N
N

N

HAL

open science

Behavioral transition of a fish school in a crowded
environment

Bruno Ventéjou, Iris Magniez- -Papillon, Eric Bertin, Philippe Peyla, Aurélie

Dupont

» To cite this version:

Bruno Ventéjou, Iris Magniez- -Papillon, Eric Bertin, Philippe Peyla, Aurélie Dupont. Behavioral
transition of a fish school in a crowded environment. Physical Review E , 2024, 109 (6), pp.064403.
10.1103/PhysRevE.109.064403 . hal-04632498

HAL Id: hal-04632498
https://hal.univ-grenoble-alpes.fr /hal-04632498v1

Submitted on 2 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.univ-grenoble-alpes.fr/hal-04632498v1
https://hal.archives-ouvertes.fr

Bruno Ventéjou,' Iris Magniez--Papillon,' Eric Bertin,! Philippe Peyla,!

Behavioral transition of a fish school in a crowded environment

*

Y Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France

In open water, social fish gather to form schools, in which fish generally align with each other.
In this work, we study how this social behavior evolves when perturbed by artificial obstacles. We
measure the behavior of a group of zebrafish in the presence of a periodic array of pillars. When the
pillar density is low, the fish regroup with a typical inter-distance and a well-polarized state with
parallel orientations, similar to their behavior in open water conditions. Above a critical density of
pillars, their social interactions, which are mostly based on vision, are screened and the fish spread
randomly through the aquarium, orienting themselves along the free axes of the pillar lattice. The
abrupt transition from natural to artificial orientation happens when the pillar inter-distance is
comparable to the social distance of the fish, i.e., their most probable inter-distance. We develop
a stochastic model of the relative orientation between fish pairs, taking into account alignment,
anti-alignment and tumbling, from a distribution biased by the environment. This model provides
a good description of the experimental probability distribution of the relative orientation between
the fish and captures the behavioral transition. Using the model to fit the experimental data
provides qualitative information on the evolution of cognitive parameters, such as the alignment
or the tumbling rates, as the pillar density increases. At high pillar density, we find that the
artificial environment imposes its geometrical constraints to the fish school, drastically increasing
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the tumbling rate.

I. INTRODUCTION

In the animal kingdom, a large number of species
live and move in groups, such as herds of mammals
on land, flocks of birds in the air, and schools of
fish in water [1-3]. Physical and numerical mod-
els of collective movements have shown that sim-
ple local interactions [4, 5] between individuals are
sufficient to create the group behaviors observed in
nature, like milling or schooling for fish [6]. Sev-
eral attempts have been made to refine the models.
For example, interacting neighbors can be selected
by metric distance [7, 8], topological distance [9],
Voronoi vicinity [10, 11], or by taking into account
the sensory information available, i.e., their field
of view [12]. These models accurately capture the
behavior of animals in open environments without
obstacles or in presence of walls in the case of fish
[13] or pedestrians [5].

In laboratory experiments, the study of ac-
tive matter in crowded environments has fo-
cused mainly on micro-swimmers (bacteria and
micro-plankton) [14-16] or synthetic active micro-
particles [17]. Indeed, micro-organisms and other
self-propelled bodies in viscous fluids are known to
have complex trajectories in the presence of ob-
stacles [18]. For a high density of obstacles, trap-
ping and sub-diffusion have also been reported in
a simplified theoretical model [19]. These complex
dynamics have garnered significant interest due to
the implications for both fundamental research and
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practical applications. For example, obstacles have
been found to modify the macroscopic behavior of
bacterial turbulence [14]. The presence of obsta-
cles may also be exploited in the development of
devices for the separation of biological cells, which
plays an important role in the fields of healthcare
and diagnostics, using techniques like the deter-
ministic lateral displacement [20].

At larger scales, e.g., for fish schools in com-
plex environments [21], cognitive interactions, like
alignment with other fish [6], coexist with phys-
ical interactions, such as hydrodynamic interac-
tions at large Reynolds numbers [22]. So far, ex-
periments with fish schools have mostly been con-
ducted in simple geometries [10, 23] and the inter-
play between cognitive and physical interactions
has mainly been addressed at a theoretical level
[11, 24]. However, it is worth noting that similar
topics have recently been studied in the field of
robotics [25]. The collective behavior of a school
of fish in a crowded environment, much like ac-
tive particles, has practical applications, offering
insight into the design of autonomous systems and
robotics [26].

In the case of fish, environmental conditions can
greatly influence aggregation behaviors [27]. Their
natural habitat might be a small river with sub-
merged vegetation and gravel, as for zebrafish, or
reefs and rocky shores for marine species, both of
which are far from the idealized open-water en-
vironment. More and more fish species are being
forced to migrate due to climate change [28], push-
ing them towards environments to which they are
not necessarily adapted. Individuals must use ac-
quired environmental information to change their



usual social interactions. The question of under-
standing how the collective behavior of a school of
fish is perturbed in an obstructed environment re-
mains open both experimentally and theoretically.

To address this question, we conducted exper-
iments with groups of small gregarious fish, ze-
brafish (Danio rerio), which are commonly used in
laboratories, especially in behavioral neuroscience
[29]. The experiment consisted in tracking the
fish positions and orientations for different densi-
ties of obstacles in the aquarium. The obstacles
were opaque pillars that obstruct the fish’s field of
view, organized in a regular network with a 4—fold
symmetry for an optimal control over the homo-
geneity of pillar density. The grouping of the fish
in the absence of pillars follows a log-normal dis-
tribution of the fish-to-fish distances, as previously
described [30]. When pillars were added, the fish
inter-distance increased up to the theoretical ran-
dom distribution of fish in the tank and, seem-
ingly, to the complete screening of their social in-
teractions. The distribution of the fish’s relative
orientations was also significantly modified by the
addition of pillars. A clear transition was observed
from a group of mostly aligned fish, to fish oriented
along the axes of the pillar lattice, i.e., transition
from a social order to an order imposed by the en-
vironment. Interestingly, the transition occured at
a characteristic distance between pillars very close
to the most probable fish-to-fish distance measured
in the absence of obstacles.

To further understand and characterize these ob-
servations, we propose a stochastic purely orienta-
tional model of two fish that can align, anti-align
or tumble at specific rates, on top of a background
angular diffusion. The new angle resulting from
a tumbling event is picked from a distribution di-
rectly obtained from the measurements and reflect-
ing the influence of the pillars. The results of the
model and the fitting to the experimental data are
the rates of alignment, anti-alignment and tum-
bling for the different pillar densities, normalized
by the angular diffusion coefficient. The transi-
tion towards an orientational order imposed by
the obstacles was observed again and is essentially
dependent on the sharp increase in the tumbling
rate. Hence, our model provides a qualitative evo-
lution of ethological parameters describing the be-
havioral transition observed. In accordance with
recent work by Xue et al. [31], we hypothesize that
the social interactions between fish are essentially
visual, and that the progressive addition of visual
obstacles severely hinder their collective behavior.
Here, in contrast with previous studies [31, 32],
the visual interaction is hindered in an anisotropic
manner. Furthermore, the hydrodynamic interac-
tions are also perturbed by the obstacles. The ob-

served transition illustrates the resilience of their
social behavior until a threshold where the pillars
are as close as the preferred fish-to-fish distance,
which brings additional discomfort.

II. EXPERIMENTAL METHODS

FIG. 1. Snapshot of the experimental setup with
recorded trajectories of six zebrafish using TRex [33].
The pillar density is £, = 0.12cm 2.

Zebrafish (Danio Rerio), a freshwater fish native
to South Asia, is popular as an aquarium species
and also as an experimental model for research.
We chose Zebrafish for their gregarious behavior
associated with a tendency to be very mobile and
explore the environment. Zebrafish swim by al-
ternating burst and coast phases, allowing them
to reorient their swim direction at each burst. The
small size of the fish, about 3.5 cm long and 0.5 cm
wide, meant that the experiments could be set
up easily on the bench in a standard fish tank
(36x18 c¢m). From a group of 30 individuals in the
resting tank, 6 were taken once a day for the exper-
iment. The experimental tank was equipped with a
Lego plate at the bottom to enable the installation
of Lego pillars (diameter 0.8 ¢cm) at varying pillar
densities (Fig. 1). The fish were placed in shallow
water, 5 cm deep, and in dim ambient light to limit
their stress. Additional infra-red light sources were
used, coupled with a Basler camera, for imaging.
After a resting and adaptation period of about 20
minutes to avoid a transient regime, fish behavior
was recorded for 15 minutes at 20 frames per sec-
ond for each trial. The fish were then put back
in the resting tank. In total, about 30 different
fish were used in this study. The pillars were ar-
ranged to create a square lattice with a distance d,
between the pillar centers. The minimal distance
between pillars was d, = 1.8 cm, leaving a space
of 1 cm, which is slightly larger than the width
of a fish, for them to be able to swim between
the pillars. The maximum pillar density tested



was therefore X** = (.31 pillars.cm™2. The fish
movements were tracked using TRex [33] resulting
in about 30k data points for interdistance and rel-
ative angle per condition. The tracking resulted
in a position determination better than 1 pixel or
no position at all, which fitted our requirements
as the temporal information of the tracks was not
analyzed, only the relative angles and positions at
time t. In the absence of pillars, we noticed that
the fish tend to spend more time swimming close
to the walls of the aquarium, introducing a bias in
both the position and the angle distributions (see
Appendix). To remove this effect, the raw data
has been cropped. In the presence of pillars no
cropping was necessary. The trajectories were fur-
ther analyzed with homemade Python codes and
the data are available in [34].
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FIG. 2. Fish inter-distance probability density P(d).
Crosses are the experimental points without any pil-
lars and the solid line is the log-normal fit with pa-
rameters p = 1.65 and o0 = 0.76. The most probable
interdistance is dop = 2.9 & 0.3cm. The dashed line
corresponds to the inter-distance probability density
in the case of random points in a box. Triangles are
the experimental data with the highest pillar density
studied ¥, = 0.31 cm™2. The most probable interdis-
tance is dp = 7.7 £ 0.9cm. Inset: Nearest-neighbor
inter-distance probability density Pmin(d) in an empty
tank. The raw data is plotted with crosses. The solid
line is the log-normal fit with parameters p = 1.39 and
o = 0.82.

III. EXPERIMENTAL RESULTS

First, the distribution Ppin(d) of the nearest-
neighbor distance d from the experimental tracks

in the absence of any pillars was computed (Fig.2
inset). In accordance with previous work by Becco
et al. [35], the data are well fitted to a log-normal

law as defined by:
_ 1 Oosg w2 O
dov/2m P 202

1.39 and ¢ =

f(d)

with fitting parameters p =
0.82(dy = lcm).

The distribution of all fish inter-distances d (not
only with their nearest neighbors), denoted P(d),
could also be fitted to a log-normal distribution
with fitting parameters ¢ = 1.65 and ¢ = 0.76
(Fig. 2, blue crosses and red line). The most prob-
able inter-distance value is dg = 2.9 + 0.3 cm, this
value was used later to make pillar density dimen-
sionless. For comparison, the distribution of inter-
distances in the case of randomly distributed parti-
cles in a tank of the same dimensions [36] is shown
by the orange dashed line in Fig. 2 and peaks at
a larger distance, with the most probable value
of drana = 11.3 cm. The zebrafish observed here
swam closer together in groups, highlighting the
social behavior of fish schools. Interestingly, the
distribution of inter-distances in the case of the
highest pillar density (green triangles in Fig. 2)
almost matches the random situation. When pil-
lar density is increased, the probability distribu-
tion changes continuously from the empty case to
the random case (appendix A 2a). The mean dis-
tance between fish increases with pillar density up
to d = 7.740.9 cm which is close to the mean inter-
distance in the random case. This is a first indi-
cation that the addition of obstacles to the tank
tends to screen the social interactions of fish. Re-
markably, the speed distribution also follows a log-
normal law, as shown in the appendix A1 a.

Secondly, the distribution, py(6), of the relative
orientations between two fish is computed from the
experimental tracks of groups of 6 fish in the ab-
sence of pillars (Figure 3(a), blue crosses). This
distribution is well fitted to the function:

po(0) = Ag + Ay e 101/ 4 Ay em=18D/e (9)

shown as the solid red line (Fig. 3(a)). This
function is made up of three terms, describing
a uniform baseline, alignment and anti-alignment
terms. The experimental data shows a strong
alignment peak and a small anti-alignment peak.
These observations are in agreement with the lit-
erature [35] with the additional contribution of a
small anti-alignment term.

We also looked at the mean inter-distance as
a function of the relative orientation between fish
in the absence of pillars (Fig. 3(b), blue crosses).
The distribution is symmetrical and relatively flat,



except for a drop around 6 = 0. Aligned fish
are closer to each other than the overall mean
inter-distance. This is confirmed by looking at
the distribution p(#) (Fig. 4) restricted to fish
pairs at two different inter-distance ranges: close
to each other with an inter-distance of less than
1.8 cm (blue crosses in Fig. 5(a)), or far apart with
an inter-distance of more than 14cm (grey dots
in Fig. 5(a)). The close fish distribution peaks
sharply around # = 0 and has a second smaller
peak around 6 = +£m. Close fish are therefore
mostly aligned. The distribution for fish far apart
is rather flat over the whole range of angles. It
is similar to an iso-distribution, as if the fish have
no orientation interactions at this distance. These
results show that the orientation interaction dete-
riorates with the distance between fish in the case
of a small group of zebrafish, as studied herein.
The relative short-range alignment interaction ob-
served is in agreement with previous interaction
models proposed for fish schools with metric dis-
tances [7, 8] and with topological distances [10, 11].
The importance of this length scale for fish behav-
ior has also been evidenced in the case of a fish
school passing a bottleneck [37].

Next, we looked at the effects of adding obsta-

cles on the angular distribution p(f). Figure 4
shows p(#) for increasing pillar densities, from (a)
to (f). A transition is observed from a strong peak
at § = 0 with a small bounce at § = +x for a
tank without pillars (a) to a -periodic cosine dis-
tribution for the highest pillar density (f). The
5 periodicity is due to the square lattice of pillars,
which allows the fish to move mainly along four di-
rections. The higher the pillar density, the higher
are the two intermediate peaks at 6 = £7. Finally,
for the highest pillar density, all peaks are the same
size, indicating that fish orientation is completely
governed by the lattice of obstacles and no longer
by social interactions.
As for the previous case with no pillars, the data
can be fitted to a function containing symmetri-
cal exponentials accounting for the low densities
of pillars, to which periodic functions were added
to account for the purely §-periodic function ob-
served for the high densities of pillars. In Fig. 4,
experimental data, plotted with crosses, are fitted
to the function:

p(0) = Ag + Are 1/ 4 Ayem=10D/e
+ By cos(46) + By cos(86),  (3)

which is plotted as a solid line. In order to quan-
tify the influence of the pillar lattice on the natural
alignment interaction, we define the order param-
eter,

p(0) — p(7/2)
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FIG. 3. Fish tank without pillars. (a, crosses): po(0),
probability density to get angle 6 between two fish.
(a, dashed line): Iso-distribution attached to the ran-
dom case po() = 5. (a, solid line): Exponential fit,
given by Eq. (2), with parameters Ao = 0.1, A1 =04,
A = 0.08, 0 = 0.4. (b) d(9), mean inter-distance
(cm) between fish as a function of the relative orien-
tation 6. (b, dashed line): Mean inter-distance in the
random case. (b, crosses): Mean inter-distance in the
case without pillar X, = 0cm™2. (b, triangles): Mean
inter-distance with pillar density ¥, = 0.31 cm™ 2.

which is related to the relative heights of the peaks
at 0 = 5 and 6 = 0. Hence, ¢ is expected to be
close to one when there is no peak at 0 = 7, and
close to zero when both peaks have the same am-
plitude. The order parameter ¢, calculated from
the fits of the experimental data (Fig. 4 (a) to
(f)) is plotted in Fig. 6 as a function of the pil-
lar density. ¢ decreases non-linearly from 0.9 for
the experiments with no pillars to 0.2 for the high-
est pillar density. We observe a smooth transition
between social alignment (high ¢) and obstacle-
imposed orientation (low ¢), that can be charac-
terized quantitatively by fitting ¢ with a sigmoid
function and taking the pillar density at the in-
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FIG. 4. Probability density distribution, p(f), of the
relative angle 6 between two fish in a fish tank with
pillars. Pillar density (cm™2) increasing from (a) £, =
0 (b) ¥, = 0.06. (c) ¥, =0.12. (d) ¥, = 0.16. (c)
¥, = 0.20. (f) ¥, = 0.31. Raw data are represented
with crosses and the fits with the function given by
Eq. (3) are the solid lines.

flection point. The transition occurs at pillar den-
sity 25 = 0.12 ecm~? which can be converted into
fish units X*d§ = 1.04. The fish unit is defined
by the most probable inter-distance value between
zebrafish in the absence of pillars, i.e., dy = 2.9cm
(see in Fig. 2). For a pillar density %, > 0.12cm ™2,
the obstacles screen the social interactions between
fish. Again, we can split the data between fish that
are close to each other, d < 1.8 cm, and fish that
are further apart, d > 14 cm (Fig. 5). For the
close fish, the alignment peak is smaller than with
the lowest density of pillars (b), which we interpret
as being the first effects of the visual screening of
fish interactions. In contrast, the long-distance or-
der imposed by the pillar lattice appears for higher
densities (c), at the order transition seen in Fig. 6.
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FIG. 5. Fish tank with and without pillars. Prob-
ability density p(f) to find two fish with a difference
of orientation 6. The crosses are corresponding to the
data restricted to fish with an inter-distance d < 1.8
cm. The dots are corresponding to the data restricted
to fish with an inter-distance d > 14 cm. (a) X, =
0Ocm™2. (b) ¥, =0.06cm 2. (c) £, = 0.16cm 2. (d)
¥p =0.31cm™2.

Finally, both close and distant fish have the same
distribution p(f) for the situation with the most
pillars in the tank (d).

To sum up, we found a correlation between the
fish-to-fish distance and their relative orientation
in the absence of pillars, confirming the limited
range of social alignment interaction. The analy-
sis of fish inter-distances shows a smooth transi-
tion from a group behavior at low pillar density
to a quasi-random spatial distribution of fish at
the highest pillar density. We observed a clear
crossover between social relative orientation of fish,
i.e., alignment, and environmental orientation of
fish. The detailed analysis initially shows the align-
ment interaction screening at short distance, fol-
lowed by the forced pillar order at high pillar den-
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FIG. 6. Order parameter, ¢, used to determine the
transition as a function of the dimensionless pillar den-
sity £,d3. The inflection point given by the fit is
Egd% = 1.04. The dimensionless pillar densities from
Fig. 4 are: (a) N,d3 = 0.0, (b) X,d3 = 0.51, (c)
T,d3 = 1.02, (d) $,d3 = 1.33, (e) X,d3 = 1.67, (f)
Ypdg = 2.66.

sity. The screening of the social interactions is
more obvious on the relative orientations of fish
than on the fish inter-distance statistics. We will
therefore focus on the relative orientation here-
after.

IV. THEORETICAL MODEL

Our main goal in this part is to introduce a min-
imal stochastic model describing the dynamics of
fish orientations, in order to derive the form (3) of
the relative angle distribution P(6), that fits well
the data, from a behavioral description. As mini-
mal ingredients of the model, we take into account
alignment interactions of the orientations of fish as
well as angular noise in the individual fish dynam-
ics. Space is not explicitly taken into account in
the model. The standard alignment interaction is
expected to lead to the main peak of P(6), around
0 = 0. Yet, the presence of secondary peaks at
a relative angle § = +7 in the absence of pillars
indicates that a subdominant anti-alignment inter-
action should also be taken into account. The noise
in the individual dynamics should account for fre-
quent small angular fluctuations along the trajec-
tory as well as more intermittent, large-amplitude

angular variations. We choose to model this be-
havior by a combination of diffusive angular noise
to account for small amplitude fluctuations, and
of stochastic tumbling process to describe large
amplitude angular jump. A further motivation
to include angular diffusion is that it is a nec-
essary ingredient (combined with alignment and
anti-alignment interactions), to obtain a cusp in
the angular distribution P() at § = 0 and 6 = £+
as obtained experimentally (see below). We wish
to keep the model as simple as possible in order to
be able to derive analytically the distribution P(9).
In this spirit, we restrict our model to pairwise in-
teractions between fish, a parsimonious description
notably supported by a detailed data analysis of
small groups of fish [38].

A. Definition of the model

We consider a simple stochastic model of two
swimmers that randomly align their direction of
motion. The two swimmers move on a 2D plane
along directions defined by the angles 6; and 6,.
During an infinitesimal time interval [¢,¢ + dt],
swimmer 1 can randomly align its velocity with
swimmer 2’s velocity (i.e., §; — 0] = 603) with a
probability of Adt; it can also anti-align its veloc-
ity (i.e., 81 — 0] = 0 + m) with a probability of
udt; and it can tumble with a probability of vdt by
selecting a new angle 0] from a distribution (6}),
independently of 85. Similarly, swimmer 2 can ran-
domly align or anti-align its velocity with that of
swimmer 1, with probabilities of Adt and udt re-
spectively; it can also tumble with probability of
vdt to a new angle 6} selected from the distribution
1 (0%). These reorientation events are assumed to
happen very quickly and are modeled as instan-
taneous stochastic jump processes. Furthermore,
between successive rapid reorientation events, the
angles 61 and 65 are assumed to diffuse with a dif-
fusion coefficient Dgr. The distribution ¢ (6’) that
models the reorientation towards the directions of
the pillar lattice, is kept general at this stage. It is
possible to define dimensionless ratios that can be
chosen as A = A\/Dg, fi = u/Dpg, and v = v/Dg.

The statistics of the angles 6; and 6y are de-
scribed by the joint probability density function
P(01,04,t), which depends on time t. The above
stochastic rules (instantaneous reorientations and
angular diffusion) translate into the following evo-
lution equation for P(6;,0s,1):
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P1(01,t) = /ﬂ— d92 P<917027t) (6)
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is the marginal distribution of #; (or equivalently
of 65) and dor(x) = D00 8(z + 2n) is a gen-

eralization of the Dirac delta distribution, taking
into account the 27-periodicity of angles.

B. Stationary single-angle distribution P;(6:)

Starting from Eq. (5) and integrating over s,
we find that P;(6;) obeys a closed equation

P{'(61) + p[P1(61 — ) — P1(61)] (7)
+17[1/J(91) - P1(91)] =0

To simplify the calculations, we assume in the fol-
lowing that the distribution P;(6;) is m-periodic,
so that the term proportional to i in Eq. (7) van-
ishes, resulting in

P{'(61) + v [1(61) — Pi(61)] = 0. (8)

Although the assumption that Pj(6;) is w-periodic
is, in principle, an approximation, it is verified in
the experimental data (see Sec. IVD). We fur-
ther assume that ¢(6) is a m-periodic, even func-
tion, under a suitable choice of the origin of angles.
These properties of ¢(6) are related to the geom-
etry of the pillar lattice, and are thus expected
to hold in the experiment. With these assump-
tions, the Fourier expansion of the distribution
¥(0) takes the form:

WO = 5t = dnicos(and).  (9)
n=1

The solution P;(6) of Eq. (8) then reads

1
ot Z Py, cos (2n6,) (10)

PL(0y) =
with

R . 4n2\ !

Payy = s (1 + Z) . (11)

Egs. (9, 10, 11) are used below to determine (6)
from the experimental data of Py (0).

v (1) Pr(02) + v p(02) Pr(61),

p(0) of the angle difference 6 =

()

(

C. Stationary angular difference distribution

p(0)

We now consider the probability distribution
0y — 61 defined
from the stationary distribution Py (61, 02) as

) = / d91/ dBs Pyt (61, 02) 62 (02 — 61 — 0).

(12)
Using the definition (12) of p(#) into the evolution
equation (5), we obtain a second order differential
equation,

P"(0) — A+ fi+ 7) p(8) + A 627 (6) + i G2 (6 — )

s

+0 [ dO2p(02 —0) P1(02) =0. (13)

—T

Using the Fourier series expansion (9), we get for
the integral term of Eq. (13)

/ df (02 — 0) Py (02) (14)
217r + - nzl Von Pan cos(2n8) .

As Eq. (13) is invariant by changing 6 into —6, p(6)
is an even function, i.e., p(—0) = p(#). Using this
property, we can simply solve Eq. (13) on the open
interval (0, ), where it simplifies to

p"(0) - (;\ + ﬂ +7)p(0) (15)

RPNy

The delta functions appearing in Eq. (13) are then
taken into account through boundary conditions,
as described below. We look for the solution of
Eq. (15) under the form

cos(2nf) =

p(@) = A() —+ A1 e_sle‘ + A2 €_S(ﬂ—_|9‘) (16)

oo
+ Z Bs,, cos(2n6)
n=1
where A; and B,,, are constants to be determined,
and

s=\/A+j+7i. (17)



We thus find an equation that generalizes the em-
pirical fitting function given in Eq. (3). The expo-
nential terms in Eq. (16) are the two independent
solutions of the homogeneous part of Eq. (15). The
constants Ag and Bs,, are determined by injecting
the form (16) of p(6) in Eq. (15), and equating to
zero the constant term and the terms proportional
to cos(2n6). We find

AO = T T < > (18)

Bay = —— (19)

To determine A; and As, we proceed as follows.
Integrating Eq. (13) over the interval [—¢,¢] and
taking the limit € — 0, one finds

P07 =p(07)+A=0. (20)

Similarly, integrating Eq. (13) over the interval [1—
e, m + €] and taking the limit € — 0, we obtain

Drlp(xh) —p(x )] +a=0.  (21)

Using the 2m-periodicity and parity properties of
the distribution P(6), we get

Yo =-3. pE)=E @

These two conditions are enough to determine A;
and As using Eq. (16), leading to

5\67‘-8 +,L~L
A = ———— 2
! 4s sinh(ms)’ (23)
Ay, = ATHET (24)

4s sinh(ms)’

with s given in Eq. (17).

D. Data analysis

From Eq. (16) and the coefficient expressions
Egs. (17,18,19,23,24), the definition of p(0) is fully
determined by A\, i, 7 and Bs,,, where Bs,, depends
only on 7 and P, (through 152”) Thus, the first

step of the data analysis is to determine P, from
the experimental data. In Fig. 7, the distribution
Py(0), i.e., the probability of finding a fish in a
given direction 6, is plotted for different values of
pillar density. The crosses show the experimental
data, and the solid line is the fit of each P;(6) to
Eq. (10), using an angular Fourier expansion up to
n = 11. As the first orders in the angular Fourier
expansion are dominant, the following data anal-
ysis is conducted with n up to n = 4. The good
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FIG. 7. (a,b,c) Probability density Pi(01) to find a
single fish with a given orientation in a tank with pil-
lars. The crosses represent the experimental data made
symmetrical [Py(61) = PF*(01) + P (—61)]. The
solid line shows the expansion of P;(f) over the even
Fourier modes. Pillar densities are (a) ¥, = 0.06cm™ 2.
(b) B, = 0.16cm™ 2. (c) &, = 0.31cm™ 2.

agreement between the fit and the experimental
data validates the two assumptions (even function
and 7-periodicity) made for P;(67).

From Eq. (11), ¢(0) is fully determined when
P,, and U are known. As a probability distri-
bution, 1 (f) must be positive by definition, and
this constraint is used to reduce 7 to a physi-
cal range designed to find Dy, such that VO €
[—m; 7], Pmin(@) > 0. Typical probability distri-
butions () are shown in the appendix B.

When the value 7,;, is known for all pillar den-
sities, Eq. (11) and the coefficients P, extracted
from Pj(f) can be used to fit the experimental
distribution of the relative orientations, p(), using
Eq. (16). The case with no pillars is not analyzed
since it is not relevant to our orientational model.
The definition of p(f) depends only on P, and
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FIG. 8. (a,b,c,d) Probability density p(0) to find two
fish with a relative orientation # for increasing pillar
densities from (a) to (d). The crosses are the raw
data, the solid line is the fit according to the theo-
retical model (Eq. (16)). The fitting parameter values
are plotted in Fig. 9. (a) ¥, = 0.06cm™2. (b) &, =
0.12cm™2. (c¢) ¥, = 0.20cm™2. (d) ¥, = 0.31cm™ 2.

on the three parameters A, i, U, which should
satisfy the constraints A € [0;00), i € [0;00)
and 7 € [Dmi“;oo). The results are shown in
Fig. 8. The fit is based on a dogleg algorithm, i.e.,
a least square method with trust region. Good
agreement is generally found. Thus, there is a
qualitative agreement between the behavior of fish
and the simple stochastic description provided by
alignment, anti-alignment, tumbling and angular
diffusion.

From the fitted data in Fig. 8, the evolution of A
(alignment), & (anti-alignment) and o (tumbling)
as a function of the pillar density is plotted in Fig. 9
to get a better understanding of the weight of each
ingredient. The empirical fitting shown on Fig. 4
was done with 6 parameters, here, the model uses
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only 3 fitting parameters: 5\, i and 7 with con-
straints coming from the experimental data (p()
and Py(0)) and from physical reasons (A, fi and
7 > 0). These constraints reduce the space pa-
rameters and the possibility to reach the optimal
solution from a fitting point of view and hence lead
to large error bars, defined as to the square root
of the diagonal coefficient of the covariant matrix
in the dogleg algorithm. According to Fig. 9 (a),
the alignment rate is almost constant (5\ ~ 0.7)
within the range of pillar densities tested. The
anti-alignment rate, fi, is extremely low for all pil-
lar densities except for the largest, where fi attains
the range of the alignment rate A\. The scenario is
quite different for the tumbling rate, 7, as shown in
panel (b) of the same figure. After a small increase
at low pillar density, the tumbling rate increases
abruptly at a density of 0.20 cm™2 (X,d3 = 1.67),
almost one order of magnitude higher than the low-
est value. Note that the error bars are bounded by
the constraint on the minimal value 7,,;,, below
this bound the error bar is shown as a dashed line.
The increase in the tumbling rate cannot be ex-
plained solely by the reduction of the free space
between pillars due to the increased pillar den-
sity (see Appendix A2c). The transition occurs
at a larger pillar density than that characterized
by the order parameter (Fig. 6), for which we only
quantified the ratio between observed orientational
peaks. Qualitatively, we find back a smooth be-
havioral transition again, which is accounted for
in the model by the variation of the tumbling rate.
In other words, beyond a critical density of obsta-
cles, fish reorient more often. This result is consis-
tent with recent work by Xue et al. [31], where a
decrease in swimming burst durations and lengths
was observed when the visibility was reduced by
lowering the light intensity for rummy-nose tetra
fish. Here, the visibility was altered by increasing
the number of opaque obstacles until an appar-
ent breakdown of the social interactions and an
increased tumbling rate were reached.

V. CONCLUSION

In this work, we observed experimentally a be-
havioral transition of zebrafish from an aligned
school, to fish randomly distributed in space, and
aligned with the environmental lattice. This tran-
sition from socially-interacting fish to independent-
fish behavior occurs when the density of obstacles
in the aquarium is increased. The evolution is not
linear with the density of obstacles, fish alignment
is maintained despite the increasing difficulty to
swim freely and to interact visually with congeners
until a characteristic density is reached, around
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FIG. 9. Fish tank with pillars. Evolution of the pa-
rameters \, fi, 7 with the dimensionless pillar density
Epd(z). These parameters are determined by the fit done
to plot the solid line in Fig. 8 according to Eq. (16).
(a, Dots) Alignment parameter A. (a, Triangles) Anti-
alignment parameter fi. (b) Tumbling parameter 0. (c)
Tumbling parameter with error bars and in log scale.
The error bars are given by the fitting algorithm. The
plain line corresponds to the relevant part while the
dashed part corresponds to the unphysical part accord-
ing to the criteria on ™",

which a smooth change in behavior occurs. An as-
sociated characteristic length scale appears, close
to the fish body length, consistent with previous
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work [37] that refers to this length as social dis-
tance.

The crossover is observed when the typical dis-
tance between obstacles becomes similar to the
most probable fish inter-distance dy in the absence
of obstacles. We propose a stochastic model to de-
scribe the observed behavioral transition. A steep
increase in tumbling rate around the character-
istic pillar density seems to be one of the main
ingredients of the smooth transition. This result
is consistent with recent work by Xue et al. [31],
which correlated impairing the visual ability of fish
with a shortening of the duration and length of
their swimming bursts; which can be related to an
increase in tumbling rate in our model. Our ap-
proach and other recent works [31, 32] tackle the
effects of a complex environment on the social be-
havior of fish with the ultimate goal of understand-
ing how environmental parameters, such as light,
flow or obstacles, can modulate the social interac-
tions and hence the behavior of animal groups.
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Appendix A: Experimental data analysis

1. Cases without pillars: Determination of
bias and data cleaning

a. The probability of finding a fish

The first step of this data analysis involves
determining whether any bias exists in the data
set. Indeed, the experiments were conducted
inside a fish tank and the focus is not on the
interaction between the school of fish and the
tank walls but rather in the social behavior. The
probability to find one fish at a given position
in the absence of pillar is shown in Fig. 10. The
data show that fish have a tendency to follow
the sides of the fish tank and it is particularly
pronounced regarding the long side, highlighting
the importance of the aspect ratio. The proba-
bility of finding a fish on the right side is higher
compare to the left side, likely influenced by the
position of tank in the room. The bottom left and
top right corners have a zero probability density
value because large blocks anchor the Lego plate
at these positions. To mitigate this bias, mostly
visible in the absence of pillars, the data set can
be restricted to specific areas as shown by the
rectangular frames in Fig. 10. Cropping images
flattens the density probability along both sides.
Still, the probability density is not perfectly
uniform within the restricted area. It is important
to notice that this attraction to the walls is much
less prominent in the presence of pillars and hence
does not influence the results.

b. Speed distribution without pillar

As an alternative test to determine the cropping
size, the probability density of finding a fish at
a given speed can be calculated and is shown in
Fig. 11. The larger the crop, the less likely it is to
find a fish with a low speed. This implies that a
significant part of immobile fish are near the tank
wall. Also, the density probability for the speed is
close to a log-normal law for the two most cropped
data set, according to the fit represented by the
solid line. These two last curves are identical and
it shows that a trade-off between the size of the
data set and the cropped area can be found.

11
2. Cases with pillars
a. Interdistance with pillars

The interdistance probability for different pillar
densities is shown in Fig. 12. The solid line cor-
responds to the data without pillars fitted with a
log-normal law, defining the reference case. The
dashed line shows the case where fish are placed
randomly in the tank. The interdistance probabil-
ity density seems to transition continuously from
the reference case to the random case when the
pillar density increases. For the highest pillar den-
sity, the main difference between the data and the
random case is observed for low interdistance value
which could be related to bias due to interactions
with the wall of the tank as mentioned above.

b. Speed distribution with pillars

In Fig. 13, the probability density to find a fish
at a given speed is shown for different values of
pillar density. The main effect of the presence
of pillars is a decrease of the average speed. It
also changes the shape of the distribution, and for
the highest value of pillar density, it is no more
possible to use the log-normal law to describe the
probability density.

c.  FEwvolution of the mean velocity as a function of
the pillar density

Fig. 13 shows that the average velocity decreases
as a function of the pillar density 3,. To extract a
characteristic rate from this velocity, it is rescaled
by the typical length attached to each pillar den-
sity, it is plotted in Fig. 14. While the average fish
velocity decreases as the pillar density increases,
when scaled by the pillar density it does not show
any clear trend, as shown below in Fig. 14. Hence,
no connection can be made with the tumbling rate.

Appendix B: Theoretical model analysis

Angular probability distribution of the
reorientation event

In Fig. 15, the function (0) is shown for differ-
ent values of pillar density. ¥ (6) depends only on
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FIG. 10. Fish tank without pillars. Main panel: Probability density to find a fish at a given position Z averaged
over 4 experiments. Top panel: Probability density to find a fish at a given distance along the long side (Ozx).
Right panel: Probability density to find a fish at a given distance along the small side (Oy). The frames show
the effect of cropping the data set to keep only data inside the frame.
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FIG. 11. Fish tank without pillars. Probability density
P(]|7]]) to find a fish at a given speed ||¥]| averaged
over 4 experiments. (Solid line with cross): Raw data.
(Other markers): Data corresponding to the crop by
the same frame line as in Fig. 10. (Solid line): Highest
crop value fitted with a log-normal law with parameters
u=1.766+8.10"% and ¢ = 0.869 & 7.1073.

two parameters v and 152,1, where Pgn are deter-
mined from the experimental data (Fig. 7). The
constraint ¢ (0) > 0 is translated into a constraint
on ¥ such that o > ™", When ™" is de-
termined, the function p(#) is fitted according to
Eq. (16) and constraints A € [0;00), i € [0;00)

~min.

and v € [1/ ,oo). Thus, the fit provides a value
for . The function () is plotted in Fig. 15 using

P(d)

d (cm)

FIG. 12. Fish inter-distance probability density P(d)
for different pillar densities values. (Crosses and solid
line): Raw data without pillars ¥, = 0.0cm™2 and
fits. (Dot and dashed line): £, = 0.06cm 2. (Down
triangle and dotted line): ¥, = 0.12cm™2. (Diamond
and dashed dotted line): ¥, = 0.16cm™2. (Star and
solid line): %, = 0.20cm™2. (Up triangle and dashed
line): ¥, = 0.31cm™2. (Dashed line): Interdistance in
the random case.

7 (fit) and Py, (experimental data).
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FIG. 13. Probability density P(||7]|) to find a fish at
a given speed ||9]| for different pillar density values.
(Crosses and solid line): ¥, = 0.0cm™2. (Dot and
dashed line): ¥, = 0.06cm™ 2. (Down triangle and
dotted line): %, = 0.12ecm™2. (Diamond and dashed
dotted line): ¥, = 0.16cm™2. (Star and solid line):
¥, = 0.20cm™2. (Up triangle and dashed line): %, =
0.31cm™2.
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FIG. 14. Evolution of the mean velocity rescaled by
the typical distance attached to the pillar density.
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