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ABSTRACT Online Object Detection (OOD) requires learning novel object categories from a stream of
images, similarly to an agent exploring new environments. In this context, the widely used Faster R-CNN
architecture faces catastrophic forgetting: acquiring new knowledge leads to the loss of previously learned
information. In this paper, we investigate the learning and forgetting mechanisms of the Faster R-CNN in
OOD through three main contributions. Firstly, We show that the Faster R-CNN’s forgetting curves reflect
human memory cognitive processes as developed by Hermann Ebbinghaus: knowledge is lost exponentially
over time and recalls enhance knowledge retention. Secondly, we introduce a newmethodology for analysing
the Faster R-CNN architecture and quantifying forgetting across the Faster R-CNN components. We show
that forgetting is mainly localized in the Softmax classification layer. Lastly, we propose a new training
strategy for OOD called Configurable Recall (CR). CR performs recalls on old data using images stored
in a memory buffer with variable frequency and recall length to ensure efficient learning. CR also masks
the logits of old objects in the Softmax classification layer to mitigate forgetting. We evaluate our strategy
against state-of-the-art methods across three OOD benchmarks. We analyze the effectiveness of different
recall types in mitigating forgetting and show that CR outperforms existing methods.

INDEX TERMS Catastrophic Forgetting, Ebbinghaus Forgetting Curve, Faster R-CNN, Natural Replay,
Online Continual Learning, Online Object Detection,

I. INTRODUCTION
The foundation of intelligent systems lies in their ability
to adapt and learn continuously from ever-changing envi-
ronments. Just as humans have evolved to acquire, update,
and utilize knowledge dynamically, we aspire for artificial
intelligence systems to exhibit similar adaptability [1], [2].

Online Continual Learning (OCL) focuses on training
models to learn continuously from a stream of data, adapting
to new information while retaining previously learned knowl-
edge [3]–[5]. The implementation of these systems has the
potential to improve the advancement of intelligent technolo-
gies operating in dynamic environments, such as autonomous
vehicles [6], [7], robotics [8], [9], VR/AR headsets [10] and
real-time surveillance [11], [12]. One of the key challenges in
OCL ismitigating the problem of catastrophic forgetting [13],
[14], where a model loses previously acquired knowledge
when trained on new data.

The existing literature focuses on studying catastrophic
forgetting in an OCL context for classification tasks [3], [15]–
[23]. However, few works investigate the phenomenon of
forgetting in object detection tasks during learning from an
online data stream, which is called Online Object Detection
(OOD). [24]–[27]. OOD scenarios emulate realistic data ac-

quisition conditions by mimicking how an agent wanders
through new environments [24]. An agent might revisit the
same places and repeatedly encounter previously seen objects
throughout its lifespan. This phenomenon of revisiting old
objects in the data stream is called Natural Replay (NR) and
acts as recalls on old data [27].
One of the most widely used architectures for solving the

object detection task is Faster R-CNN [28]. However, Faster
R-CNN is prone to catastrophic forgetting when learning new
objects in an incremental manner [29], [30]. The adaptation
of this architecture to the OOD context remains poorly ex-
plored [25], [26]. In addition, there has been no research to
identify which components of the architecture are subject to
forgetting. Understanding these elements are key to propose
effective architectural modifications to mitigate forgetting
and improve the model’s robustness in long-term, real-world
applications [31].
Following a review of related work in Section II, our study

makes the following three key contributions to the field of
OOD:
1) Impact of Recalls on Learning and forgetting: NR

acts as recalls of old data within the stream. The extent
to which it helps the model in memorize old objects and



moderate forgetting remains unclear. In Section III, we
explore the sensitivity of the Faster R-CNN architecture
to these recalls. We analyse forgetting phases where
no NR is present and we trigger recalls with varying
lengths and periods to observe the model’s responses.
Our empirical investigations draw parallels between
the learning and forgetting processes in the Faster R-
CNN artificial intelligence model and human cognitive
processes, as understood through Ebbinghaus’s seminal
work on human memory [32].

2) Forgetting Localisation in Faster R-CNN: If data
on older objects is not available, the model may for-
get how to recognise previously learned objects. [33].
The mechanisms of the forgetting process within the
architecture remain poorly understood. In Section IV,
we analyze the extent to which each component of
the architecture loses knowledge in an OOD learning
setup. To achieve this, we introduce a new protocol
called Module Probing, to investigate and locate where
forgetting occurs within the Faster R-CNNarchitecture.

3) New strategies to remediate forgetting for OOD:
Based on our results and insights into the model’s
response to recalls and the localisation of forgetting
within the Faster R-CNN architecture, we propose in
Section V a novel strategy called Configurable Recall
(CR). CR consists of two key components that work
together to address forgetting. First, it uses an exter-
nal memory buffer to store old images and perform
periodic recalls on these images to reduce forgetting.
Second, we enhance the Faster R-CNNwith a loss func-
tion that compensates for the absence of non-revisited
objects. Finally, we compare our method with different
baselines and evaluate its effectiveness.

II. RELATED WORK
A. ONLINE CONTINUAL LEARNING
Catastrophic forgetting [13], [14] has led to the emergence
of the field of Continual Learning [34]–[36]. In the context
of classification tasks, several strategies have been proposed
to mitigate this issue, including replay mechanisms [15],
[17], [18], [37]–[39], regularization techniques [40]–[44],
and dynamic architectural adjustments [45]–[47]. A specific
paradigm calledOnline Continual Learning (OCL), it consists
in learning new classes from an unshuffled data stream in
a single pass [3], [48]. The primary strategies employed to
mitigate catastrophic forgetting in OCL use an external mem-
ory buffer [3], [15]–[17], [19], [20], [49]. The memory buffer
stores a subset of previously learned data samples. When
learning new information, the model periodically revisits the
stored samples to reinforce old knowledge. This helps in
maintaining the model’s performance on past tasks while
learning new ones. Nevertheless, the majority of research
in OCL is concentrated on the classification task [3], [48].
This study addresses the more complex OOD problem, which
involves both detection and classification tasks [24].

B. FASTER R-CNN ARCHITECTURE
Various architectures have been proposed for object detection
tasks, with Faster R-CNN being one of the most prominent
due to its optimal balance between accuracy and speed [28].
Other notable architectures include YOLO (You Only Look
Once) [50] and SSD (Single Shot MultiBox Detector) [51].
Our work focuses on the Faster R-CNN architecture because
of its extensive use and robust performance in a wide range
of applications.
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FIGURE 1. The architecture of Faster R-CNN. An input image (from
EgoObjects [52]) is fed in a Backbone to produce a global image feature
map. Then, the RPN (Region Proposal Network) proposes region of
interest where objects lies in. For each region, the RoI Align operation
generates a region specific feature map. Finally, after two fully connected
layers in the Linear Head, a softmax layer outputs the classification score
in theBox Classifier, and the regions are refined in the final bounding
boxes via a regression layer in the Box Regressor.

Faster R-CNN is part of the two-stage detectors family: the
first stage localizes objects by proposing Regions of Interest
(RoI) and the second stage classifies the detected objects. Its
overall architecture is schematized in Figure 1. The following
modules constitute the Faster R-CNN.
Backbone: extracts features from the entire input image

by combining a Convolutional Neural Network (CNN) with a
Feature Pyramid Network (FPN). This step provides a global
image feature for subsequent modules.
Region Proposal Network (RPN): proposes Regions of

Interest (RoI) in the form of bounding boxes around potential
objects in the image. These proposals serve as a basis for
object localization.
RoI Align: generates a feature map for each Region of

Interest given by the RPN. Specifically, it processes the image
features along with a RoI as input, generating a RoI feature of



fixed size, regardless the size of the bounding box predicted
by the RPN.

Linear Head: reduces the dimension and flattens the fea-
turemap outputed by the RoI Align. Thismodule is composed
of two fully connected linear layers.

Box Classifier: assigns a classification score for each
detected object given the features extracted from the Linear
Head. This module is a Softmax classification layer. The logit
with the highest score determines the predicted class.

Box Regressor: refines the region of interest to obtain a
more accurate bounding box around the detected object via
linear regression.

Indeed, this architecture is famously used in different prob-
lems, including multi-task, open-world, meta-learning, and
few-shot learning. In this study, the training paradigm is
OOD, where the Faster R-CNN is trained on a data stream
in a one-pass manner with varying distribution [24]. The
main issue is how to counteract catastrophic forgetting when
learning new data.

C. ONLINE OBJECT DETECTION
Most recent studies on Continual Object Detection adapted
pre-existing static datasets like Pascal VOC [53] and COCO
[54] with multiple passes on the data. In this setup, many
studies have demonstrated that the Faster R-CNN is prone to
catastrophic forgetting when trained on a sequence of data
[30], [55]–[58]. Our work focuses on OOD, where training
data is presented as a stream, and the model has access to only
a single pass for training. Three benchmarks are commonly
used to evaluate OOD models [24], [26], [27]:

OAK [24]:This benchmark was introduced in a pioneering
work on OOD [24]. It features an egocentric video stream
covering nine months in the life of a graduate student, captur-
ing diverse outdoor scenes across a university campus. This
dataset is a subset of the KrishnaCam dataset, comprising
approximately 7.6 million frames divided into 460 video
clips, with a total duration of 70.2 hours. The dataset includes
105 object categories and provides exhaustive bounding box
annotations for 80 video snippets, totaling around 17.5 hours.

EgoObjects CL Instance [52]: This benchmark contains
100K images with 250K box annotations for 1.1K object
instances. Annotations are exclusively provided for the main
object instance in each image, with the instance ID serving
as the class label for prediction. The dataset offers a diverse
range of backgrounds, surrounding objects, distances, light-
ing conditions, and camera motions, providing a rich and
varied environment for object detection tasks.

EgoObjects CL Category [52]: The same image data
stream as EgoObjects CL Instance is used. In the Category
benchmark, all objects in each image are annotated. The
detector must predict the category class from 277 different
object categories.

In terms of data splits, OAK adopts a specific strategy
to facilitate the evaluation of OOD models. One frame is
held out every 16 labeled frames to construct an test set,
while the remaining frames are used for training. This method

ensures that the training and test sets cover similar time
ranges over the nine months, allowing for realistic assessment
of catastrophic forgetting and the model’s ability to learn
continuously from the data stream.

The two benchmarks on EgoObjects are originally intro-
duced for continual object detection [52]. To respect the on-
line constraint specific to the OODfield of study, some works
[24], [26], [27] have followed the original data apparition
order from the benchmark but constrained training to a single
epoch. In addition, they built a test set similar to OAK by
performing a split that holds out one frame every 16 labeled
frames. In this study, we employ these three benchmarks to
ensure comprehensive assessment.

In OOD, the system must recognize and locate objects in
images presented as a continuous stream of data. Formally,
an OOD scenario D is defined as an ordered sequence of T
experiences as D = {D1,D2, . . .DT}. Each experience Di

is a dataset composed of a set of annotated images. In each
image, there is at least one annotated object that the model
must learn how to detect and classify. Training is performed
online: the model processes data batch by batch and does
not have no access to previous batches once they have been
processed.

D. NATURAL REPLAY

In OOD scenarios, the same object can appear in different
images from separate experiences. Revisiting objects in a
Continual Learning setting has been explored in the context of
classification [59]–[61]. In a previous study [27], we defined
Natural Replay (NR) as the concept of revisiting objects in
an OOD data stream. As NR provides a more realistic data
stream for real-world learning, we showed that it can obscure
the evaluation of forgetting. Indeed, good performance on an
object does not solely indicate the model’s intrinsic ability
to retain information; it can result from frequent exposure
to the object in the data stream. Instead of measuring for-
getting, there is a risk of measuring the amount of repeated
recall exposure from the data stream. Consequently, as object
categories exhibit varying levels of NR, the evaluation of
model performance becomes biased towards more frequently
replayed classes.

To identify which objects benefit from repeated exposure
and to quantify NR in an OOD scenario, we introduced
in our previous study [27] the Natural Replay Rate (NRR)
and Natural Replay Score (NRS) metrics. The NRR metric
measures the degree to which an object is revisited in the
stream, specifically defined as the index of dispersion for
object occurrences across all experiences [62]. Additionally,
the NRSmetric evaluates the overall NR in the scenario as the
average NRR over all objects.
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where T is the number of experiences in the scenario,
occi(y) is the number of occurrences of object class y in
experience Di, and C is the number of object categories in
the scenario.

Benchmarks presented in section II-C EgoObjects CL In-
stance, EgoObjects CL Category, and OAK exhibits respec-
tively a NRS of 0, 0.51, and 0.92.

In Sections III and IV, we conduct a comprehensive anal-
ysis with different experiments of the Faster R-CNN model’s
forgetting process for previously learned objects. Thus, we
chose to conduct our experiments using the EgoObjects CL
Instance benchmark. Among the three benchmarks used for
OOD in recent works, this is the only one that presents no
NR, with an NRS of 0. The scenario in this benchmark
comprises T = 5 experiences, each disjoint in terms of
objects. Consequently, objects present in D1 do not reappear
in later experiences D2, . . . ,D5. This setup provides an ideal
environment for measuring model forgetting.

III. RECALLS EFFECTS ON LEARNING AND FORGETTING
In real-world scenarios, an agent moving through an environ-
ment will revisit most objects. Performances drop when the
object is not seen and increase when the object is recalled.
This raises the question: to what extent do periodic recalls
of older objects impact model performance, particularly in
terms of learning and forgetting? Specifically, to what extent
do intermediate recalls in the data stream help compensate for
catastrophic forgetting?

A. QUANTIFYING FORGETTING AND EXPERIMENTAL
SETUP
As explained in Section II-D, we use the EgoObjects CL
Instance benchmark, which consists of five experiences, to
evaluate forgetting in the Faster R-CNN. In each experiment,
we train a Faster R-CNN [28] sequentially on each experi-
ence. The model is built with a Mobile-Net [63] as Backbone,
pre-trained on the COCO dataset [54]. The model is trained
by stochastic gradient descent with a learning rate of 0.01 and
a weight decay of 10−5.
To quantify forgetting, we measure the model’s Average

Precision at an Intersection over Union of 0.5 (AP50) on
the objects in the first experience D1 as we train the model
on subsequent experiences D2,D3, . . . ,DT . This approach
allows us to observe and measure how the model’s ability to
recognize objects fromD1 deteriorates as it is exposed to new
data in the following experiences.

Figure 2 shows the AP50 of D1 objects when we train a
Faster R-CNN model on each experience of the EgoObjects
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FIGURE 2. Performance of the Faster R-CNN model on the objects from
the first experience D1 as it is sequentially trained on each subsequent
experience D2,D3, . . . ,D5. The decreasing performance curve illustrates
how the model gradually forgets the objects from D1 as it learns new
objects from later experiences.

CL Instance benchmark sequentially. The decreasing perfor-
mance curve shows that the model gradually loose knowledge
about objects in D1 as it learns other objects in later experi-
ences. Indeed, by the end of training on the whole data stream,
the model is unable to locate objects from the first experience
D1 as AP50 reaches 0.
In the following, we manually trigger recalls on D1 and

analyze the response of the Faster R-CNN to determine the
extent to which it successfully retrieves information about
forgotten objects.

B. EVALUATING THE IMPACT OF INTERMEDIATE RECALLS
We conduct four different experiments on the EgoObjects
CL Instance [52] by performing recalls on D1 at different
moments in the data stream. A recall involves retraining the
model on all data contained in D1.

• Experiment (a): All experiences from D1 to D5 are
successively learned without any intermediate recalls.

• Experiment (b): D1 is recalled after learning D2.
• Experiment (c): D1 is recalled after learning both D2

and D3.
• Experiment (d): D1 is recalled after learning D2, D3,

and D4.
In all four experiments, we perform a final recall at the

end of the stream after learning D5. The AP50 on D1 objects
is evaluated four times per experience, allowing for a better
analysis of the AP50 curve. We show the results of the four
experiments in Figure 3.
Figure 3 shows that the model gradually forgets knowledge

of D1 when learning other experiences. The performance of
objects in D1 drops when learning on D2,D3,D4 and D5.
During forgetting phases, we found that the performance
curves looks like an exponential decay. To quantify this ob-
servation, we performed exponential regressions of the form
t −→ E0 exp

(
− t

τ

)
, where t is the training iteration step,

and (E0, τ) are the regression parameters. We define τ as
the knowledge retention rate, indicating how information is
retained over time.
We did such a regression onD1 AP50 after each intermedi-

ate recall. We found as intermediate reminders are added, the
information retention rate increases : the knowledge retention
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FIGURE 3. Performance of a Faster R-CNN with periodic recalls on objects from first experience with different numbers of intermediate recalls. Evaluation
is performed on objects from the first experience D1 in the EgoObjects dataset, measured by AP50 (Average Precision at 50% IoU). The colored bands
represent the times when the model was trained on a specific experience. Blue bands indicate training phases on D1, while other colors represent training
on different experiences with disjoint objects from D1. When performance decreases due to catastrophic forgetting, it follows an exponential decay of the
form t −→ E0 exp (−t/τ ). Values of parameters E0 and τ are given in each figure. A recall on D1 rapidly restores the model’s performance to its previous
level on D1. Successive recalls improve memory stability, increasing the knowledge retention rate τ from approximately 1,500 iteration steps (without
recall) to around 11,370 steps, suggesting that successive recalls enhance knowledge retention.

rate τ increases from around 1500 iteration steps (Fig. 3(a)) to
around 11370 (Fig. 3(d)). This means that without recall, the
model will lose 63% of its knowledge after 1500 iterations
steps. However, after three intermediate recalls, the model
loses only 12% of its knowledge after 1500 iterations, sug-
gesting that the model’s knowledge retention improves with
more recalls. This implies that periodic recalls can help the
model to consolidate its knowledge over time and reduce the
performance decay due to forgetting over the long term.

These findings align with the work of Hermann Ebbing-
haus, a pioneering psychologist in the late 19th century who
made significant contributions to the study of human memory
and forgetting. Ebbinghaus’s experiments involved memo-
rizing lists of nonsense syllables and then measuring how
quickly humans forgot them over time. His findings revealed
that memory decay occurs shortly after learning, but the rate
of forgetting slows down with time, forming a curve known
as the forgetting curve depicted in Fig. 4.

Ebbinghaus’s findings are relevant to our study as they
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FIGURE 4. Ebbinghaus Forgetting Curves with Intermediate Recalls. This
plot illustrates the decay of memory retention over time based on the
Ebbinghaus forgetting curve model. Five separate curves represent
memory retention after different intervals of recall. The decay rate
decreases with each subsequent recall, demonstrating the effect of
repeated reviews on memory retention. We observed similar forgetting
curves in the performance of the artificial neural network architecture
Faster R-CNN when trained sequentially on a sequence of experiences.

suggest that periodic recalls can increase the rate of knowl-
edge retention, which we observed in our experiments with
periodic recalls in the data stream. His research demonstrated
that forgetting curves follow an exponential decay pattern.
Our results indicate that the model’s performance can recover
through recalls, mirroring Ebbinghaus’s observation that re-
visiting information can help maintain memory.
Additionally, we found that each recall on D1 restores per-

formance to the level achieved during the last training phase
on this same experience. This is true even in scenarios with
long forgetting spans. For example, in the first experiment
presented in Figure 3(a), the model is trained sequentially
on D2 through D5, where its performance on D1 drops to 0
AP50. During the final recall on D1, the model reaches its
peak performance within a few iteration steps. This suggests
that the model is able to quickly recover performance on old
objects even if it has forgotten how to recognize them.

C. OPTIMIZING RECALL SIZE FOR EFFICIENT
PERFORMANCE RECOVERY
In previous experiments, we performed recalls on old data
by replaying the whole D1. However, our results suggest
that only a few iteration steps are sufficient to retrieve per-
formance. This suggests that recalls could be optimized by
decreasing their size, raising the question: "How much data
do we need to retrieve performance during a recall?"
To answer this question, we performed three experiments,

where at each recall, only a subset of D1 was used, with sizes
of 25%, 10%, and 5% of the original dataset. The results are
shown in Fig. 5.
Our findings in Figure 5(a) indicate that recalling 25% of

the original D1 dataset is sufficient to improve performance
after each intermediate recall. For the 10% subset in Fig-
ure 5(b), performance remains stable. However, Figure 5(c)
shows that recalling only 5% of the D1 dataset is insufficient,
as the performance declines over time.
These findings suggest that the frequency and amount of

recall are important for ensuring good performance in the
long term and counterbalancing the catastrophic forgetting
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(a) Recalls with 25% of D1
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(b) Recalls with 10% of D1
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(c) Recalls with 5% of D1

0 2000 4000 6000 8000 10000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

A
P

50

Recall with 25% of D1

D1 AP50

(d) High frequency recalls
(6.25% of D1 every 400
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FIGURE 5. Impact of varying the size and frequency of recalls on Faster R-CNN performance over time. The evaluation is performed on objects from the
first experience (D1) in the EgoObjects dataset, measured by AP50 (Average Precision at 50% IoU). This figure shows the results of experiments with
different recall sizes (25%, 10%, and 5% of the original D1 dataset). The plots illustrate how these different recall sizes affect the model’s ability to retain
and regain performance after a recall. Recalling 25% of the dataset leads to improved performance, recalling 10% results in stable performance, while
recalling only 5% results in a decline. Additionally, distributing a 25% recall into 4 intermediate recalls of 6.25% achieves similar performance
improvements. Increasing the frequency of small recalls is effective for mitigating catastrophic forgetting.

phenomenon. In our setup, recalling 5% of the D1 dataset
seems insufficient, but the frequency of recall is lowwith only
four recalls for four later experiments learned. In real-world
scenarios, small and frequent recalls of objects can happen.

Fig. 5(d) shows an experiment with frequent and small
recalls. In this setup, we split 25% of D1 into four recalls,
leading to a recall of 6.25% of D1 every 400 iterations rather
than every 1600 iterations as in previous experiments. We ob-
served that this setup with frequent and small recalls achieves
the same final performance as the setup with larger and less
frequent recalls. When old data is frequently recalled, the
model performs better on average over time. These findings
highlight the importance of recalls for maintaining perfor-
mance. Recalls help to quickly recover lost knowledge and
reduce the forgetting rate.

Finally, we observed rapid performance recovery during
recalls, indicating that some knowledge is still preserved
despite the observed forgetting decay. This suggests that the
model retains some information in its weights about previ-
ously learned objects. In other terms, forgetting is exacerbated
in some parts of the architecture. This leads to the following
question: Where is localized the forgetting in the model ar-
chitecture ? Understanding these internal mechanisms is key
to enhancing the model’s resilience to forgetting in dynamic
learning environments. In the next section, we propose a new
methodology to investigate where forgetting occurs within the
Faster R-CNN architecture.

IV. LOCATING FORGETTING IN THE FASTER R-CNN
ARCHITECTURE
To mitigate catastrophic forgetting in the Faster R-CNN ar-
chitecture, it is necessary to identify the most responsible
modules. This allow to further propose remediation methods
that focus on them. In this section, we introduce our mod-
ule probing methodology, which locate where the forgetting
occurs in the Faster R-CNN architecture. After presenting
the methodology and experimental setting, we present and
comment on the obtained results.

A. MODULE PROBING PROTOCOL
Consider a Faster R-CNN initially trained on a dataset D1,
and then further trained on a new dataset D2. During this
second phase of training, the model gradually loses its ability
to recognize objects fromD1, resulting in a noticeable decline
in performance on the original dataset. As the model adapts
to the new data, its weights shift to a part of the weight space
optimized for recognizing objects fromD2. This shift demon-
strates a phenomenon known as catastrophic forgetting [13],
[41], where previously learned information is overshadowed
by new learning. Fig. 6 illustrates how this forgetting occurs
over the model’s training phases.
The proposed Module Probing methodology assesses the

forgetting in the Faster R-CNN across various depths in its
architecture. This methodology systematically evaluates the
extent to which the model retains its ability to recognize
objects from D1 after being retrained on D2. By focusing on
a specific set of weight parameters, θtest, we can probe their
position in the weight space. This helps us determine whether
these parameters are still effective in recognizing D1 objects
or if they have entirely shifted to recognizing D2 objects. By
analyzing the results of this probing, we gain insights into the
model’s retention capabilities and the extent of catastrophic

Low Error on First Dataset 

Low Error on Second Dataset 

Catastrophic forgetting

Knowledge retention

FIGURE 6. Illustration of the catastrophic forgetting effect for a model of
parameters θ. When the network is trained on a new dataset D2, gradient
updates may damage the performance on the previous dataset D1. The
model efficiently maintains knowledge if it finds a location in weight
space suitable for recognizing both new and old objects.
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FIGURE 7. Performance comparison of Observed and Module Probed (MP) performances across five Module Probing configurations (a) - (e). The Faster
R-CNN is composed of five modules : a Backbone (B), a RPN, a Linear Head (H), a Box Classifier (C) and a Box Regressor (R). Modules marked in blue are
frozen to examine their knowledge retention. When the Box Classifier is excluded from retraining, the model struggles to readjust its performance. In all
other configurations, the model successfully readjusts. These observations strongly suggest that the Softmax layer is the main source of forgetting within
the architecture.

forgetting.
The Module Probing methodology involves the following

steps:

1) Initialization: Train the model on D1

2) Sequential Training: Train the model on D2. The
model faces forgetting of objects from D1.

3) Partial Freezing: After training on D2, freeze a subset
of the model’s parameters to probe (θtest).

4) Recall: Train the partially frozen model on D1 again.
At the end of this recall, θtest parameters are still in their
post-D2 training as they were frozen. The rest of the
model parameters are fine-tuned to recognize objects
from D1.

5) Evaluation: Measure the model’s performance on D1

to determine if the frozen modules have retained in-
formation from the initial training. This performance
is called the Module Probed performance.

If the model shows low performance on D1 after the recall,
it indicates that θtest did not retain the necessary information
to achieve the previous performance levels, even with the
recall phase for the rest of the model. This suggests that the
information has been lost in the frozen modules. Conversely,
if the model regains the lost performance from the initial
training onD1, it indicates that knowledge aboutD1 has been
retained in θtest, despite the training on D2.

B. TRAINING SETUP
In our Module Probing experiments, we use the EgoObjects
CL Instance benchmark which comprises five experiences
D1 to D5. This NR-free benchmark ensures that objects in
D1 are not present in subsequent experiences. The Module
Probing methodology is described for a single experience D2

only. In our experiments, we repeat the steps 2) to 5) of the
methodology for the other experiences D3,D4 and D5. This
leads to four Module Probed performance values and allow
for a longer analysis.

The same experimental setup is used as in section III.
Specifically, we train a Faster R-CNN [28] with a Mobile-
Net [63] pre-trained on the COCO dataset [54]. The model is
trained by stochastic gradient descent with a learning rate of
0.01 and a weight decay of 10−5. Module Probing evaluation
is done with the AP50 on objects from D1.

We employ a top-down approach to measure forgetting in
each module of the Faster R-CNN. We perform a Module
Probing experiment by freezing only the Backbone. Then,
we perform additional experiments in which we progressively
freeze following modules. This results in five different freez-
ing configurations, illustrated at the top of Figure 7.

For each freeze configuration, we plot two curves in Figure
7. In addition to the Module Probed performances, we show
the observed performance, which is the forgetting curve of the
model when trained sequentially through D1 to D5 without
recalls and without freeze.

C. RESULTS
As depicted in section III, the Faster R-CNN loses knowledge
of previous data: the observed performance curve decreases
as an exponential decay. This performance is the same in all
five experiments in Figure 7 as it does not depend on the
freeze configuration of the Module Probing methodology.

In the first three configurations (7(a), 7(b), 7(c)), the MP
AP50 is readjusted compared to observed. This suggests that
the frozen modules have retained information relating to the
first experience D1. Thus, the forgetting effect in the Faster
R-CNN is not localized in the first three modules Backbone,
RPN, and Linear Head.

In the fourth freeze configuration where the Box Classifier
is additionally frozen (7(d)), the performanceMP is not read-
justed: the MP and observed curves are almost overlapping.
In this configuration, only the Box Regressor is re-trained on
D1, the rest of the architecture is frozen. Interestingly, this is
the only configuration among five where the Box Classifier
is frozen.



In the last configuration (7(e)), the Box Classifier is the
only module retrained onD1. In this configuration, the model
performance is readjusted. This indicates that all the remained
frozen modules, i.e. all modules except the Box Classifier,
forget limited knowledge linked to the first experience D1.

D. DISCUSSION
These results suggest that the Box Classifier module, which
is a Softmax classification layer, is primarily responsible for
the overall forgetting effect in the Faster R-CNN architecture.

In OCL for classification problems [3], the Softmax
layer has been criticized in numerous works [3], [64], [65].
This layer induces a classification bias towards more recent
classes, leading to poor classification performance, despite
limited intermediate representation forgetting [66].

To address the issue of forgetting in OODwithin the Faster
R-CNN architecture, it is essential to focus on the Box Clas-
sifier module, as this is where forgetting is most pronounced.
In the following section, we propose and evaluate various
methods to compensate for this forgetting. Specifically, we
introduce an enhancement to the Box Classifier designed to
mitigate the effects of forgetting and improve overall model
performance.

V. FORGETTING COMPENSATION IN FASTER R-CNN FOR
OOD
In this section, we introduce new method called Configurable
Recall (CR) to counteract the catastrophic forgetting effect
in an OOD learning setting. This method allow a Faster R-
CNN to have a stable progressive learning when trained on a
sequence of experiences. CR incorporates two elements based
on empirical results obtained in sections III and IV. Firstly,
it uses an external memory buffer to store old data samples
and perform periodic recalls with it. Secondly, we modify the
Faster R-CNN architecture at the softmax layer level in order
to mitigate forgetting. We detail our method and demonstrate
its performance on three OOD benchmarks.

A. CONFIGURABLE RECALL
1) Learning with recalls
In section III, we examined the effects of periodic recalls
on model performance. Our experiments demonstrated that
intermediate recalls can significantly mitigate catastrophic
forgetting. This suggests that integrating regular recalls into
the training process can help maintain model performance
over time, reducing the impact of forgetting.We note that NR,
present in many OOD scenarios, has this recall effect but we
cannot control it.

To alleviate this problem, we propose to perform recalls
with old data stored in an external memory. Using an external
memory buffer for OCL is a common strategy to counteract
catastrophic forgetting. But, in the OOD context, it is yet
unclear how much data should be replayed, and at what
frequency, to get the better performances. We note CRl

p the
CR method which performs recalls on old data with period p
and recall length l. Every p iterations, the CRl

p method stops

training on the stream and perform an offline recall of a size l
iterations with images randomly sampled from the memory
buffer. After recall, the model continue its training on the
data stream. The memory can contain up to M images. The
memory buffer is implemented with a Reservoir Sampling
strategy [67] which is common used in OCL [3].

2) Mitigating forgetting with Balanced loss
In the previous section, our Module Probing experiences
showed that catastrophic forgetting in Faster R-CNN is
mainly localized in the Box Classifier module which is a
Softmax classification layer.
When trained in a context of class imbalance, the Softmax

classifier is subject to a bias towards over-represented classes
[68]. In OOD, recent classes tend to be more represented
than old classes. As a result, Softmax favors new classes at
the expense of old ones, which is perceived as knowledge
forgetting [3], [65].
To overcome the problem of Softmax bias in Faster R-

CNN, we replace the original cross-entropy loss for classi-
fication with the Balanced loss [3] defined as follows:

LBalanced(pi, yi) = − log

 ezyi∑
j∈C

δjezj

 , δj =

{
0 if j /∈ Ccur

1 if j ∈ Ccur

(3)
where pi is the region of interest i of ground truth class

yi. zj is the logit associated with the region of interest pi for
class j.C is the set of all classes whileCcur is the set of classes
currently present in theminibatch. By exclusively considering
outputs corresponding to classes in the current minibatch, the
training avoids excessively penalizing logits for old classes.

B. EXPERIMENTAL SETTING
1) Benchmarks
We evaluated CRl

p on three benchmarks for OOD presented in
Section II: OAK [24], EgoObjects CL Instance and EgoOb-
jects CL Category [52]. Each benchmark scenario is com-
posed of five experiences. For the two EgoObjects bench-
marks, we use the original scenario decomposition [52]. For
OAK [24], we divide the entire data stream into five segments,
ensuring that each experience contains a similar number of
images.
We use the methodology established by recent works in

OOD for the allocation of training and test data [24], [26],
[27] on OAK and EgoObjects datasets. Every 16 consecutive
video frames, we reserve one frame for testing while the
remaining frames are used for training. We perform one eval-
uation step after each training experience on each benchmark.
The three benchmarks show different levels of Natural

Replay. We show in Table 1 the Natural Replay Score (NRS)
[27] for each benchmark. NRS ranges between 0 and 1 and
the closer the NRS is to 1, the more often classes are re-
visited in the stream i.e. the Natural Replay is higher. The
three benchmarks provide a broad spectrum of NRS values,



TABLE 1. Comparison of Final Average Precision (FAP), Continual Average Precision (CAP), and Training Time (T) in minutes for various strategies
(Incremental, GDumb, ER, Efficient-CLS and CR) using Softmax or Balanced Loss across three benchmarks (EgoObjects CL Instance, EgoObjects CL
Category, OAK). Higher Natural Replay Scores (NRS 2) indicate more class revisits in the scenario. ↑ indicates higher is better. ↓ indicates lower is better.
The training batch composition is indicated for each strategy: only stream, only memory, a combination of both, or exclusively stream or memory.

EgoObjects CL Instance EgoObjects CL Category OAK
Training Batch
Composition

(NRS = 0) (NRS = 0.51) (NRS = 0.92)

FAP (↑) CAP
(↑)

Time
(↓)

FAP
(↑)

CAP
(↑)

Time
(↓)

FAP
(↑)

CAP
(↑)

Time
(↓)

Stream Offline 73.1 - 27.6 67.9 - 29.1 28.8 - 13.6
Incremental 27.3 25.6 27.4 42.2 39.5 28.6 27.8 21.4 13.9

Memory GDumb (1 epoch) 36.6 22.0 11.0 47.3 31.8 11.2 27.7 21.7 11.8
GDumb (5 epochs) 80.9 50.6 49.1 73.5 54.0 50.8 41.1 34.1 52.4

Stream AND Memory ER [15] 83.5 50.5 52.3 69.3 50.5 50.9 30.3 22.3 25.4
Efficient-CLS [26] 85.6 51.0 48.7 70.8 51.6 50.3 30.2 23.6 24.0

Stream XOR Memory

CR50
1000 34.7 30.7 33.9 58.7 45.1 34.5 30.2 23.7 16.8
w/ Balanced 66.7 42.8 33.2 66.3 50.4 34.5 31.8 24.9 16.5

CR500
1000 48.4 38.6 61.9 71.5 53.4 64.4 32.5 25.7 26.3
w/ Balanced 84.4 50.4 61.2 73.4 54.7 65.3 33.8 26.9 25.3

CR50
100 74.4 47.7 60.6 70.4 52.4 64.5 32.4 25.4 30.1
w/ Balanced 86.9 51.4 61.6 73.6 54.7 68.2 34.1 26.5 27.3

allowing the comparison ofmethods in scenarios with varying
frequencies of old object revisits. This helps in evaluating how
well different methods perform when objects are revisited
either less frequently or more often.

2) Evaluation Metrics
We use three evaluation metrics [24]. Let CAPt denotes the
AP at IoU 0.5 after training on Dt and T is the total number
of experiences.

Final Average Precision (FAP): FAP assesses the model’s
overall performance at the end of training:

FAP = CAPT (4)

Continual Average Precision (CAP): CAP evaluates the
model’s continual learning performance throughout training
as the AP average over time:

CAP =
1

T

T∑
t=1

CAPt (5)

Training Time (Time): This metric measures the total
duration required to train the model on the scenario, includ-
ing any intermediate recalls. It evaluates the efficiency and
feasibility of compared training strategies.

3) Comparison Baselines
We compare our method CR to the following baselines:

Offline: The Faster R-CNN is trained jointly on all expe-
riences in an offline manner for one epoch. This serves as
reference representing a Faster R-CNN trained on a scenario
where no catastrophic forgetting occurs.

Incremental: The Faster R-CNN is trained over the data
stream without any precautions to prevent catastrophic for-
getting. This serves as a lower bound, where catastrophic
forgetting is maximal.

Gdumb [39]: This method trains the model only on im-
ages from memory, rather than directly on the stream. The

memory buffer is balanced across all seen objects to ensure
fair representation. We present the results of this method with
one epoch and five training epochs per experience.

ER (Experience Replay) [15]: This method augments the
current batch with old images stored in an external memory
buffer. ER enables training on both new data from the stream
and old data to preserve knowledge, and it has proven effec-
tive in OCL [3] as well as in OOD contexts [27].

Efficient-CLS [26]: Originally proposed for semi-
supervised OOD, this method uses two complementary learn-
ing systems: a fast learner that quickly adapts to new data
and a slow learner that consolidates knowledge over time.
The slow learner generates pseudo-labels for unlabeled video
frames, guiding the fast learner and reducing annotation costs
while minimizing forgetting. The fast learner is implemented
as the ER method, whereas the slow learner is trained as an
exponential moving average of the fast learner. We compare
our method to Efficient-CLS in our context which is fully
supervised, i.e. where all images are annotated.

In our experiments, each method uses a Faster R-CNN [28]
with a Mobile-Net backbone [63], initialized with weights
trained on the COCOdataset [54].We use Stochastic Gradient
Descent with a learning rate of 0.01 and weight decay of
10−5, the batch size is set to 8. For ER and Efficient-CLS,
each batch of 8 images is augmented with 8 images randomly
sampled frommemory, forming a training batch of 16 images.

C. RESULTS

Table 1 presents the results comparing the aforementioned
methods to ours CR. We categorize all compared methods
according to whether the training is conducted exclusively on
the data stream, exclusively on memory, or on a combination
of both.



1) Stream against Memory Based Methods
Our results show that memory-based techniques perform
better. This can be explained for two key reasons. Firstly,
replaying old data effectively mitigates forgetting, as shown
in the previous section III, which demonstrated that recalling
old data helps maintain performance over time. Secondly, it
allows multiple passes on the same data. Data is seen only
once in the stream for Offline and Incremental baselines.
Whereas, the same data is revisited through the memory
buffer in the memory based methods. This dual exposure
ensures that memory-based methods often outperform the
offline baseline, which trains on all data in a single pass
without the benefit of reinforcement from repeated exposures.
For example, GDumb’s performance improves significantly
when the number of training epochs is increased. Specifically,
on the EgoObjects CL Instance benchmark, FAP increase
from 36.6 to 80.9 and CAP increases from 22 to 50.6.

2) Configurable Recall
We present the results for CR50

1000, CR
500
1000 and CR50

100. On
the EgoObjects CL Instance benchmark, our results reflects
our finding from section III. Firstly, performing recalls with a
larger proportion of data lead to better performances: CR500

1000

outperforms CR50
1000 by 13.7 FAP points and 7.9 CAP points.

Secondly, frequent and small recalls lead to better results
rather than important and less frequent recalls: CR50

100 outper-
forms CR500

1000 by 26 FAP points and 9.1 CAP points. Adding
the Balanced loss in CR consistently improves performance,
particularly in EgoObjects CL Instance which has no NR.
Additionally, our Balanced loss operates without additional
computational costs, maintaining the same training time as
the Softmax layer.

Finally, CR50
100 with Balanced loss improves performance

to attain 86.9 FAP and 51.4 CAP points on EgoObjects
CL Instance. It also achieves 73.6 FAP and 54.7 CAP on
EgoObjects CL Category. Our method CR50

100 outperforms all
other existing methods on both EgoObjects benchmarks. On
OAK, CR50

100 achieves great results with 34.1 FAP and 26.5
CAP. This is lower than GDumb with five epochs, but the
latest needed around 2 times more training time. Given these
substantial benefits, our strategy mixing frequent recalls and
the Balanced loss is a highly effective strategy for OOD.

D. PERFORMANCE VARIATIONS ACROSS DIFFERENT NR
LEVELS
Our results indicate that performance gaps between strategies
are more pronounced in low NR benchmarks like EgoObjects
CL Instance than in high NR benchmarks like OAK. In low
NR scenarios, forgetting is more severe, making methods like
CR, which address forgetting, highly effective compared to
strategies like Incremental, which are prone to forgetting.
In high NR scenarios, the frequent reappearance of objects
already mitigates forgetting: the model’s retention of knowl-
edge is not due to an inherent resistance to catastrophic
forgetting, but rather to the reappearance of the object in
question. In these high NR scenarios, our method allows for

selecting shorter sizes and longer periods of recall, making
it more efficient than other replay methods. For instance, ER
and Efficient-CLS perform recalls at every batch, which is
unnecessary in scenarios with an NRS of 0.92 where old
data is replayed frequently. These observations highlight the
necessity of evaluating OOD methods across a spectrum of
NR conditions.
Additionally, our results show that the Balanced loss con-

sistently improves performance across various benchmarks,
particularly in scenarios where the NRS is 0, such as EgoOb-
jects CL Instance. Even in scenarios with higher NRS, our
loss still significantly enhances performance, and it operates
without additional computational costs, maintaining the same
training time as the Softmax layer. Given these substantial
benefits, the Balanced loss is a highly effective strategy, mak-
ing it a compelling choice for improving model performance
in OOD scenarios across all NRS levels.

VI. CONCLUSION AND FUTURE DIRECTIONS
In this study, we have explored how the Faster R-CNNmodel
acquires and forgets knowledge in an OOD scenario. Our
research made the following three main contributions to the
field of OOD.
1) The Faster R-CNN forgets knowledge in a similar

manner to humans. Frequent recalls help maintain
knowledge: By analyzing the effects of intermediate
recalls of old data on performance, we discovered that
the learning and forgetting dynamics of the Faster R-
CNN mirror human cognitive processes. Knowledge
loss occurs exponentially over time, and successive
recalls significantly improve knowledge retention. Ad-
ditionally, our empirical findings highlight the impor-
tance of both the frequency and length of recalls in ef-
fectively relearning objects. These insights underscore
the value of incorporating regular recall mechanisms to
maintain model performance over extended periods.

2) Forgetting in the Faster R-CNN is mostly localized
in the final Softmax classification layer: We intro-
duced the Module Probing methodology which serves
to analyze and quantify the extent of forgetting across
different components of the Faster R-CNN architecture.
Our results revealed that forgetting is mainly local-
ized in the Softmax classification layer. This finding
highlights the importance of focusing on the classifica-
tion layer when developing strategies to mitigate catas-
trophic forgetting for the Faster R-CNN in an OOD
scenario.

3) Our proposed strategy Adaptive Recall (AR) and
our Balanced loss efficiently mitigate forgetting:
Our study showed that our CR strategy significantly
improve model performance in OOD scenarios. CR
demonstrates substantial performance gains by using
frequent, short recalls to stabilize the learning process
andmitigate forgetting. The Balanced loss incorporated
in CR enhances performances, particularly in NR-free
scenarios, by mitigating the forgetting occurring in the



classification layer. Our strategy is especially effective
in low NR scenarios, where forgetting is more severe.

Looking ahead, our work opens several promising areas
for future research in the field of OOD. Firstly, optimizing
the parameters of periodic recalls, such as their frequency
and length, could further enhance their efficiency and ef-
fectiveness. This includes investigating the optimal trade-
off between recall frequency and training time to maximize
model performance while minimizing computational costs.
Secondly, exploring alternative architectural modifications of
the classification layer may yield new insights into mitigating
catastrophic forgetting. Thirdly, developing more sophisti-
cated benchmarks that include varying levels of NR is essen-
tial for accurately evaluating and improving OOD models.
New benchmarks could ensure comprehensive testing of a
model on the same data but with different NR. These direc-
tions could lead to advances in the theoretical understand-
ing of catastrophic forgetting in the OOD context and drive
improvements in intelligent systems operating in dynamic
environments.
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