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Abstract. The emerging technologies of smartphones and wearable de-
vices have transformed Human Activity Recognition (HAR), offering a
rich source of sensor data for building an automated system to recognize
people’s daily activities. The sensor-based HAR data also enables Ma-
chine Learning (ML) algorithms to classify various activities, indicating
a new era of intelligent systems for health monitoring and diagnostics.
However, integrating ML into these systems faces the challenge of catas-
trophic forgetting, where models lose proficiency in previously learned
activities when introduced to new ones by users. Continual Learning
(CL) has emerged as a solution, enabling models to learn continuously
from evolving data streams while reducing forgetting of past knowledge.
Within CL methodologies, the use of generative models, such as Vari-
ational Autoencoders (VAEs), for example, has drawn significant inter-
est for their capacity to generate synthetic data. This reduces storage
demands by creating on-demand samples. However, the application of
VAEs with a CL classifier has been limited to low-dimensional data or
fine-grained features, leaving a gap in harnessing raw, high-dimensional
sensor data for the HAR model. Our research aims to bridge this gap
by constructing VAEs with filtering mechanism for direct training with
raw sensor data from the HAR dataset, enhancing CL models’ capability
in class-incremental learning scenario. We demonstrate that VAE with
a boundary box sampling and filtering process significantly outperforms
both traditional and hybrid exemplar CL methods, offering a more bal-
anced and diverse training set that enhances the knowledge acquisition
of the model. Our findings also emphasize the importance of sampling
strategies in the latent space of VAEs to maximize data diversity, crucial
for recognizing the variability in human activities for better representa-
tion of each activity in each CL task.

Keywords: Continual Learning · HAR · Replay Methods · VAE

1 Introduction

With the introduction of smartphones and wearable devices, a wealth of sen-
sor data became available, offering a more nuanced and automated approach
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to understanding human activities in HAR systems. These devices, carried by
millions of users, continuously collect data through built-in sensors, such as ac-
celerometers, gyroscopes, capturing the information of users’ daily movements
and behaviors. These data-driven HAR systems enables the development of ML
algorithms to identify different activities through the patterns inherent in this
sensor data. The shift towards leveraging ML models to interpret this data shows
a promising insight into human activity, paving the way for intelligent systems
capable of enhancing personal health tracking, and diagnosis.

However, the ever-changing nature of real world data streams pose a funda-
mental problem to classical ML approaches. More particularly, classically trained
models tend to forget previously acquired knowledge when exposed to new data,
a phenomenon called catastrophic forgetting. This issue is particularly relevant
in HAR, where data streams come from sensors on smartphones or wearable de-
vices, capturing activities of users such as walking, running, or sitting over time.
As new activities are introduced, a traditional ML model might lose its ability
to recognize the activities it was previously trained on. To alleviate this prob-
lem, Continual learning (CL) is introduced, focusing on developing algorithms
and methodologies that allow models to learn from changing data streams while
retaining prior knowledge. In the context of CL, a task refers to learning how to
recognize a set of activities, and a CL classifier is a model whose goal is to learn
from a sequence of tasks. When a user performs more activities, additional tasks
are added to the model training. CL approaches are thus applied to the model
training to enable the model to adapt to new tasks sequentially without losing
old knowledge.

Among the strategies in CL, replay methods stand out for their ability to mit-
igate forgetting by revisiting a subset of old data when learning new tasks, thus
preserving earlier knowledge. Despite their promise, storage constraints make it
impractical and costly. Two approaches exist to address this issue: storing and
exploiting a small subset of examples or training a generative model to generate
as many examples as needed on the fly. The first approach naturally leads to
heavy data imbalance while the second is more complex and some generative
models are notoriously hard to train.

Employing generative models, specifically Variational Autoencoders (VAEs),
in CL can be a compelling solution. VAEs present several key advantages in the
context of CL on smart devices. They are lightweight, easy to train (contrary
to GANs) and can generate samples at a low computational cost (contrary to
Normalizing Flows or Score Matching methods).

By leveraging VAEs, smart systems can continuously learn and adapt to new
activities without the limitations of data access size, ensuring that the storage
costs are minimized. However, prior implementations have predominantly fo-
cused on low-dimensional data and engineered features. This leaves a gap in the
application and effectiveness of these models when dealing with the complexity
and high dimensionality characteristic of raw sensor-based HAR data.

In our study, we address this issue by training the CL model with VAEs on
raw sensor data and generating refined data through a filtering process based
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on classifier predictions within the VAE. In Section 2, we present an overview
of CL, elaborating different CL methodologies and their implementations across
different fields, followed by a discussion on how VAEs contribute to support
the CL model in mitigating forgetting while learning new knowledge. Then, the
VAE-Based CL framework and the filtering process are elaborated in Section 3.
In Section 4, we delve into experimental protocol details regarding CL training
with both real and synthetic data samples. Experimental settings are presented
in Section 5 before findings and discussion are detailed in Section 6. Finally, in
Section 7, we conclude our work and suggest future research directions.

2 Background and Related Work

In the domain of HAR, a number of previous works have been conducted on
sensor-based HAR, emphasizing feature extraction methods and training pro-
cess. Bulling et al. [3] investigated different feature extraction techniques based
on statistical analysis on the features of the HAR data. Despite displaying en-
couraging results, the extracted features are carefully engineered and heuristic
in the process, lacking a generalized or systematic approach to accurately clas-
sify human activities. To overcome this limitation, Hammerla et al. [9] examined
the use of convolutional neural networks (CNNs), and recurrent neural networks
(RNNs) across multiple HAR datasets [2,5,25], which comprised movement data
from wearable sensors. Their findings suggest that deep learning models excel
at identifying local patterns within sensor data, and the inherent translational
invariance of these models contributes to their high accuracy in activity recog-
nition. Nonetheless, new issues arise as these models were trained on predefined
activities, posing difficulties in adapting to new activities that users do in their
daily routine [28].

To alleviate this issue, the research in Continual Learning (CL) is gaining
interest for its ability to enable models to adapt to new data while retain-
ing previously acquired knowledge. CL displays promising applications in smart
homes [7], sports training [20], and healthcare [31]. CL employs various strategies
to maintain past knowledge when facing new tasks. Architecture-based meth-
ods [6, 23, 29] ensure minimal interference between tasks by modifying the net-
work’s structure for new information, but this leads to increased complexity and
potential scalability issues. To address this, regularization strategies [1, 13, 18]
keep the model architecture fixed, applying constraints on weight updates to
protect old knowledge. However, they struggle in the class-incremental scenario
where there is significant similarity between classes in each task [10].

Replay approaches [19,22,24,27] address this issue by incorporating a subset
of data from previous tasks alongside current task data during training, which
consists of either real or synthetically generated samples. Real data ensures di-
rect knowledge recall but raises issues like increased memory use and potential
data distribution misrepresentation. To overcome these, generative models [8,14]
are used to create synthetic data, which reduces memory storage and addresses
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privacy concerns, all while ensuring the synthetic samples accurately reflect es-
sential task-specific features.

The use of generative models to improve the model performance in CL
have been widely implemented on computer vision with remarkable outcome
[17,21,30]. However, in sensor-based HAR, the collected data is time-series data
which is high dimensional. As a result, it poses a big challenge in applying CL
methods to train the model in CL scenarios. Ye et al. [35] apply the work of Shin
et al. [30], Deep Generative Replay (DGR), to HAR datasets, using Generative
Adversarial Networks (GANs) to generate samples for CL tasks. This approach
can lead to significant computational costs due to the necessity of separate GANs
and classifiers for each task, contradicting the CL paradigm of using a singular
classifier. Moreover, they further adopted the strategy from Van and Tolias [33]
of integrating a VAE directly into the primary classifier. Despite being inno-
vative, this approach also introduces the risk of overfitting due to an increase
in parameters and model complexity, particularly when limited training data is
available. Additionally, they also propose HAR-GAN, which incorporates GANs
as one part of their CL framework. While showing encouraging results, their CL
framework has a limitation regarding scalability issues as the network grows with
each new class, making it less suitable for resource-constrained environments. In
addition, the limitation also lies on the data imbalance despite their effort in
including a method to deal with it.

From the benchmark results of Jha et. al [12] of different CL approaches
with a variety of HAR datasets, Learning a Unified Classifier Incrementally
via Rebalancing (LUCIR) [11] has demonstrated a significant contribution in
tackling the issue of data imbalance using cosine normalization. Despite the
effort from previous studies, most of them are conducted with low-dimensional
data and fine-grained features extracted from the HAR dataset without any
systematic feature extraction process. While shown effective, the limitation lies
on the training of generative models, particularly when involving with the high
dimensional data, including the raw sensor data. Besides, not only is sensor
data high dimension but there is also a high variance in sensor data of each
activity due to the different individual [16] or sensor quality [36]. Despite multiple
applications of existing CL approaches across different domains, the study on
conducting a CL strategy with the raw sensor-based HAR data is still limited.

3 VAE-Based CL Framework with Classifier and Filtering
Process

In our work, we aim to reduce the complexity associated with training generative
models by developing a task-specific VAE to assist the CL classifier in a class-
incremental learning scenario.

This approach is designed to directly expose the model to raw sensor data
from new activities in each task, leveraging the VAE to generate exemplars. This
strategy facilitates knowledge retention, addresses storage constraints and natu-
rally avoids training challenges related to data imbalance between the exemplars
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and training data in the new task. By focusing on training with raw sensor data,
our study seeks to create a more direct and efficient method to accommodate new
activities while accounting for the inherent variability and high dimensionality
of sensor data in HAR.

3.1 VAE and CL classifier architecture

We construct a VAE with three main components: an encoder, a decoder, and a
classifier as displayed in Fig 1(a). The encoder transforms high-dimensional input
data into a lower-dimensional latent space, creating a compressed representation
that captures essential features of the data. From this latent space, sampled
latent vectors are passed to the decoder, which reconstructs the input data.
The VAE classifier, built upon the latent representation, is used for labeling
the reconstructed data. This classifier also imposes additional structure on the
latent space, enhancing feature distinction between different classes. This dual
capability makes VAEs valuable for generating meaningful and diverse samples
with accurate labels. The reconstructed data can then be used as generated data
to combine with the data from the new task to train the CL classifier during the
CL training process.

The encoder consists of five 1D convolutional layers, each followed by batch
normalization and LeakyReLU activation. Max-pooling operations with the ker-
nel size and stride of 2 are also conducted between each convolutional layer to
reduce the spatial dimensions of the feature maps. In the first 3 convolutional
layers, a kernel size of 3 is used and the number of kernels are arranged as 16, 32,
and 64 respectively. Finally, the final 2 convolutional layers have 64 filters with
a kernel size of 5. The tensor is then fed into two separate fully connected layers
with 64 neurons to produce the mean and log variance of the latent distribution,
denoting the parameters for the probabilistic encoding of the inputs.

The decoder begins with a fully connected layer with the size of 384. After
that, another series of three transposed convolutional layers, each equipped with
LeakyReLU activation. The first two layers used 16 filters with the kernel sizes
of 5 and 3. The final transposed convolutional layer has 6 filters and a kernel
size of 3.

Lastly, the VAE classifier is a MLP (multilayer perceptron) with a single
hidden layer of 32 neurons with LeakyReLU activation. The softmax activation
function is applied in the final layer to obtain a probability distribution over the
class labels.

On the other hand, the CL classifier, which is responsible for learning tasks
incrementally, is a Convolutional Neural Network (CNN) with four convolutional
layers with 16, 32, 32, 64 filters respectively. The first two layers use filter size
of 3, and the following two layers use a filter size of 5. Each convolutional layer
is equipped with a batch normalization, ReLU activation and max-pooling op-
eration using a filter size of 2. Finally, the tensor is fed to the fully connected
layer with 32 units, followed by the final output layer.
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Fig. 1. (a). VAE architecture (b). Overview of VAE with filtering process framework

3.2 Filtering mechanism in generated sample selection

For each task in CL training, a VAE is trained individually as described in
Section 4.3. This designed process aims to enhance the fidelity of the gener-
ated data, improving the representativeness of the generated data for each class.
Through the filtering criterion that excludes samples below the prediction score
threshold, this strategy can minimize the inclusion of ambiguous samples. This
can improve the overall quality and reliability of the pseudo-samples, thereby
optimizing the learning efficiency and predictive performance of models. This
proposed framework is illustrated in Fig 1(b).

4 Experimental protocol

4.1 CL Training with random sampling from the real data

In this experiment, two classes are randomly selected and input into the CL
classifier for training. At each training task, a predetermined quantity of samples
are chosen from the training data via random selection. Following the completion
of the first task, the CL model is trained with two new classes for subsequent
tasks. After each task is completed, the model is evaluated using a test set that
includes all the classes previously encountered during the training so far. This
process repeats, continually updating the classifier with new classes and assessing
its performance after each task.
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4.2 Training with Hybrid CL Methods using real data

This experiment assesses model performance when training with different CL
strategies. Also, it allows us to evaluate the effectiveness of using generated
samples with VAE compared to the different CL methods. The training process
with hybrid CL methods is illustrated in Fig 2.

Similarly to the previous experiment, it starts by randomly selecting two
classes for the initial task. However, different methods are applied in sample
selection for each CL approach such as random and herding sampling [34]. In
addition, the model from the previous task is also used for different processes in
each CL approach. The CL approaches selected for these experiments are Elastic
Weight Consolidation with Replay (EWC Replay), Incremental Classifier and
Representation Learning (iCaRL), and LUCIR.

Elastic Weight Consolidation (EWC) Proposed by Kirkpatrick et al. [15],
EWC addresses catastrophic forgetting in CL by identifying and preserving the
weights crucial for previously learned tasks. In this approach, the Fisher Informa-
tion Matrix (FIM) is constructed to calculate the importance of each parameter
in each task. When learning new tasks, a penalty is applied to the loss function
for significant changes from the important parameters. In our implementation,
EWC serves as a weight regularizer of the CL classifier to maintain knowledge of
previous tasks, complemented by exemplars randomly selected from the training
data for each task.

Incremental Classifier and Representation Learning (iCaRL) iCaRL,
introduced by Rebuffi et al. [24], is a hybrid approach in CL that leverages knowl-
edge distillation and memory replay. In each task, exemplars are selected using
the herding sampling technique from each class of training data and stored in
fixed memory. In herding sampling, samples are selected based on their closeness
to the class mean in the feature space to ensure a comprehensive representa-
tion of each class. During model training, the loss function of iCaRL combines
Cross-Entropy (CE) loss for new class learning with Knowledge Distillation (KD)
loss for the preservation of previously acquired knowledge, facilitating seamless
knowledge transfer. With this combination of components, iCaRL allows for up-
dating the model with new data without forgetting old knowledge, enabling the
network to perform well in different CL scenarios.

Learning a Unified Classifier Incrementally via Rebalancing (LUCIR)
LUCIR is a hybrid CL approach which is implemented in our experiment with
the use of exemplars. Proposed by Hou et al [11], this method combines the
three components to deal with the data imbalance that naturally occurs when
using exemplars. The first component, Cosine Normalization, is applied to the
final layer to level the differences caused by the varying magnitudes of embed-
dings and biases as those of the new classes tend to be significantly higher than
those from previous tasks. The second component, the Less-Forget Constraint,
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is applied to preserve the integrity of knowledge from earlier tasks. It maintains
the established geometric configuration of the older class embeddings of older
classes throughout subsequent tasks. The last component, Inter-Class Separa-
tion, applies margin ranking loss to create a distinction between old and new
class samples within the training data.

With the combination of these three elements, LUCIR has shown to be an
effective CL algorithm for preserving knowledge from earlier tasks [11,12]. Hence,
in this study, we are going implement this method with real-data exemplars
to compare the results with the use of VAE in the class-incremental learning
scenario.

Fig. 2. Training process with CL methods using real data as exemplars

4.3 CL training with generated data from VAE and the filtering
process

For our approach, the CL classifier is trained with the first two randomly selected
classes. In addition, the training data from the current task is also used to train
a VAE specialized in generating sample from the current task. For subsequent
tasks, the saved VAEs from each of the previous tasks are loaded to generate
data of the previous classes according to the assigned task of the VAE.

In the data generation process, we used two strategies for sampling latent
vectors from the latent space:
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Fig. 3. Training process with VAE as a generative model.

– Adaptive Boundary Sampling: Adjusting boundaries dynamically in each
latent space dimension based on data distribution percentiles, ensuring cov-
erage of key variations learned by the VAE. However, this can lead to a
lack of diversity of the data representation. Latent vectors are generated by
sampling random values within these flexible boundaries.

– Boundary Box Sampling: Setting fixed boundaries using the minimum and
maximum values for each latent space dimension, enhancing data diversity
but potentially including lower-quality samples. Latent vectors are generated
by sampling random values within these predefined ranges.

The sampled latent vectors are input into the VAE classifier for the labeling
process, and further into the decoder for generating pseudo-samples. Then, a
filtering process was implemented. For larger coverage, it was only used with
the boundary box strategy. This filtering process only keeps samples with a
classification confidence above a given threshold, p, from the VAE classifier. The
performance of the model is evaluated with and without filtering process.

When the data generation process is completed, the generated data is merged
with the training data of the two new classes in the current task. After training,
the classifier is then evaluated in the same way as presented in Section 4.1. The
training process with generated data from VAE is displayed in Fig 3.

4.4 Metrics

In CL context, the model is trained with a continually updating data stream
of multiple tasks. Hence, it is necessary to conduct a comprehensive evaluation
which not only assesses the model’s capability to adapt to new information but
also to retain past knowledge. In this experiment, we evaluate the performance
of the model by focusing on the following metrics:
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Accuracy by Tasks (ACT) is the accuracy of recognizing all classes trained
so far in each task. This metric is used to indicate the overall performance of
the model with both newly and previously learnt classes in all tasks.

New-Class Accuracy by Tasks (NCT) is the accuracy of recognizing new
activities in the current task. This metric helps evaluating plasticity: the model’s
ability to learn new information.

Old-Class Accuracy by Tasks (OCT) is the accuracy of recognizing all old
classes which have been learnt from the previous tasks. It is a measure of the
model’s stability: the model’s ability to retain knowledge of previously learned
classes when trained on new tasks.

Forgetting Score by Tasks (FS) [4] measures the degree to which a model’s
performance on previous tasks degrades as it learns new tasks. The forgetting
score at task k, FSk, is computed as:

FSk =
1

k − 1

k−1∑
j=1

fk
j

where fk
j = 1 − Ak

j

maxi∈{1,...,k−1} Ai
j

and Ak
j is the accuracy on the classes learnt

at task j with the model trained up to task k. Intuitively this metric gives
the average performance loss across all tasks seen. A forgetting score of 1 thus
indicates that all performance has been lost (the model entirely forgot) and a
forgetting score of 0 indicates that the model is the best performing so far across
all tasks seen (no forgetting).

5 Experimental Settings

5.1 Datasets

Experiments in this study were conducted using the UCI HAR Dataset [26].
This dataset is an open dataset in which the data is gathered from inertial
sensors, including accelerometers and gyroscopes, across the x, y, and z axes.
The specifications of the dataset are depicted in Table 1, and the frequency of
each activity in the dataset is presented in Table 2.

5.2 Sampling Process from the Real Data

In CL tasks, due to the limited storage capacity, it is very important to select
the samples which are the good representatives for each class. With random
sampling, the samples from each class are randomly selected based on the defined
number of samples. This sample selection process is also applied to the case
of EWC Replay. However, for iCaRL and LUCIR, following the methodology
originally conducted in [24] and [11], herding sampling [34] is applied to select
the samples to train the model.
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Table 1. Specifications of UCI HAR Dataset

Number of participants 30
Device Smartphone (Samsung Galaxy SII)

Collected data 3-axial linear data (x, y, z) from
accelerometers and gyroscopes

Sampling rate 50Hz
Year 2012
Number of classes 6

Table 2. Frequency of each activity in UCI HAR dataset

Description Activity # samples

Walking 0 1722
Walking Up 1 1544
Walking Down 2 1406
Sitting 3 1777
Standing 4 1906
Laying 5 1944

5.3 Implementation Details

Defining exemplar sizes for the experiment We use exemplar set sizes
k of (10, 14, 17, 21, and 25) for random sampling process. For iCaRL, which
necessitates a fixed memory size [24], we determine the exemplar size by dividing
the total memory by the current number of classes in each task. As indicated
by Table 3, the total size of VAE is more efficient than larger real samples (17,
21, and 25) across all tasks, yet we also explore performance with smaller real
data sizes (10 and 14) for baseline comparison. This analysis aims to determine
if VAE-generated data can match or outperform the use of more substantial real
data in CL training, given the similar amount of space in each task. This provides
insights of using generated data over real data, considering the trade-offs between
sample quantity and quality in the training process.

Table 3. Size of real data as exemplars and VAE across all tasks in Kilobytes (KB).

Task 1 Task 2 Task 3 Total (KB)
Real sample (k=17) 206 410 614 1230
Real sample (k=21) 254 506 758 1518
Real sample (k=25) 301 602 901 1804

VAE Model 392 392 392 1176

CL Training with real data and generated data as exemplars With
real data, random sampling is used in EWC Replay while herding sampling is
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applied in iCaRL and LUCIR to follow the principle of each CL approach. With
generated data from VAE, we align the generated data size per class to the
average training data size for each new task, ensuring balanced training sets. In
the filtering process of the generated sample, a number of predicted probabilities
p from VAE classifier within [0.75, 0.97] are also used as the minimum probability
for sample selection. The CL classifier demonstrates the best performance in
p = 0.80. Hence, these results are included in our comparative analysis of CL
strategies. More details on the training parameters of the implementation of CL
training are described in Table 4.

Table 4. Parameter setting for the experiment

Parameters Value
Learning Rate 0.0005
Batch Size 64
Number of Epochs 20
Latent Space Dimension (VAE) 64
Coefficient of Reconstruction Loss (VAE) 1
Coefficient of KL Divergence Loss (VAE) 0.001
Coefficient of Classification Loss (VAE) 1

6 Results

Fig 4 illustrates the all-class accuracy across tasks. The result reveals that ran-
dom sampling, EWC Replay, and iCaRL have comparable accuracy, ranging
from 53% to 60% in Task 2 and from 38% to 45% in Task 3. LUCIR demon-
strates a lower accuracy in Task 2 with accuracies between 51% and 56%, but
sees a notably higher accuracy in Task 3, increasing to the range of 42% and
45%. The VAE with boundary box technique outperforms others, maintaining
around 62% accuracy in Task 2 and approximately 48% in Task 3. The filtering
process of the VAE further enhancing accuracy by about 4% and 2% in Task 2
and Task 3 respectively. In contrast, VAE with the adaptive boundary approach
exhibits a decrease in accuracy, falling from 57% to just under 40% by Task 3.

6.1 Plasticity of the CL classifier

The new-class accuracy for each method is presented in Fig. 5. The data reveals
that across all tasks, most sampling methods maintain a high accuracy rate,
hovering from 92% to 97%. iCaRL shows a significant decline in the accuracy
in Task 3, falling from roughly 92% in Task 2 to just around 84% in Task 3.
Meanwhile, LUCIR, which has a lower accuracy of approximately 85% in Task
2, displays a significant improvement by reaching around 93% in Task 3.
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6.2 Stability of the CL classifier

The old-class accuracy is shown in Fig 6. Despite a significant decline in the
accuracy in all sampling methods from Task 2, VAE Boundary Box with filtering
maintains the highest accuracy when transitioning to new tasks. Specifically, it
achieves an accuracy of about 45% accuracy in Task 2 and nearly 30% in Task
3. This represents gains of approximately 12% and 3% in Task 2 and Task 3,
respectively, compared to its non-filtered counterpart. Additionally, LUCIR has
consistently outperformed iCaRL by approximately 2-4% in accuracy across each
task. Moreover, it is also noticeable that the accuracy of the VAE with adaptive
boundary sampling method is remarkably low, on par with the performance
when using 10 and 14 real-data exemplars.

This is also explained by Fig 7 where using adaptive boundary as a sampling
method in VAE shows a higher forgetting score compared to other methods. In
this measure, both the filtered and non-filtered versions of the VAE Boundary
Box achieved significantly lower forgetting scores compared to other methods,
at just 48% and 62% respectively. In Task 3, the filtered VAE Boundary Box
outperforms all other methods with a significantly lower forgetting score of about
65%.

Fig. 4. All-class accuracy by tasks comparison between methods involving real data
sampling (Random, EWC-Replay, iCaRL, and LUCIR) in different sample size k (10,
14, 17, 21, 25) and the methods using generated data from VAE (Adaptive boundary,
boundary box with and without filtering process)

6.3 Discussion

Our findings show that the choice of replay strategy for the CL classifier plays a
crucial role in the plasticity and stability performance of the model. Our analysis
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Fig. 5. New-class accuracy by tasks comparison between methods involving real data
sampling (Random, EWC-Replay, iCaRL, and LUCIR) in different sample size k (10,
14, 17, 21, 25) and the methods using generated data from VAE (Adaptive boundary,
boundary box with and without filtering process)

Fig. 6. Old-class accuracy by tasks comparison between methods involving real data
sampling (Random, EWC-Replay, iCaRL, and LUCIR) in different sample size k (10,
14, 17, 21, 25) and the methods using generated data from VAE (Adaptive boundary,
boundary box with and without filtering process)
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Fig. 7. Forgetting score by tasks (lower is better) comparison between methods in-
volving real data sampling (Random, EWC-Replay, iCaRL, and LUCIR) in different
sample size k (10, 14, 17, 21, 25) and the methods using generated data from VAE
(Adaptive boundary, boundary box with and without filtering process)

across various tasks shows that generative replay with VAE outperforms expe-
rience replay methods via exemplars with equivalent memory footprint. The
all-class accuracy depicted in Fig 4 shows the VAE with boundary box sampling
as a superior technique, consistently outperforming others across all tasks. This
implies that VAE-generated samples can effectively complement real data, en-
suring a diversified and representative training set that supports the classifier
on learning new classes incrementally. Additionally, applying a filtering process
based on the confidence of VAE classifiers refine model performance by supplying
more reliable generated data.

Moreover, the new-class and old-class accuracy results from Fig 5 and 6
demonstrate plasticity-stability performance of the model which address the crit-
ical balance between preserving old knowledge and acquiring new information in
continual learning models. In the case of hybrid CL approaches such as iCaRL
and LUCIR, despite being able to maintain a better old-class accuracy and for-
getting score across tasks compared to most of the other techniques, it has a
lower accuracy in new-class accuracy in each task. This trend exemplifies the
plasticity-stability trade-off inherent in both approaches, where the safeguard-
ing of old information may be prioritized at the expense of optimally learning
new data. From our experiments, VAE shows its capability to deal with this issue
by improving the knowledge retention of old tasks without having to sacrifice
the learning of activities in new tasks.

Furthermore, our study highlights the role of sampling methods in the latent
space of VAEs, revealing how boundary box sampling captures a broader diver-
sity in the latent space than the adaptive boundary method, which has a higher
forgetting score indicating a focus on dominant features over diversity. This di-
versity is crucial for smartphone sensor-based HAR, where individual variability
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is significant, influenced by health condition and age factors [32]. The boundary
box sampling shows its potential by covering a wider range in the latent space,
ensuring the generation of diverse samples. However, despite a notably low for-
getting score in the second task, the VAE Boundary Box performance aligns
with other methods by Task 3, indicating a potential area for improvement.

One research avenue could be the development of smart strategies for enhanc-
ing both the data representation quality of the generated data and its labeling.
Our study shows that selectively filtering samples based on a classifier’s minimum
prediction probability enhances model performance. More advanced techniques,
such as clustering in the latent space to identify and select core data points close
to the centroids, could latent vector generation. The use of a GMM to sample
latent vectors may also lead to a more accurate data generation.

7 Conclusion and Future Work

In conclusion, our findings highlight the efficiency of using VAE as a genera-
tive model to support replay based CL methods. The results reveal that VAEs,
particularly with boundary box sampling, remarkably enhance the model per-
formance across tasks compared to examplar based methods. This superiority
suggests that VAE-generated samples can effectively augment real data, foster-
ing a training set that can enhance the classifier’s learning capabilities in CL
scenario. Moreover, our analysis of plasticity-stability performance across dif-
ferent tasks illustrates the effectiveness of the VAE in maintaining a balance
between preserving old knowledge and assimilating new information, a crucial
aspect of CL models. As demonstrated in our study, the improvement in model
performance from the refining process applied to the generated data could be a
good initiative for future research work focused enhancing the quality of data
produced by generative models.

For future work, we aim to delve into both advanced sampling strategies
from the latent space and latent space optimization to enhance the diversity and
quality of data generated for CL models. By exploring innovative methods for
sampling from the latent space, we aim to improve the fidelity and variety of
synthetic data.

References

1. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory
aware synapses: Learning what (not) to forget. In: Proceedings of the European
conference on computer vision (ECCV). pp. 139–154 (2018)

2. Bachlin, M., Roggen, D., Troster, G., Plotnik, M., Inbar, N., Meidan, I., Her-
man, T., Brozgol, M., Shaviv, E., Giladi, N., et al.: Potentials of enhanced context
awareness in wearable assistants for parkinson’s disease patients with the freezing
of gait syndrome. In: 2009 International Symposium on Wearable Computers. pp.
123–130. IEEE (2009)

3. Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using
body-worn inertial sensors. ACM Computing Surveys (CSUR) 46(3), 1–33 (2014)



Leveraging Task-Specific VAEs for Efficient Exemplar Generation in HAR 17

4. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.: Riemannian walk for in-
cremental learning: Understanding forgetting and intransigence. In: Proceedings of
the European conference on computer vision (ECCV). pp. 532–547 (2018)

5. Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S.T., Tröster, G., Millán,
J.d.R., Roggen, D.: The opportunity challenge: A benchmark database for on-body
sensor-based activity recognition. Pattern Recognition Letters 34(15), 2033–2042
(2013)

6. Chen, T., Goodfellow, I., Shlens, J.: Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641 (2015)

7. Chua, S.L., Foo, L.K., Guesgen, H.W., Marsland, S.: Incremental learning of human
activities in smart homes. Sensors 22(21), 8458 (2022)

8. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial networks. Communications of the
ACM 63(11), 139–144 (2020)

9. Hammerla, N.Y., Halloran, S., Plötz, T.: Deep, convolutional, and recurrent models
for human activity recognition using wearables. arXiv preprint arXiv:1604.08880
(2016)

10. He, J., Mao, R., Shao, Z., Zhu, F.: Incremental learning in online scenario. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition.
pp. 13926–13935 (2020)

11. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incre-
mentally via rebalancing. In: Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition. pp. 831–839 (2019)

12. Jha, S., Schiemer, M., Zambonelli, F., Ye, J.: Continual learning in sensor-based hu-
man activity recognition: An empirical benchmark analysis. Information Sciences
575, 1–21 (2021)

13. Kemker, R., McClure, M., Abitino, A., Hayes, T., Kanan, C.: Measuring catas-
trophic forgetting in neural networks. In: Proceedings of the AAAI conference on
artificial intelligence. vol. 32 (2018)

14. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

15. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences 114(13), 3521–3526 (2017)

16. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wear-
able sensors. IEEE communications surveys & tutorials 15(3), 1192–1209 (2012)

17. Lavda, F., Ramapuram, J., Gregorova, M., Kalousis, A.: Continual classification
learning using generative models. arXiv preprint arXiv:1810.10612 (2018)

18. Li, Z., Hoiem, D.: Learning without forgetting. IEEE transactions on pattern anal-
ysis and machine intelligence 40(12), 2935–2947 (2017)

19. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning.
Advances in neural information processing systems 30 (2017)

20. Minhas, R., Mohammed, A.A., Wu, Q.J.: Incremental learning in human action
recognition based on snippets. IEEE Transactions on Circuits and Systems for
Video Technology 22(11), 1529–1541 (2011)

21. Nguyen, C.V., Li, Y., Bui, T.D., Turner, R.E.: Variational continual learning. arXiv
preprint arXiv:1710.10628 (2017)

22. Ostapenko, O., Puscas, M., Klein, T., Jahnichen, P., Nabi, M.: Learning to remem-
ber: A synaptic plasticity driven framework for continual learning. In: Proceedings



18 B. Kann, S. Castellanos-Paez, R. Rombourg, P. Lalanda

of the IEEE/CVF conference on computer vision and pattern recognition. pp.
11321–11329 (2019)

23. Rakaraddi, A., Siew Kei, L., Pratama, M., De Carvalho, M.: Reinforced continual
learning for graphs. In: Proceedings of the 31st ACM International Conference on
Information & Knowledge Management. pp. 1666–1674 (2022)

24. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier
and representation learning. In: Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. pp. 2001–2010 (2017)

25. Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity moni-
toring. In: 2012 16th international symposium on wearable computers. pp. 108–109.
IEEE (2012)

26. Reyes-Ortiz, J., Anguita, D., Ghio, A., Oneto, L., Parra, X.: Human Activity
Recognition Using Smartphones. UCI Machine Learning Repository (2012), DOI:
https://doi.org/10.24432/C54S4K

27. Rios, A., Itti, L.: Closed-loop gan for continual learning. arXiv preprint
arXiv:1811.01146 (2018)

28. Ros, M., Cuéllar, M.P., Delgado, M., Vila, A.: Online recognition of human activ-
ities and adaptation to habit changes by means of learning automata and fuzzy
temporal windows. Information Sciences 220, 86–101 (2013)

29. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., Hadsell, R.: Progressive neural networks. arXiv
preprint arXiv:1606.04671 (2016)

30. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative
replay. Advances in neural information processing systems 30 (2017)

31. Sun, L., Zhang, M., Wang, B., Tiwari, P.: Few-shot class-incremental learning for
medical time series classification. IEEE Journal of Biomedical and Health Infor-
matics (2023)

32. Thu, N.T.H., Han, D.S.: Hihar: A hierarchical hybrid deep learning architecture for
wearable sensor-based human activity recognition. IEEE Access 9, 145271–145281
(2021)

33. Van de Ven, G.M., Tolias, A.S.: Generative replay with feedback connections as a
general strategy for continual learning. arXiv preprint arXiv:1809.10635 (2018)

34. Welling, M.: Herding dynamical weights to learn. In: Proceedings of the 26th annual
international conference on machine learning. pp. 1121–1128 (2009)

35. Ye, J., Nakwijit, P., Schiemer, M., Jha, S., Zambonelli, F.: Continual activity
recognition with generative adversarial networks. ACM Transactions on Internet
of Things 2(2), 1–25 (2021)

36. Ye, J., Stevenson, G., Dobson, S.: Detecting abnormal events on binary sensors in
smart home environments. Pervasive and Mobile Computing 33, 32–49 (2016)


	Leveraging Task-Specific VAEs for Efficient Exemplar Generation in HAR

