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ABSTRACT

Due to the nonlinearities and operational constraints of quadcopters, Model Pre-
dictive Control (MPC) encounters the requirement of high computational power.
This problem may prove impractical, especially for hardware-limited setups. By re-
moving the need for online solvers, Explicit MPC (ExMPC) stands out as a strong
candidate. Yet, the formulation was usually hindered by the system’s nonlinearity
and dimensionality. In this paper, we propose an ExMPC solution for quadcopter
position stabilization. With the former issue, the system is exactly linearized into a
concatenation of three double integrators. For the latter, with a suitable character-
ization of the new convoluted constraints, the stabilizing ExMPC can be computed
for each double integrator separately. The controller is validated via simulations and
experiments on a nanodrone platform. The proposed scheme provides similar per-
formance and theoretical guarantees to the up-to-date nonlinear MPC solutions but
with notably less computational effort, allowing scalability in a centralized manner.

KEYWORDS
Explicit MPC, feedback linearization, differential flatness, quadcopter position
control.

1. Introduction

With an increasingly wide application in autonomous tasks like delivery or surveillance,
quadcopters have proven essential thanks to their mobility and hoverability. Although
being investigated for decades, optimally governing these thrust-propelled vehicles re-
mains an interesting topic in the research community due to their trigonometric-induced
nonlinearity and challenges to rigorously provide both constraint satisfaction and stabil-
ity guarantees. Typically, to deal with the model complexity, the systems are decoupled
into two layers: attitude and position control (Bertrand, Guénard, Hamel, Piet-Lahanier,
& Eck, 2011; Cao & Lynch, 2015; Chen & Wang, 2013). The navigation, hence, is han-
dled in a hierarchical scheme (a.k.a., inner–outer loop control).

Several studies have been conducted to deal with both problems by classical and
modern approaches (e.g., PI/PID (Chen & Wang, 2016; Lei, Li, & Chen, 2018), back-
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stepping (Tran, Sam, He, Luu-Trung-Duong, & Truong, 2018) or data-driven control
(Torrente, Kaufmann, Föhn, & Scaramuzza, 2021)). Distinguishable from the others,
Model Predictive Control (MPC) provides a framework to ensure these requirements
and achieves optimality thanks to its receding horizon mechanism. Indeed, the vehicle’s
navigation has been structurally integrated into the MPC design from various stand-
points in the literature (see Table 1). For example, with the standard axioms of the
terminal ingredients for Nonlinear MPC (NMPC) (Mayne, Rawlings, Rao, & Scokaert,
2000), the works in (Nguyen, Prodan, & Lefèvre, 2020b, 2020c) provide theoretical
guarantees for the stabilization of both layers. Moreover, from a geometrical viewpoint,
an NMPC design was proposed in (Pereira, Leite, & Raffo, 2021) to handle obstacle
avoidance and aggressive trajectory tracking. A more computationally efficient NMPC
for the position control is proposed in (Gomaa, De Silva, Mann, & Gosine, 2022) where
feasibility and stability are ensured without terminal ingredients. Still, it is well known
that the strategy requires high computational power and long sampling time when the
nonlinear model is employed for prediction.

Meanwhile, facing the issue of nonlinearity, it is customary to seek for the notions
of linearization to simplify the control design. Indeed, as an intrinsic characteristic of
the vehicle, the properties of differentially flat systems have been exploited as a bridge
between nonlinear system analysis and linear control theory. The class contains the
systems of which all the states and inputs can be algebraically expressed in terms of
a special output, called the flat output, and a finite number of its derivatives (Fliess,
Lévine, Martin, & Rouchon, 1993). The expression (i.e., the flat representation) pro-
vides different paths to remedy the system nonlinearity, especially in optimization-based
solutions. On one hand, with the flat representation, a feasible trajectory can be gener-
ated via curve parameterization tools (Do, Prodan, & Stoican, 2021; Prodan, Stoican,
& Louembet, 2019). Then, along such an integral curve, a tangent approximation can
be obtained, which is then efficiently handled by scheduling the MPC (Prodan et al.,
2013). While the tracking is simplified to a Quadratic Program (QP), one major the-
oretical drawback for this approach resides on the quantification of the approximation
error and characterization of the stability for the original nonlinear system. On the other
hand, with the input-output relationship provided by the flat representation, the model
can be transformed to a linear equivalent system (Fliess, Lévine, Martin, & Rouchon,
1995) in a new coordinate system, called the flat output space. The navigation now
can be handled by closing the loop for such a linear system. With this approach and
the NMPC strategy, an insightful comparative study was provided in (Sun, Romero,
Foehn, Kaufmann, & Scaramuzza, 2022) for two different flight scenarios. The result
first shows that, for a feasible reference, the flatness-based controller’s tracking per-
formance is comparable with the NMPC but with significantly smaller computational
footprint. However, when being pushed to saturation with physically infeasible flights,
the NMPC provides more reliable performance with its capacity of constraint-handling.
Indeed, when it comes to physical limitation in feedback linearization control, a critical
difficulty rises from the complicated input constraints during the inversion between the
original and the new coordinates. Generally, for flat systems, this direction still remains
open for a constructive strategy guaranteeing stability under constrained actuation.
Pursuing the idea of handling constraints with the linearized system, particular results
on sketching the new feasible domain for quadcopters’ thrust, attitude and angular rate
can be found in (Nguyen, Prodan, & Lefèvre, 2018), which maps the original limits to
nonlinear sets of the flat output and up to its third order derivatives. In (Do & Prodan,
2023; Mueller & D’Andrea, 2013), linear approximation of the input constraints was
employed with MPC for the outer loop control problem, reducing the complexity of
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the position tracking and embedding the system’s stability analysis in a linear setting.
With similar motivation, it was shown in (Nguyen, Prodan, & Lefèvre, 2020a; Xie &
Veitch, 2020) as well that, for the outer-loop, the linearized model can achieve global
asymptotic stability based on the nested saturation control setup (Teel, 1992).

Table 1. MPC-based control for quadcopter systems
Reference
NMPC with feedback linearization local control, computationally com-
plex (Nguyen, Prodan, & Lefevre, 2019).
Computationally simplified NMPC setup with stability, feasibility guar-
anteed, strict tuning (Gomaa et al., 2022).
QP-MPC in the flat output space, with constraint approximation (Do &
Prodan, 2023; Mueller & D’Andrea, 2013).

Position
control

Explicit solution of Bézier curves, no stability analysis and constraint
characterization (Liu, Lu, & Chen, 2015).
Explicit MPC ; assumption of small roll, pitch angles (Jiajin, Rui,
Yingjing, & Jianxiao, 2017).
Stability and feasibility guaranteed, conservative constraint approxima-
tion with computed-torque local controller (Nguyen et al., 2020b).Attitude

control Low-cost NMPC, suboptimal formulation, hovering point approximation
for system prediction (Zanelli, Horn, Frison, & Diehl, 2018).
assumption of small roll, pitch angles; soft constraints (Wang, Pan, Shi,
Hu, & Zhao, 2021).
Learning NMPC with disturbance rejection, experimentally validated
(Torrente et al., 2021).Full

dynamics Finite horizon LQR for the approximated dynamics, constraints neglected
(Cohen, Abdulrahim, & Forbes, 2020).

With the goal of following the latter and advancing toward a low-cost solution while
providing both input and state constraints as well as stability guarantees, the Explicit
MPC (Bemporad, Morari, Dua, & Pistikopoulos, 2002) (ExMPC) constitutes a promis-
ing candidate. The underlying idea is to convert the nonlinearity of the quadcopter’s
position control into a standard QP problem via the flatness-based exact linearization,
with a stability guarantee via standard MPC synthesis (Mayne et al., 2000) and finally
solve such problem within the multi-parametric quadratic programming framework. The
online implementation includes locating the current state inside the look-up table com-
puted offline as a set of critical regions, and evaluating the associated optimal control.
Although there exists related works for this direction in the literature (Jiajin et al.,
2017; Liu et al., 2015), the discussed methods rely on a near hovering point assump-
tion or insufficiently connect the stability arguments. Furthermore, to the best of the
authors’ knowledge, although the simulation findings in these works affirms the theory,
the effectiveness of the strategy has not been experimentally validated for the model
under study. Therefore, exploiting the exactly linearized model in closed-loop of the
quadcopter’s translational dynamics, we:

• propose an original synthesis procedure for implementing the ExMPC to the outer
loop of the quadcopter model via its exact linearization from flatness.

• test experimentally the proposed scheme over multiple nanodrones (the exper-
iment video is available at https://youtu.be/u7PsNDheIR4) and provide the
necessary steps and code for implementation.

While the flat representation was already discussed in the literature (Do & Prodan,
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2023; Mueller & D’Andrea, 2013), we focus on the implementation of the ExMPC and
its ancillary technical prospects. More specifically, in Section 2, the quadcopter position
control problem in both the state/input state and the flat output space will be recalled.
Therein, the linear approximation of the new constraint set is introduced. Section 3
presents the ExMPC formulation in the flat output space. Simulations are also provided
to highlight the computational advantage of our study compared with the standard
implicit MPC approach. Section 4 verified the control scheme via experimental tests
with the Crazyflie platform. Finally, Section 5 concludes and provides future directions.

Notation: Matrices with appropriate dimension are denoted via bold upper-case let-
ters. Bold lower-case letters represent vectors. ∥x∥P ≜

√
x⊤P x denotes the weighted

norm. The letter k represents the signal’s value at the discrete step kts with the sam-
pling time ts. diag(·) returns a diagonal matrix formed by its arguments. ⊖ denotes the
Pontryagin difference. conv{·} denotes the convex hull.

2. System description in the flat output space

2.1. The constrained outer loop

At time step k, the discretized Euler-Newton model for the outer loop control design is
given as (Cao & Lynch, 2021; Nguyen et al., 2020c):

ξi,k+1 = Aξi,k + Bhi(uk), (1)

where pk = [p1,k p2,k p3,k]⊤ ≜ [xk yk zk]⊤ and x, y, z describe the position of the quad-
copter in the inertial frame (m); while, for i ∈ {1, 2, 3}, ξi,k ≜ [pi,k ṗi,k]⊤ ∈ R2 denote
the states vector collecting the position components and their derivative in each axis;
uk ≜ [Tk ϕk θk]⊤ ∈ R3 collects inputs of the system including the normalized thrust

(m/s2), the roll and pitch angles (rad). A ≜
[
1 ts
0 1

]
,B ≜

[
0.5t2s
ts

]
. The remaining

functions are defined as:
h1(uk) = Tk(cosϕk sin θk cosψ + sinϕk sinψ),
h2(uk) = Tk(cosϕk sin θk sinψ − sinϕk cosψ),
h3(uk) = −g + Tk cosϕk cos θk,

(2)

where g ≈ 9.81m/s2 is the gravitational acceleration, ts is the sampling time and ψ
denotes the yaw angle. Moreover, uk is constrained inside a set U defined as:

U ≜ {uk : 0 ≤ Tk ≤ Tmax; |ϕk| ≤ ϵmax, |θk| ≤ ϵmax}, (3)

with Tmax > 0, ϵmax ∈ (0; π/2) denoting the upper bounds of the thrust (Tk), the roll
and the pitch angles (ϕk, θk).

In the literature, system (1) is known to be differentially flat, i.e., there exists a
coordinate change and an endogenous dynamic feedback law that linearizes the model
in closed-loop (Levine, 2009). Indeed, consider the variable transformation (a.k.a., the
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inverse kinematics):

Tk =
√
ũ2

1,k + ũ2
2,k + (ũ3,k + g)2,

ϕk = arcsin ((ũ1,k sinψ − ũ2,k cosψ)/Tk),
θk = arctan ((ũ1,k cosψ + ũ2,k sinψ)/(ũ3,k + g)).

(4)

Then, with ũ3,k ≥ −g, system (1) yields:

ξi,k+1 = Aξi,k + Bũi,k, i ∈ {1, 2, 3}, (5)

where ũk = [ũ1,k ũ2,k ũ3,k]⊤ ∈ R3 is the new input vector of the system. Note that
the dynamics (5) in the new coordinates (called the flat output space) is now simply
composed of three double integrators. However, the constraints described as U given
in (3) now are complicated. Indeed, the admissible set of ũk, such that uk ∈ U , is ψ-
dependent, hence practically time-varying, and non-convex (Do & Prodan, 2023). For
these impractical drawbacks, we introduce a convex subset of the feasible domain as
follows. First, from (4), one can state:

sin |ϕk| = |(ũ1,k sinψ − ũ2,k cosψ)/Tk| ≤
√

(ũ2
1,k + ũ2

2,k)/(ũ2
1,k + ũ2

2,k + (ũ3,k + g)2),
(6)

tan |θk| = |(ũ1,k cosψ + ũ2,k sinψ)/(ũ3,k + g)| ≤
√

(ũ2
1,k + ũ2

2,k)/(ũ3,k + g)2. (7)

Then, with |ϕk|, |θk| ≤ ϵmax < π/2, by bounding the right-hand side of (6) and (7) with
sin ϵmax and tan ϵmax, respectively, we arrive to the condition:

ũ2
1,k + ũ2

2,k ≤ (ũ3,k + g)2 tan2 ϵmax. (8)

Thus, collecting (8), constraint 0 ≤ Tk ≤ Tmax and the linearizing condition in (5), we
obtain a new constraint set for the virtual input ũ:

Vc =
{
ũk ∈ R3 : ũ2

1,k + ũ2
2,k + (ũ3,k + g)2 ≤ T 2

max,

ũ2
1,k + ũ2

2,k ≤ (ũ3,k + g)2 tan2 ϵmax, ũ3,k ≥ −g
}
.

(9)

Consequently, the problem has now been converted to the governing of a system of three
double integrators in (5) with their inputs ũi,k intricately restrained in Vc in (9).

Remark 1. Noteworthy, in model (1), the inclusion ũk ∈ Vc strictly implies uk ∈ U
regardless the value of the feedback signal ψ thanks to the upper bounds given in (6) and
(7). Moreover, the linearizing mapping (4) is, indeed, a homeomorphism which is known
to map the interior and boundary of a set to those of its image, respectively. For these
reasons, as in the following part, inner approximation of the nonlinear set (9) can be
exploited without risking constraint violation.

2.2. Linear inner approximation for the input constraints

It is noticeable that, while represented by quadratic inequalities, the set Vc in (9) can
be also regarded as a set bounded by two surfaces: a disk of radius Tmax centered at
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[0, 0,−g]⊤, and a convex cone characterized by g and ϵmax. Hence, by parameterizing
the intersection ring between the two surfaces, the boundary point of the disk and the
vertex [0, 0,−g]⊤, the set Vc can be approximated as:

Ṽc = conv

[0, 0,−g]⊤, [R⋆ cosα,R⋆ sinα, ũ⋆
3]⊤

[r cosα, r sinα,
√
T 2

max − r2 − g]⊤

 , (10)

with α ∈ N (ℓ1, 0, 2π), r ∈ N (ℓ2, 0, R⋆) for some large integers ℓ1, ℓ2, R⋆ ≜ Tmax sin ϵmax,
ũ⋆

3 ≜ Tmax cos ϵmax − g and N (n, a, b) denotes a finite collection of n evenly sampled
real numbers over the interval [a, b] ⊂ R.

Vertices of Ṽc

(9)
(10)
(11)

ũ
3,

k

ũ2,k ũ1,k

Figure 1. The inner approximation Ṽc (red) of Vc (cyan) with ℓ1 = 5, ℓ2 = 2, ϵmax = 0.1745 (rad), g =
Tmax/1.45 = 9.81 (m/s2).

In this fashion, the constraint set Vc now can be approximated with the polytope Ṽc

in (10) with some sufficiently large ℓ1, ℓ2.
In (Do & Prodan, 2023), it has been shown that the migration to the flat output space

with the approximated input constraints provides a computationally attractive MPC
formulation compared to NMPC solutions in the literature for the same model (Nguyen
et al., 2019, 2020c), since the online optimization problem is now a QP for the linear
dynamics and linear constraints. Accordingly, the stability and feasibility guarantees
become more accessible within the linear MPC design (Mayne et al., 2000). With those
advantages, subsequently, we extend our study to the implementation of the ExMPC,
with a view to opening possible integration in a low-cost embedded architecture.

3. ExMPC for a quadcopter position control

Previously, the problem of nonlinearity has been tackled thanks to the mapping (4) and
the approximation (10). With the complexity of a QP, the framework of linear ExMPC
now can be applied to compute explicitly the optimal control for the six-dimensional
(6D) system (5) with the constraint ũk ∈ Ṽc as in (10). However, as notoriously known
for the implementation of ExMPC, the dimensionality burden is significant for systems
of high dimension (Lee, 2011). In other words, the explicit solution is exponentially
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costly in the offline construction time, data storage capacity required and the online
look-up time, with respect to the dimension and prediction horizon size.

To overcome this challenge, the representation of three independent double integra-
tors will be exploited. More specifically, the input constraints for ũk will be approxi-
mated by a box-type constraint, giving rise to the explicit MPC formulation for each
double integrator in (5). Comparison and simulation with the solution of the classical
6D model will be provided. A summary of the control scheme is given in Figure 2.

ξi,k+1 = Aξi,k+1 +Bũi,k+1 (5)

ξ1,k = [xk, ẋk]⊤, ξ2,k = [yk, ẏk]⊤, ξ3,k = [zk, żk]⊤

(4)
ũk

ukInput
transformation

Nonlinear dynamics

Linear dynamics
in the flat output space

ψ

ũmpc
1,k (ξ1,k)

ũmpc
2,k (ξ2,k)

ũmpc
3,k (ξ3,k)

Quadcopter with
inner-loop control

ũ1,k

ũ2,k

ũ3,k

ξ1,k

ξ2,k

ξ3,k

Explicit MPC law (14)

Figure 2. Explicit MPC scheme for the quadcopter position regulation.

3.1. ExMPC for the quadcopter position stabilization

Consider a box in R3 described as:

B =
{
ũk : |ũi,k| ≤ ¯̃ui, i ∈ {1, 2, 3}

}
⊂ Vc as in (9). (11)

Then, without loss of generality, we decouple the position tracking problem derived
from (5) into the three following MPC regulation problems:

min
Np−1∑
j=0

Vs(ξi,k+j , ũi,k+j) + Vf (ξi,k+Np
) (12a)

s.t:


ξi,k+j+1 = Aξi,k+j+Bũi,k+j ,

ξi,k+j ∈ Xi, j ∈ {0, ..., Np − 1},
|ũi,k+j | ≤ ¯̃ui, ξi,k+Np

∈ Xf,i, i ∈ {1, 2, 3},
(12b)

where, for each i ∈ {1, 2, 3}, ξi,k ∈ R2 is the state collecting the position and the
velocity of the drone projected to the three axis {x, y, z} established as in (1). ũi,k ∈ R
is i-th component of the system’s input in the flat output space described in (5); Xi ≜
{ξi ∈ R2 : |ξi| ≤ [p̄i, ¯̇pi]⊤} is the rectangular state constraint defining the workspace
of the vehicle; Xf,i⊆ Xi denotes the terminal constraint set which is associated with
the terminal cost Vf (·) to ensure both stability and feasibility (Mayne et al., 2000). In
details, the state cost Vs(·) and terminal cost Vf (·) are chosen as:

Vs(ξ, ũ) = ∥ξ∥2
Q + ∥ũ∥2

R; Vf (ξ) = ∥ξ∥2
P , (13)

with R ≻ 0,Q ⪰ 0 and P ⪰ 0 are the user-designed weighting matrix defining the
optimization problem (12a). For the sake of simplicity, in (12a), we employ the same
choice of weighting P ,Q,R for all i ∈ {1, 2, 3}.
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Denote ũ∗
i (ξk) ≜ [ũ∗

i,k, ..., ũ
∗
i,k+Np

]⊤ the optimizer of (12). Then, the control applied
to system (5) is given as:

ũi,k = ũmpc
i,k (ξi,k) ≜ ũ∗

i,k. (14)

Moreover, with the system’s linear representation (5), the solution for the QP (12)
can be rewritten in its dual form via the Karush-Kuhn-Tucker (KKT) conditions. Then,
depending on the state ξi,k, a subset of constraints (12b) becomes active, on which is
formulated a critical region. Over this activated domain, the constrained optimum for
(12) can be explicitly parameterized by ξi,k as (Bemporad et al., 2002):

ũ∗
i (ξi,k)

l∈{1,...,l̄i}
= F i,lξi,k + µi,l, if ξi,k ∈ Ri,l, (15)

where Ri,l = {ξ : Ai,lξ ≤ bi,l} ⊂ R2 denotes the l-th polyhedral critical region, and the
constant parameters F i,l,µi,l are the associated optimal parameters in such a region. l̄i
denotes the total number of critical regions for each double integrator in (5).

Remark 2. It is noteworthy that since Vc has the origin in its interior, there is always
some subset B in the form of (11) with ¯̃ui being sufficiently small. Moreover, as one
candidate, the maximum volume box B inscribed in Vc, can be found by inflating a
zonotope via an optimization problem presented in (Do & Prodan, 2023), since, B is,
indeed, also a zonotope with the center at the origin (see Figure 1). Analytical solution
for the largest B inscribed in Vc are formulated in the Appendix A.

3.2. Simulation study

Previously, with the subset B as in (11), we sidestep the problem of dimensionality
brought about by the 6D description of the model. To demonstrate such a computational
trade-off and to better select the parameters for the proposed scheme, let us proceed
by carrying out a simulation study for both approaches as the following scenarios:

• Scenario 1 (Sce. 1): First, we employ the proposed MPC law generated from (12).
The weighting P is computed from the algebraic Riccati equation. The terminal
constraint set Xf,i is constructed with the polytopic maximal positive invariant
(MPI) set with a local controller ũloc

i,k (ξi,k) ≜ Kξi,k chosen from the LQR for
(A,B,Q,R), ensuring the stability and feasibility of system (5) under the control
(14) (Mayne et al., 2000).

• Scenario 2 (Sce. 2): Herein, we concatenate the dynamics (5) and formulate the
following MPC:

arg min
ũk,...,ũk+Np−1

Np−1∑
j=0

∥ζk+j∥2
Q + ∥ũk+j∥2

R + ∥ũk+Np∥2
P , (16)

s.t
{

ζk+j+1 = Aζk+j + Bũk+j ,

ũk+j ∈ Ṽc as in (10), ζk+j ∈ X , ζk+Np
∈ X f ,

where ζk ≜ [ξ⊤
1,k ξ⊤

2,k ξ⊤
3,k]⊤ ∈ R6 collects the position and velocity of the drone;
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A = diag(A,A,A); B = diag(B,B,B); X = {ζk : ξi,k ∈ Xi, i ∈ {1, 2, 3}}
is the same state constraints chosen as in (12b). Similarly, the matrices Q ≜

diag(Q,Q,Q) and R ≜ diag(R,R,R) are chosen from choice of weighting for
the problem (12). Lastly, the terminal ingredients P ,X f are computed similarly
as in Sce. 1. In other words, for the sake of comparison, the cost function, the state
constraints and the terminal ingredients (the local controller, the quadratic termi-
nal cost) are identically chosen with respect to Scenario 1. The explicit MPC law
is then generated in the same fashion for the optimization problem (16). The main
difference in this control synthesis is that the non-conservative approximation Ṽc

as in (10) is employed, as opposed to B as in (11) for Sce. 1.
• Scenario 3 (Sce. 3): In this case, the implicit MPC law (16) is implemented by

solving the problem online with IPOPT solver in CasAdi.

Figure 3. Explicit MPC solution with different choices of Np.

The simulations are conducted for an interval of 60 seconds. The critical regions
are calculated with the MPT3 toolbox on Matlab 2021b (Herceg, Kvasnica, Jones, &
Morari, 2013) and stored as a .mat file data. The initial position for both scenarios
was chosen as: ξ1,0 = [1.25,−0.8]⊤, ξ2,0 = [0, 0.2]⊤, ξ3,0 = [0.5, 0.2]⊤ while the tuning
adopts the values: Q = diag(50, 5),R = 10, resulting in the corresponding value of

P =
[
524.37 223.75
223.75 225.97

]
, K = −[2.0003, 2.0978]. The parameter setup is given in Table

2. Implementation code can be found in the following address https://gitlab.com/
huuthinh.do0421/explicitmpc-for-quadcopters.

Discussion: Figure 3 presents how the critical regions expand and cover the state
space with respect to different choices of the prediction horizon Np. It is noticeable
that, for a fixed choice of state constraints Xi, after a certain value of Np, the number
of critical regions converges to a fixed value. This can also be seen in the result in
Table 3 for Scenario 1. After Np > 30, the number of regions in each of the three axes
remains constant. Besides, even reaching the limit value, the computational requirement
for data storage is relatively small. Meanwhile, with just 2 steps of prediction, the 6D
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Table 2. Parameters for simulations and experimental tests
Parameters Values

Tmax; ϵmax in (3) 1.45g m/s2; 0.1745 (rad)
Sampling time ts as in (2) 100 ms

¯̃u1, ¯̃u2, ¯̃u3 as in (11) 0.8154,0.8154,3.27
p̄1, p̄2, p̄3 for Xi in (12b) 1.5,1.5,1.5 (m)
¯̇p1, ¯̇p2, ¯̇p3 for Xi in (12b) 1,1,1.5 (m/s)

-1.5 -1 -0.5 0 0.5 1 1.5

xk (m)

-1

-0.5

0

0.5

1

_x
k

(m
/s

)

Sce. 1 (Np = 30)
Xf;1

Sce. 2 (Np = 2)
X1

Sce. 3 (Np = 30)
X f

Initial state

Figure 4. Comparison between the ExMPC for the proposed setup (Sce. 1), for the 6D model (Sce. 2) and
the IMPC with the 6D model (Sce. 3).

explicit MPC solution in Scenario 2 accounts for a memory space that is 234 times
larger than that of a 100-Np in Scenario 1. Although regarded as an offline effort,
the enumeration of all these regions required roughly 24 hours, in comparison with
less than 3 minutes for the entire Scenario 1. Moreover, with an effortful online search
(sequentially checking all the regions), the computational burden of the 6D explicit MPC
is exposed via the runtime required (more than 13 times the sampling time ts). This
performance can be considered impractical for real-time implementation, highlighting
the computational advantage of (12) over (16). Note that during the implementation, the
sequential search among the critical regions was not turned off while the system enters
the invariant terminal region. Therefore, the computational strength of the ExMPC
scheme necessarily comes from the proposed decoupling settings.

Table 3. Simulation results and numerical specifications
Number
of regions

Size
(MB)

Np Avg.
CPU time

RMS
errors (cm)

Sce.1

(99,99,11) 0.02 5 0.1563 ms 18.906
(103,103,11) 0.11 30 0.3385 ms 18.906
(103,103,11) 0.33 80 0.2864 ms 18.906
(103,103,11) 0.41 100 0.1980 ms 18.906

Sce.2 49897 96.0 2 1318.5 ms 109.5

Sce.3

- - 5 4.72 ms 11.46
- - 30 11.63 ms 11.319
- - 80 27.05 ms 11.319
- - 100 33.08 ms 11.319
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Figure 5. Feasible static initial conditions of ExMPC (left - Sce. 1) and IMPC (right - Sce. 2) without state
constraints.

Furthermore, regarding the closed-loop performance for the same chosen parameters,
it is certain that the Implicit MPC (IMPC) in Scenario 3 will outperform the ExMPC
in Scenario 1 due to its less conservative input power (between B in (11) and Ṽc in (10),
respectively). This advantage is not only shown by smaller root-mean-square (RMS)
errors1, but also indicated via the larger terminal invariant set (see Figure 4). With the
interpretation as a safe region ensuring constraint satisfaction and asymptotic stability,
the terminal region X f for Scenario 3 (as well as Scenario 2) encloses a larger domain in
the state space in comparison with Scenario 1. This indicates that, for a fixed choice of
initial condition, both Scenario 2 and Scenario 3 will require a smaller size of prediction
horizon to guarantee the system’s origin convergence and recursive feasibility. However,
despite this advantage, the more efficient offline computation and implementation of
Scenario 2 still remain open for further investigation from both combinatorial and ge-
ometric standpoints (Mihai, Stoican, & Ciubotaru, 2022; Xiu & Zhang, 2020). Lastly,
this conservativeness of Scenario 1 exposes another limitation concerning its feasibility.
More specifically, since the size of the terminal set for a fixed horizon directly affects the
domain of attraction (Brunner, Lazar, & Allgöwer, 2015), it is certain that the feasible
domain will be significantly limited when the set B is employed as apposed to Ṽc. To
demonstrate this drawback, the state constraints in Scenario 1 and 2 were disregarded
and static feasible initial conditions for both cases were collected by checking the po-
sition space on a 20×20 grid sampled on x, y, z ∈ [−20, 20] (m). The simulation result
is depicted in Figure 5. As expected, for a fixed horizon of Np = 30, Sce. 1 shows con-
siderably less feasible initial conditions, while the polytopic approximation Ṽc in Sce. 2
enjoys more control power and, hence, a larger set of feasible states.

Remark 3. With the intention to adapt the stabilization problem (12) for trajectory
tracking problem in the experiment, it is assumed that the reference trajectory satisfies:

(1) ξref
i,k+1 = Aξref

i,k + Bũref
i,k and ũref

k ∈ Vref
c , where ξref

i,k , ũ
ref
k denote the reference for

the state ξi,k and the input ũk, respectively. Vref
c is a time-invariant set enclosing

the reference signal ũref
k .

(2) The polyhedral set ∆Vc ≜ Ṽc ⊖ Vref
c contains the origin as its interior point.

1with the position pk as in (1) and the desired reference pref
k = [pref

1,k, pref
2,k, pref

3,k]⊤, the RMS error was computed

as: RMS error = 1
3

∑3
i=1

√
N−1

sim

∑Nsim

k=0 (pref
i,k

− pi,k)2 with Nsim denoting the final step of the test.
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Then, with ∆ξi,k ≜ ξi,k − ξref
i,k , the tracking error yields:

∆ξi,k+1 = A∆ξi,k + B∆ũi,k, (17)

with the constraint ∆ũk = ũk − ũref
k ∈ ∆Vc. Consequently, by finding a box inside ∆Vc,

the dynamics (17) can be stabilized by the control synthesis for ∆ũk with the similar
explicit MPC setup presented previously. Finally, the reference tracking control can be
implemented as:

ũk = ∆ũk + ũref
k . (18)

4. Experimental validation

Hereinafter, we implement the control scheme described in Figure 2 in the Crazyflie 2.1
nano-drone framework. While the quadcopter’s position and attitude are estimated via
eight motion capture Qualisys cameras, the Explicit MPC (15) is computed by carrying
out a sequential search among the computed regions, respectively for all three axes (i.e,
i ∈ {1, 2, 3}). The resulting control ũk then is transformed back to the real input uk

via (4) and sent to the drone through its Python API with the USB Crazyradio 2.0
dongle. In this work, we limit our problem to the outer-loop control (position control)
for the vehicle and assume that the inner loop (attitude control) is stable. Within the
experimental platform, after being computed in a station computer, the desired thrust
(Tk), the roll (ϕk) and pitch angles (θk) are stacked with the desired yaw rate ψ̇ref ≜ 0
and sent to the drone with an embedded inner-loop to follow (see Figure 6). For this
attitude control layer, the built-in controller of Crazyflie 2.1 is exploited. It includes
two cascade PID angle and angle rate controllers to compute the stabilizing torques in
the roll, pitch and yaw orientation. These torques together with the thrust Tk will be
transformed into PWM signals for the four rotors via a Control Mixer designed for their
X-shape configuration. A detailed discussion for Crazyflie quadcopter’s inner loop can
be found in (C. Luis & Ny, 2016; Nguyen et al., 2020a).

Crazyradio
dongle

Optical markers

Qualisys cameras

Tk, ϕk, θk, ψ
ref

Station computer
Ubuntu 22.04

Figure 6. Experimental setup with Crazyflie quadcopter and Qualisys motion capture.
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4.1. Validation setup

For the validation, we consider the two following tests.
• Test 1: With the objective of tracking the set-point at xf = 0.6, yf = 0.6, zf =

0.8(m), the ExMPC computed in (15) is used. Moreover, a comparison between
different choices of prediction horizon is given. A classical IMPC as in (16) is also
tested in the same setup to highlight the simplicity of our formulation. IPOPT
solver is employed with CasADi Python.

• Test 2: Herein, four quadcopters will be controlled sequentially with the presented
method to track two groups of predefined trajectories: i) Circular reference: (Ref.
1) The four drones pursue a circular motion while maintaining a constant alti-
tude of 1m; ii) Square formation reference: (Ref. 2) The four drones will follow a
square formation trajectories while maintaining a one-meter altitude. The trajec-
tory generation solution was adopted from minimum length B-spline parameteri-
zation framework (Prodan et al., 2019).

In the experiments, weighting matrices in Section 3.2 are readopted.
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Figure 7. The quadcopter position and input uk (with limits shown in green solid lines) in experiment with
ExMPC and IMPC.

Figure 8. Experimental trajectory of ũk in Test 1, Np = 30.
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Figure 9. Computation time and RMS tracking errors with Explicit MPC and Implicit MPC in Test 1 (red)
and Test 2 (blue).

4.2. Experimental validation and discussion

Figure 7 depicts the tested results for the Crazyflie quadcopter, where the tracking ob-
jective and input constraints are both respected. The constraint satisfaction can also be
shown by the containment of ũk in B in Figure 8. Therein, it can be seen that all the
ExMPC setups provide notably less input exploitation as a consequence of the conser-
vative approximation of B in (11) with respect to Ṽc in (10). However, this difference
does not necessarily imply slower convergence or a smaller overshoot. This is because
the trade-off of control power for simplicity in these schemes contrarily provides the
ability to have a solution with much longer prediction horizon, resembling the infinite
horizon solution. Next, the computational advantage of the proposed scheme can also
be observed via the execution time for each controller in Figure 9. Therein, the IMPC
demands virtually 80 times more of the computation time in Test 1, although the track-
ing performance between the two controllers appears to be commensurate. Even when
there are four drones being controlled in Test 2, the computation time of the ExMPC
(around 4ms) is still lower than that of the IMPC tracking with a single drone in Test
1 (52.3ms). Beside the simplicity in digital implementation, qualitative comparisons in
computational burden can also be addressed with the NMPC approaches proposed with
the same theoretical guarantees in the literature (Gomaa et al., 2022; Nguyen et al.,
2020c) (≈10-100ms) while the ExMPC requires under 1ms. This simplicity allows only
the proposed setup to be implemented with four drones in a centralized manner without
exceeding the chosen sampling time.

Moreover, although there are no collision avoidance constraints imposed, the exper-
iments show the controller’s reliability to closely follow a predefined trajectory with a
low computational cost, input constraint satisfaction, and stability guaranteed. This
satisfactory tracking opens possible implementations in a hierarchical structure where
collision-free formation is obtained via online curve parameterization or consensus-based
guidance (C. E. Luis, Vukosavljev, & Schoellig, 2020) and dynamical constraints are
guaranteed at the lower level. Furthermore, from an implementation viewpoint, al-
though restrictive, the fast feasible decision, prediction and collection of active con-
straints from the proposed setup also show a promising direction where they are ex-
ploited in a warm-start procedure to reduce online computational effort within the
IMPC settings (Zeilinger, Jones, & Morari, 2011).

Finally, it is important to bring to light that, although successful validation under
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Figure 10. Quadcopters’ trajectory tracking with Explicit MPC (Square formation reference, dashed and
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indoor environment was provided, the study with model (1) enjoyed several assump-
tions including little disturbances (e.g., drag), uncertainties or mismatch between the
outer loop and the inner loop. These limitations will undeniably become more critical
when larger models or outdoor applications are considered. Therefore, future comple-
tion of the method will concentrate on the robustification of the scheme via additional
countermeasures such as disturbance rejection with estimators or robust MPC.

5. Conclusion

With the advantage of the linear representation in the flat output space of the quad-
copter’s translational dynamics, this work proposes the constrained position tracking
problem of the vehicle within the framework of the explicit MPC design. The success-
fully validated results highlight the computational advantage of the explicit formulation,
while the conservativeness of the approximated input constraints can be compensated
via appropriate tuning and a sufficiently large prediction horizon. Future direction con-
cerns the implementation of more efficient point location algorithms to make use of
the less conservative constraint set Ṽc in (10), while respecting the high sampling fre-
quency of the vehicle. Furthermore, robust design subject to external and aerodynamics
disturbances will be considered for larger scale models.

Appendix A. Largest box inscribed in Vc

With the zonotopic setup in (Do & Prodan, 2023), the maximum volume set B as in
(11) inscribed in Vc in (9) is found by solving:

(¯̃u1, ¯̃u2, ¯̃u3)∗ = arg max ¯̃u1 ¯̃u2 ¯̃u3, (A1a)
s.t: I(¯̃u1, ¯̃u2, ¯̃u3) ∈ Vc as in (9). (A1b)

where I(¯̃u1, ¯̃u2, ¯̃u3) ≜ {
∑3

i=1 0.5γi ¯̃uiei : |γi| = 1} denote the finite set which contains
all the vertices of B, with ei denoting the i-th column of the 3 × 3 identity matrix.
The finite condition (A1b) implies and is implied by the containment B ⊂ Vc thanks
to the convexity of Vc, while the cost function (A1a) maximizes the volume of B. With
the continuity of the cost function and the boundedness of the constraints in (A1), the
existence of an optimal solution is certain. By analyzing the KKT necessary conditions,
the description of the set can be briefly expressed as follows:

• if 2c⋆(g + c⋆) − tan(ϵmax)2(c⋆ − g)2 < 0, then:

¯̃u3 = c⋆; ¯̃u1 = ¯̃u2 =
√
c⋆(c⋆ + g). (A2)

• Otherwise,

¯̃u3 = g/3; ¯̃u1 = ¯̃u2 = tan(ϵmax)
√

¯̃u3(g − ¯̃u3), (A3)

where c⋆ ≜
(
−2g +

√
g2 + 3T 2

max

)
/3.
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