. We then
simulate the obtained netlist and derive power-consumption traces from the toggle count
of the circuit, that is, the number of nets that change logic value at each time sample. This
so-called toggle-count metric, introduced by Sadhukhan et al. [SMRM19], is suitable for
the leakage assessment of a pre-silicon design. The simulation assumes a clock frequency
of 200 MHz, easily achieved by the synthesized design, and uses a time resolution of 1 ps.

We analyze the simulated power traces in the test-vector leakage assessment (TVLA)
methodology [GJJR11], which consists in collecting two separate sets of traces for different
scenarios, and performing a t-test between the two sets to check whether they are statisti-
cally distinguishable. In all our experiments, the first set of traces corresponds to summing
two all-zero operands, each masked with a uniformly random Boolean mask; the second
set of traces corresponds to sampling the two summands independently and uniformly at
random from J0, q − 1K, again masking each of them with a random Boolean mask.

The results of the TVLA are reproduced in Figure 5. On the left are shown the t-test
results with sets of 250 million traces each, at the first order. Since the power trace contains
a large number of samples (85 000, of which 25 000 are nonzero), we choose a threshold of
4.75 for the t statistic, which corresponds to a false-positive probability of 5 % [DZD+18].
As expected from a secure design, the t statistic does not cross the ±4.75 threshold
anywhere in the trace (its maximum absolute value is 4.02), showing no statistically
significant difference in the average power consumption between the two sets of traces.

To make the leakage detection more sensitive, we follow the more advanced methodology
of [DZD+18] and compute the Higher Criticism (HC) statistic. Instead of only considering
the extreme values of the t-test, this methodology checks the distribution of all t values to
ensure that they support the joint null hypothesis of having no leakage at any trace point8.
This statistic is equal to 1.6 in the first-order t-test, which is well below the 4.8 threshold
for a significance level of 5 %. Furthermore, our choice of a false-positive probability of
5 % is more conservative (i.e. more sensitive to leakage) than the 1 % chosen by [DZD+18],
which would result in threshold values of 5.1 for the t statistic and 10.1 for the HC statistic.

8The HC statistic implicitly assumes that all points of the trace have independently distributed noise;
however, it is not significantly affected by local correlation in the noise [DZD+18].
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Figure 5: Leakage-assessment results of secure modular addition with first-order and second-
order t-test at 200 MHz with n = 12. Modulus is q = 3329. A fixed-vs-random scenario is
studied: for the first set of traces, both summands are always zero; for the second set, both
summands are uniformly and independently sampled from J0, q−1K. As expected for a secure
first-order design, the first-order t-test shows no leakage (|t| ⩽ 4.02 < 4.75) with 250 million
traces, while the second-order one already exhibits strong leakage (max |t| ≫ 4.75) at ten
thousand traces. The HC statistic is respectively 1.6 < 4.8 and ∞.
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Figure 6: Leakage-assessment results of secure modular addition at the first order, with
refreshes totally or partially disabled. Zero-vs-random scenario with ten thousand traces
per set. With all refreshing disabled, leakage occurs at every clock cycle (left), while solely
disabling the refreshing of SecMux contains the leakage to the last cycle (right).

On the right of Figure 5, a second-order TVLA is conducted: as anticipated, strong
leakage is shown since our design is only secure at the first order. In this situation, the
small number of ten thousand traces per set is amply sufficient to detect the leakage, with
t values exhibiting several strong peaks whose amplitude exceeds ±100, well beyond the
threshold for leakage detection. This is again confirmed with absolute certainty by the HC
statistic, which is too large to even be represented as a floating-point value.

We run two additional experiments in Figure 6, by totally or selectively deactivating
the random bits for refreshes. Both experiments involve ten thousand traces per set. In
the left graph, we show the effect of deactivating all refreshes in the masked circuit, with
the expected outcome of introducing strong leakage, since the security of the nonlinear
masked operations in this work entirely depends on proper refreshing of the shares. In the
rightmost graph, instead, we only deactivate part of the refreshes: specifically, the 2n− 3
refresh bits used by the SecMux gadget, while the refreshes inside SecDualFullAdder are
kept. This partial disabling still introduces strong leakage, but this time, restricted to the
last two clock cycles of secure modular addition. These are the cycles in which modular
reduction is performed by selecting between the raw and offsetted sums. Since it is the
only time at which a refreshing is required for security within SecMux, the leakage only
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occurs at these two cycles9. If the design were restricted to power-of-two operations, the
randomness requirements would thus drop to 8 fresh bits per cycle without loss of security.

Overall, this leakage assessment helps confirm that the glitch+transition-robust probing
model does not overlook glaring hardware defects, and that the synthesis flow does not
introduce obvious vulnerabilities not present in the register-transfer level design.

6 Conclusions
6.1 Summary
In this work, we have presented a new construction to compute modular addition securely
over Boolean shares, with proven security against first-order probing attacks in the robust-
probing model. To the best of our knowledge, this is both the first secure adder natively
supporting modular arithmetic, and the first iterative adder benefiting from a proof of
robust security in the presence of glitches and transitions. We furthermore demonstrated
that these security claims firmly hold when performing leakage assessment in simulation.

Through careful design, our construction reaches an area efficiency that is significantly
beyond the state of the art without compromising on security, and with better flexibility
than any of the previous works from the literature, as it natively supports runtime
configurability among either addition or subtraction, and either reduction modulo a
publicly-known prime, or simple wraparound modulo a power of two.

Secure modular addition and subtraction, while being costly operations, are crucial to
the protection of recent lattice-based cryptography algorithms. We expect that our work
will help implement these algorithms securely on resource-constrained embedded devices.

6.2 Open problems
This study exclusively focuses on first-order security, which was deemed sufficient in the
context of a low-cost implementation. An important extension of this work would consist
in determining how the architecture of the solution would change when generalizing it to
higher security orders. Indeed, our performance constraints forced us to design custom
integrated gadgets, whose applicability to higher-order masking is unclear. The main step
toward this goal would be to generalize SecDualFullAdder to high-order masking, while
still containing to a single cycle the latency of its carry-chain paths c→ z and d→ ξ.

We have shown in Section 4 that, while our solution provides less throughput per
unit of area than carry-lookahead adders from the literature, this difference remains
extremely reasonable given the very large starting area of these high-performance adders.
It would thus be interesting to explore whether intermediate approaches could lead to
better efficiency than either architecture in moderate-performance applications. Besides, a
strong assumption that was made in our work is that fresh random bits have low cost due to
an already present pseudorandom number generator. For contexts in which this assumption
does not hold, it would be highly beneficial to reduce the randomness requirements of our
individual gadgets, or to reuse randomness between gadgets.

Finally, our main concern in this work was to reduce the area consumption of secure
modular addition; yet, an equally important concern for low-cost implementations is their
power consumption. Considering to the shift-register structure of our construction, about
half of the flip-flops are expected to toggle at each clock cycle, which may cause a high
dynamic power consumption compared to the small size of the circuit. Whether this
consumption can be tolerated will be highly application-dependent.

9Since the secure dual register is also implemented by the SecMux gadget in its SDR configuration,
refreshing also occurs in this other configuration, but is not required for security. Indeed, if its SMx
configuration is removed, SecMux becomes share-isolating, so it remains O-PINI even without refreshes.
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A Explicit definition of SecDualFullAdder configurations

Algorithm 8: SDFA function of SecDualFullAdder
Input: Shares a∗, b∗, c∗, d∗ ∈ B2(F2), public param. m, γ ∈ F2, randomness r0, . . . , r7 ∈ F2
Output: Shares s∗, z∗, δ∗, ξ∗ ∈ B2(F2) such that z ∥ s = a + b + c and

ξ ∥ (δ ⊕ s) = ((a⊕ b⊕ c) + d + m)⊕ (γ · z << 1)
1 A∗ = Reg[Refresh(a∗, r0)] B∗ = Reg[Refresh(b∗, r1)]
2 S∗ = A∗ ⊕B∗ ⊕ c∗
3 Z0, Z1 = A0 ·B0 ⊕A0 · c0 ⊕B0 · c0, A1 ·B1 ⊕A1 · c1 ⊕B1 · c1
4 Z2, Z3 = A1 · (B0 ⊕ c0), A0 · (B1 ⊕ c1)
5 Z4, Z5 = B1 · c0, B0 · c1

6 T∗ = Reg[A∗ ⊕B∗ ⊕ c∗]
7 s∗ = Reg[Refresh(S∗, r7)]
8 z∗ = Reg[Refresh((Z0, Z1), r2)]⊕ Reg[Refresh((Z2, Z3), r3)]⊕ Reg[Refresh((Z4, Z5), r4)]
9 δ∗ = d∗ ⊕ (m, 0)

10 Ξ0, Ξ1 = (T0 ⊕ d0) ·m⊕ T0 · d0 ⊕ γ · z0, (T1 ⊕ d1) ·m⊕ T1 · d1 ⊕ γ · z1
11 Ξ2, Ξ3 = T1 · d0, T0 · d1

12 ξ∗ = Reg[Refresh((Ξ0, Ξ1), r5)]⊕ Reg[Refresh((Ξ2, Ξ3), r6)]
13 return s∗, z∗, δ∗, ξ∗

Algorithm 9: SDFAmx function of SecDualFullAdder
Input: Shares a∗, b∗, c∗, sL,∗ ∈ B2(F2), randomness r0, . . . , r7 ∈ F2
Output: Shares s∗, z∗ ∈ B2(F2) such that z = a · s⊕ b · s and s = sL

1 A∗ = Reg[Refresh(a∗, r0)] B∗ = Reg[Refresh(b∗, r1)]
2 S∗ = sL
3 Z0, Z1 = A0 · c0 ⊕B0 · c0, A1 · c1 ⊕B1 · c1
4 Z2, Z3 = A1 · c0, A0 · c1
5 Z4, Z5 = B1 · c0, B0 · c1

6 s∗ = Reg[Refresh(S∗, r7)]
7 z∗ = Reg[Refresh((Z0, Z1), r2)]⊕ Reg[Refresh((Z2, Z3), r3)]⊕ Reg[Refresh((Z4, Z5), r4)]
8 return s∗, z∗

Algorithm 10: SDFAcp function of SecDualFullAdder
Input: Shares a∗, b∗, c∗, d∗ ∈ B2(F2), randomness r0, . . . , r7 ∈ F2
Output: Shares s∗, z∗, ξ∗ ∈ B2(F2) such that s = a, z = b, ξ = d

1 A∗ = Reg[Refresh(a∗, r0)] B∗ = Reg[Refresh(b∗, r1)]
2 S∗ = A∗
3 Z0, . . . , Z5 = B0, B1, 0, . . . , 0
4 s∗ = Reg[Refresh(S∗, r7)]
5 z∗ = Reg[Refresh((Z0, Z1), r2)]⊕ Reg[Refresh((Z2, Z3), r3)]⊕ Reg[Refresh((Z4, Z5), r4)]
6 Ξ0, . . . , Ξ3 = d0, d1, 0, 0
7 ξ∗ = Reg[Refresh((Ξ0, Ξ1), r5)]⊕ Reg[Refresh((Ξ2, Ξ3), r6)]
8 return s∗, z∗, ξ∗
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Algorithm 11: SDFAin function of SecDualFullAdder
Input: Shares sL,∗, zL,∗ ∈ B2(F2), randomness r0, . . . , r7 ∈ F2
Output: Shares s∗, z∗ ∈ B2(F2) such that s = sL, z = zL

1 S∗ = sL,∗
2 Z0, . . . , Z5 = zL,0, zL,1, 0, . . . , 0
3 s∗ = Reg[Refresh(S∗, r7)]
4 z∗ = Reg[Refresh((Z0, Z1), r2)]⊕ Reg[Refresh((Z2, Z3), r3)]⊕ Reg[Refresh((Z4, Z5), r4)]
5 return s∗, z∗
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