N

N

A Process-Centric Approach to Insider Threats
Identification in Information Systems
Akram Idani, Yves Ledru, German Vega

» To cite this version:

Akram Idani, Yves Ledru, German Vega. A Process-Centric Approach to Insider Threats Identification
in Information Systems. 18th International Conference on Risks and Security of Internet and Systems,
Dec 2023, Rabat, Morocco. hal-04573234

HAL Id: hal-04573234
https://hal.univ-grenoble-alpes.fr/hal-04573234

Submitted on 13 May 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.univ-grenoble-alpes.fr/hal-04573234
https://hal.archives-ouvertes.fr

A Process-Centric Approach to Insider Threats
Identification in Information Systems

Akram Idanil0000—0003—2267-3639] yyeg Ledru, and German Vega

Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble France

firstname.lastname@univ-grenoble-alpes.fr

Abstract. The development of complex software systems as done today
generates countless security vulnerabilities that are difficult to detect. In
this context, several research works have adopted the Model Driven Secu-
rity (MDS) approach, which investigates software models rather than im-
plementations. However, although these works provide useful techniques
for security modeling and validation, they do not address the impact
of functional behavior on the security context of the system, which can
be cause for several flaws, specially insider threats. In order to address
this challenge, we propose a dynamic analysis based on the B method
for both functional and security concerns. Our contribution extends the
B4MSecure platform that we developed in our previous works, by intro-
ducing a workflow-centric layer to model expected business processes, as
well as possible malicious activities. This new layer is built on CSP||B
and brings new validation possibilities to B4MSecure.

Keywords: B Method, CSP, Verification, RBAC, Access Control.

1 Introduction

Computer security often refers to hackers or intruders, who are persons with
high technical skills and whose intention is to exploit security breaches in order
to get an illegal access to a system. However, in reality the greatest threats come
from inside the system, i.e. from trusted users who are already granted a legal
access. This kind of threat is called “insider attack” in cyber-security and it
is known to be difficult to tackle [14]. Studies done by IBM X-Force Research
in the cyber-security landscape state that: “In 2015, 60 percent of all attacks
were carried out by insiders |...| and they resulted in substantial financial and
reputational losses”. The problem is beyond the access control frontier since it
includes unpredictable human behaviours. To deal with these threats, existing
industrial, academic and government studies [6]7]10] elaborate human profiles
and advocate for the use of surveillance systems. Without being exhaustive,
some of these profiles are:

— Curious persons who, without a malicious intention but without self-control
too, get access to sensitive data or do some actions that are in contradiction
with the company rules.

2 Akram Idani et al.

— Super-heroes who, in order to fix a problem or help someone, bypass the
company policies believing that it may be useful or simply be approved.

Other profiles are established in the literature, like audacious, greedy, dis-
gruntled, opportunistic, etc. Unfortunately, the eventuality of a breach of trust is
difficult to predict in advance based on human-centric factors. On the one hand
there is no certainty about a possible acting out, and on the other hand people
surveillance must comply with privacy legislation, which makes it almost inef-
fective. Nonetheless, Information Systems (IS) together with their business logic
and processes, provide useful knowledge allowing one to deal with the insider
threat problem. In fact, based on the aforementioned studies it can be observed
that insiders often do not have high computer skills (contrary to intruders),
but they have a fine-grained knowledge about the IS procedures. The latter are
mostly well-established and already protected via access control mechanisms.
Hence, by being able to answer the question “who has access to sensitive data
and what kind of access is given?”, one cannot claim that the system is secure
enough. The good question should be: “is the user able to run a sequence of
actions that may bring him from a prohibition to an authorization?”.

The first question refers to static concerns, and it is widely addressed in
Model-Driven Security (MDS) thanks to several access control models (e.g. Se-
cureUML, UMLSec). However, the second question remains open in MDS be-
cause it refers to behavioural features and the reachability of unwanted situations
granting to the user misappropriated privileges. In [11], we applied the B method
and its composition mechanism, to provide a way to take into account the in-
tertwining of security policies and functional concerns of the IS. The underlying
analysis technique builds on a forward search approach that is intended to verify
whether a given targeted functional state is reachable, and eliminate threats by
proving that a given unwanted state is unreachable. Forward search is a classical
approach that is often done thanks to model-checking techniques, but it is more
efficient for relatively small applications. As this is not always possible in the
case of IS, a model-checker may require some guidance. This paper contributes
towards our previous works by taking into account business processes. We pro-
pose to extend our approach and its tool support with a process-based search
applying CSP||B [4], which would exhibit malicious behaviours more efficiently.

Section |2| provides a formal framework to MDS, which allows us to apply
automated reasoning tools in order to verify the correctness of the IS concerns.
Section [3] gives the contribution of this paper and describes how business pro-
cesses can be taken into account when dealing with insider attacks. Section
discusses related works and Sectiondraws the conclusions and the perspectives.

2 Separation of Concerns

This work applies B4MSecure [8], a tool that we developed in order to model
the IS as a whole by covering its functional description, and its security policy.
The tool generates from these models a formal B specification, allowing one to

A Process Centric Approach to Insider Threats Identification 3

formally reason about their correctness: functional and security models can be
first proved separately, and then integrated in order to verify their interactions.

B4MSecure is built on an MDE architecture in which the input models are
UML class diagrams that are extended with the SecureUML profile. The extrac-
tion of B specifications from these input models applies transformation rules that
are defined at a meta-level. The ideas behind the tool are inspired by existing
software products, such as popular commercial database management systems
(e.g. Oracle, Sybase) or webservers (e.g. JBoss, Tomcat). The available imple-
mentations of RBAC act like a filter which intercepts a user request to a resource
in order to permit or deny the access to associated functional actions (e.g. trans-
actions on databases, file operations, etc). The tool is based on the same prin-
ciples, but at a modeling level. Each functional operation is encapsulated in a
secure operation checking that the current user has the required authorizations.

2.1 Functional Modeling

To illustrate our approach, we consider the UML class diagram of Figure This
model is inspired by [1], and represents functional concerns of a banking IS: it
deals with customers (class Customer) and their accounts (class Account).

Account
+ balance : Integer = 0

Cust-omer AccountOwner |+ overdraft : Integer = -100
+name : String[0..1] +IBAN : Integer
+address : String[0..1]

0..1 1.+ |+ transferFunds (NB : Integer, m : Integer)
+ withdrawCash (amount : Integer)
+ depositFunds (m : Integer)

Fig. 1. UML Class Diagram — Functional Model

A bank account is characterized by its balance (attribute balance), the autho-
rized overdraft (attribute overdraft) and a unique identifier (attribute IBAN).
Operation transferFunds allows one to transfer an amount of money (parameter
m) from the current account to any account defined with an /BAN number (pa-
rameter NB). Operations withdrawCash and depositFunds allow respectively to
withdraw or to deposit money.

Translation into B. The translation of this diagram into B follows well-
established UML-to-B rules. First, a UML class (e.g.Customer) produces: (i)
an abstract se (CUSTOMER) defining the set of possible instances; (ii) a
Variabl (Customer) defining existing instances; and (7ii) an invarian mean-
ing that the set of existing instances is a subset of the set of possible instances
(Customer C CUSTOMER). Regarding class attributes, they are translated into

1

clause SETS.
2 clause VARIABLES.
3 clause INVARIANT.

4 Akram Idani et al.

B functions relating the set of existing instances to the type of the attribute.
The resulting functions depend on the attribute character: mandatory or op-
tional, unique or not unique, single or multi-valuated. For example, attribute
IBAN of class Account is single-valued, mandatory and unique; it is translated
as a total injection function. The translation of associations follows the same
principle. Indeed, each association leads to a functional relation that depends
on the multiplicities of the two ends of the association. For example, association
AccountOwner is translated into a partial surjective function since its multi-
plicities are 0..1 and 1..*. Figure |2| presents the typing invariants that are
automatically produced by B4MSecure from Figure

INVARIANT

Account C ACCOUNT

A Customer C CUSTOMER

A AccountOwner € Account + Customer

A Account__balance € Account — Z

A Account__overdraft € Account — Z

A Customer__name € Customer + STRING
A Customer__address € Customer + STRING
N Account__IBAN € Account — N

Fig. 2. Structural invariants produced by B4MSecure

Basic operations. The B specifications produced by B4MSecure from a given
class diagram are intended to be animated using an animation tool such as ProB
[12]. This allows one to see the evolution of the IS and observe the impact that an
execution scenario could have on the functional state. Thus, B4MSecure generates
all basic operations such as creation/deletion of class instances, creation/deletion
of links between these instances, getters/setters of attributes and links, etc. In
general, these operations are correct by construction, meaning that they do not
violate the generated typing invariants. In fact, the proof of correctness of the
functional model means that basic operations preserve the multiplicities of the
associations as well as the character of attributes. Figuregives an example of a
basic operation that is generated by B4MSecure. It is a creation operation of class
Account. This operation preserves, on the one hand, the mandatory character of
attribute IBAN because a value is assigned to the attribute when the object is
created, and on the other hand, the uniqueness of this attribute. The operation
also takes into account the default values of attributes balance and overdraft;
they are respectively initialized to 0 and —100.

User-defined concerns. The user may introduce within the resulting formal
specification invariant properties and the underlying preconditions in order to
keep correct the basic operations. The user-defined operations, such as operations
transferFunds and withdrawCash of class Account, must also be defined. Figure
presents the B specification of operation transferFunds. It takes an account
number (parameter N) and a positive amount (parameter m) and performs the

A Process Centric Approach to Insider Threats Identification 5

Account_ NEW Instance, Account__IBAN Value) ==
PRE
Instance € ACCOUNT A Instance & Account
A Account__IBAN Value € N
A Account__ IBAN Value ¢ ran(Account-_IBAN)
THEN
Account := Account U {Instance}
|| Account__balance := Account__balance U {(Instance — 0)}
|| Account__overdraft := Account__overdraft U {(Instance — -100)}
|| Account__IBAN := Account-_IBAN U {(Instance — Account_-_IBAN Value)}
END:

Fig. 3. Basic creator generated by B4MSecure

transfer of funds if the following conditions are met: the current account and
the beneficiary account are held by customers, N corresponds to an existing
account other than the current account, and the authorized overdraft will not
be exceeded by this transfer.

Account__transferFunds(Instance, N, m) ==
PRE
Instance € Account N N € N A meN;
A AccountOwner[{ Instance}] # ()
A N € ran({Instance} < Account__IBAN)
A AccountOuner[{ Account__IBAN ' (N)}] # ()
A Account__balance(Instance) — m > Account__overdraft(Instance)
THEN
Account__balance :=
{(Instance — (Account__balance(Instance) — m))}
U {(Account__IBAN"*(N) — (Account__balance(Account__IBAN'(N)) + m))}
U ({Instance, Account__IBAN ~' (N)} < Account__balance)
END :

Fig. 4. Operation transferFunds of class Account

2.2 Security Modeling

SecureUML is an extension to UML Class Diagrams whose concrete syntax is
based on UML stereotypes. In the version we consider, the main ones used are
Role and Permission, where Permission is an association class between roles and
functional classes, and can be further annotated with Authorization Constraints.
The latter are logical predicates denoting the conditions under which a given per-
mission holds. Figure [5|is a SecureUML model associated to the class diagram
of Figure[l] This model defines two roles: CustomerUser and AccountManager.
They respectively represent the customer of the system and the financial man-
ager in charge of the bank’s customers. Customers can read their personal data

6 Akram Idani et al.

(permission CustomerUserPerm1), transfer money, deposit and withdraw cash
(permission CustomerUserPerm2). The account manager has a full access (read
and write) on class Customer (permission AccountManagerPerm1). He/She can
thus create customers, read or modify their data. However, his/her rights on
class Account are limited to the creation of new accounts (permission Account-
ManagerPerm?2). Furthermore, an authorization constraint is associated to per-
missions CustomerUserPerm1 and CustomerUserPerm2 in order to grant the
corresponding actions to the sole holder of the account on which they are in-
voked. In this security policy, the account manager has no access, neither read
nor write, to the attributes of class Account.

Authorization constraint :

e ——— <<Role>> caller = self.account.AccountOwner
caller = self.account.AccountOwner CustomerUser !
: <<Permission>>
| CustomerUserPerm2
1
<<Permission>> <<MethodAction> >+ transferFunds ()

CustomerUserPerml | ___| <<MethodAction> >+ withdrawCash ()
-~"| <<EntityAction>>+Read ()

<<MethodAction> >+ depositFunds ()

<<EntityAction>>+ Read()

Customfer AccountOwner Accoun}
(from Functional) < (from Functional)
0.1 1.*

<<Permission>>
AccountManagerPerm1

<<EntityAction>>+ fullAccess () <~<Permission> >

AccountManagerPerm2

<<Role>>
AccountManager

<<EntityAction> >+ Create ()

Fig. 5. Security modeling with SecureUML

Translation into B. Given a SecureUML model, B4MSecure produces a B
machine that grants permission or forbids functional operations based on the
set of roles that are activated by a user. For example, if Paul is a CustomerUser,
he can only read his personal data by calling getters of class Customer. The
other operations (modification, creation, etc) are forbidden to him. In order
to translate the security model, our approach follows two steps: (i) propose a
“stable” formalization of the SecureUML meta-model, then (4i) translate a given
security model and inject it into the formalization of the meta-model. Each
operation of the functional model is encapsulated in a secure operation checking
that the current user is allowed (or not) to call this operation. Figure@ presents
an excerpt of the resulting B machine that is dedicated to user assignments. It
refers to: ROLES, USERS and SESSIONS. The assignment of roles to users is
defined with relation roleOf. Contrary to users and roles, which are explicitly
represented by sets, sessions are defined by means of a relation between users
and roles. We consider that a user cannot open several sessions in the system.
When a user u belongs to the domain of relation Session, thus a session is created

A Process Centric Approach to Insider Threats Identification 7

for him and Session[{u}] gives the set of roles that are activated by u. Variable
currentUser is useful during the animation of the model because it allows us to
identify the user who is running a given operation. Machine Secure UML provides
also several utility operations that are useful during the animation. For example,
Figure [7| gives the B specifications of operations Connect and setCurrentUser.
Operation Connect creates a session to a given user in which a set of roles
is activated. This operation is done under two conditions: (i) the user is not
concerned by any existing session, (i7) if a role r; is a super-role of a role ra,
therefore the user can activate r1 or ro but not both of them {r1,72}. Operation
setCurrentUser selects the user who is currently concerned with the animation.

MACHINE SecureUML INCLUDES Functional_Model
SETS ROLES ; USERS
VARIABLES roleOf, Roles_Hierarchy, currentUser, Session
INVARIANT
/* Typing invariants */
currentUser € USERS
A roleOf € USERS — P (ROLES)
A Roles_Hierarchy € ROLES <» ROLES
N Session € USERS <+ ROLES
/* No cycles in role hierarchy */
A (Roles_Hierarchy)t N id(ROLES) = ()
/* Conformance of role assignments and role activation */
A Y (uu).(uu € USERS A uwu € dom(Session) = Session[{uu}| C roleOf(uu))

Fig. 6. Excerpt of the SecureUML meta-model dedicated to user assignments

Connect(user, roleSet) =
PRE
user € USERS A user ¢ dom(Session)
A roleSet € P1(ROLES) A roleSet C roleOf(user)
/* avoid hierarchical redundancy in the roleSet */
AV (r1,m2).(r1 € roleSet A 12 € roleSet A T1 # 12 = 12 & (Roles_Hierarchy) ™ [{r1}])
THEN
Session := Session U ({user} x roleSet)
END:

setCurrentUser(user) =
PRE
user € USERS A user # currentUser A user € dom(Session)
THEN
currentUser := user
END ;

Fig. 7. Utility operations

B4MSecure produces for every functional operation, a secured operation that
verifies (using a security guard) whether the current user is allowed to call the

8 Akram Idani et al.

functional operation. The secure operation also verifies the authorization con-
straints, if they are defined in the underlying permissions, and updates the as-
signment of roles when required. Figureshows the secure operations associated
to Account_transferFunds . The security guard is defined in clause SELECT. It
verifies that the functional operation belongs to set isPermitted|currentRoles),
where definition currentRoles refers to the roles activated by currentUser (in a
session) as well as their super-roles: currentRoles == Session[{currentUser}] U
ran(Session[{ currentUser}] <1 (Roles_Hierarchy)™).

secure_Account_transferFunds(aAccount, NB, m) =
SELECT
Account_transferFunds_ € isPermitted|currentRoles|
A (CustomerUser € currentRoles = AccountOwner(aAccount) = currentUser)
THEN
Account_transferFunds(aAccount, NB, m)
END;

Fig. 8. Operation secure_Account_transferFunds

3 Dealing with Business Processes

3.1 Animation in B4MSecure

In order to validate the model, B4MSecure uses ProB Java API as presented in
Figure [9]

" P
79 Bank_Is.di X :—f Execution View X @ = Ok~ L] :
q
Customer AccountOwner Account Search:
+ name: String [0..1] + balance: Integer [1] =0 .
+ address: String [0.1] | + overdraft: Integer [1] = -100 v Functional.mch
h 1 Rk eacg il v 5 Customer_SetName(aCustomer,aName)

+ transferfunds| in NB: Integer, in m: integer) i~ Customer_SetName(aCustomer=Paul,aName="STRING1")
: :;:‘:;;:f::[[i:‘ :.n?.ﬂ;::mg =L s Customer_SetMame(aCustomer=Paul aName="STRING2"}
i Customer_SetMame(aCustomer=Martin,aName="STRING1")
% Customer_SetMame|aCustomer=Martin,aMame="STRING2")
v Zbresult <-- Account_GetOverdraft{aAccount)
=100 <-- Account_GetOverdraft{aAccount=cptl)
=100 <-- Account_GetOverdraft{aAccount=cpt2)

pan I
X State View X E’o E'qv = v 07 Customer_Free{aCustomer)
% Customer_Free{aCustomer=Paul)

BY Class Diagram |Bg cD_Bank x | Bg Policy_CD

Functional.mch i~ Customer_Free{aCustomer=Martin)

w03 Account_transferFunds(instance,NB,m)

Invariant=0K Completed=NO
i~ Account_transferFunds(Instance=cpt1 NB=222 m=100)
Variables Expressions e imh A £ Ao dle Ao o o_aA IR AAA AR
B
variable value :—x’ Execution History View x 2&‘] * =
> Account {cpt2, cptl} Functional.mch
i HEHTAN I VR L GE 3_00} e el 7k Account_transferFunds(instance=cpt2, NE=111,m=200)
5 g::::m:: address §}Pau| « Martin } i~ Account_depositFunds(Instance=cpt2,m=200)
> Account_o-\rardraft {(cptl |->-100) , { cpt2 |-> -100) } 07 Customer_NEW (aCustomer=Martin,theAccount={ cpt2 })
> Customer_name {1 s Account_NEW(aAccount=cpt2 alBAN=222)
> Account_IBAN {{cptl|-=111), (cpt2 |-> 222)} i Customer_NEW (aCustomer=Paul theAccount={ cpt1})
> AccountOwner {{cptl |-=>Paul), { cpt2 |-> Martin) } i~k Account_NEW({aAccount=cptl,alBAN=111}

Fig. 9. Animation in B4MSecure

The State View (bottom-left) gives the values of the B variables in the cur-
rent state, i.e. after animating the sequence of the History View (bottom-right).

A Process Centric Approach to Insider Threats Identification 9

The Execution View (top-right) shows the B operations that can be triggered
in the current state. The content of these views is computed by the Java API
of ProB; B4MSecure just provides some convenient actions to ensure animation
and/or model-checking via the API. Figure @ shows a sequence of functional
operations that creates customers Paul and Martin, as well as their respective
accounts cpt; and cpty. An amount of 200€ is added to Martin’s account and
then 300€ are transferred from this account to Paul’s account. This scenario
corresponds to a normal use case of the IS without considering security con-
cerns. Playing with functional scenarios shows that use cases are feasible with
the current specification, and helps identifying missing steps in the use cases or
the specification. A similar animation can be performed by calling the secured
version of the use case. This eases the understanding and validation of the secu-
rity policy and shows that the security policy does not prevent the execution of
functional use cases.

3.2 A CSP||B Approach

One facility supported by ProB is the use of CSP||B, that is, a CSP layer that
guides the animation of the B machine. This guidance restricts the execution
space to relevant traces with respect to pre-established processes, which would
make verification potentially faster. In CSP, a process refers to a sequence of
events and the communication between processes is ensured via channels. A
channel ch may transmit data d, which is denoted as ch?d for inputs, and ch'!d
for outputs. Note that by convention, processes are named in uppercase and
channels in lowercase. Some of the used CSP constructs are:

PROCESS ::= SKIP /* terminating process */
| ch -> PROCESS /* simple action prefix where ch is a channel */
| PROCESS ; PROCESS /* sequential composition */
| PROCESS [] PROCESS /* external choice */

In the CSP||B approach [4] processes are used as controllers for a B machine
where channels correspond to B operations, and events to a call to the operation,
with channel inputs and outputs being the operation’s parameters. Our formal
framework, ensured with B4MSecure, favours the integration of a process-centric
approach for animation. Let’s consider for example the business process of Figure
Written in CSP. Process UI is a loop where first a user is connected and next,
depending on the activated role, he/she executes process MANAGER _FUNC or pro-
cess CLIENT_FUNC. For space reason we only show the former. The manager has
the choice between creating a new account or a new customer, or updating an
existing customer record. The SKIP process terminates process MANAGER_FUNC
and hence operation disconnecUser of process UI is executed, which discon-
nects the user.

Having this CSP model, ProB can be used to animate the operational formal
model of the security policy, by following traces allowed by the CSP processes.
The sequence of operations given in Figure|11|corresponds to a normal use case

10 Akram Idani et al.

MAIN = UI

UI = (Connect?user!{AccountManager} -> setCurrentUser(user) -> MANAGER_FUNC
[l Connect?user!{CustomerUser} -> setCurrentUser(user) -> CLIENT_FUNC)
; disconnectUser -> UI

MANAGER_FUNC =
CREATE_ACCOUNT [] CREATE_CUSTOMER [] UPDATE_CUSTOMER [] SKIP

CREATE_ACCOUNT =
secure_Account_NEW -> (CREATE_ACCOUNT [] MANAGER_FUNC)

CREATE_CUSTOMER =
secure_Customer_NEW?7customer -> secure_Customer__SetName!customer
-> (ADD_CUSTOMER_ACCOUNT (customer) [] CREATE_CUSTOMER [] MANAGER_FUNC)

ADD_CUSTOMER_ACCOUNT (customer) =
secure_Customer__AddAccountOwner!customer
-> (ADD_CUSTOMER_ACCOUNT (customer) [] MANAGER_FUNC)

UPDATE_CUSTOMER =

secure_Customer__GetName?customer -> UPDATE(customer)

UPDATE(customer) =
secure_Customer__SetName?customer -> UPDATE(customer)
[1 secure_Customer__SetAddress?customer -> UPDATE(customer)
[] secure_Customer__RemoveAccountOwner?customer -> UPDATE(customer)
[1 ADD_CUSTOMER_ACCOUNT (customer)
[J MANAGER_FUNC

Fig. 10. Business process in CSP

where users execute permitted operations after they activate the right role and
such that they satisfy functional preconditions as well as authorization con-
straints. In this trace, we show for every step the CSP process that is considered
by the animator. The resulting state is represented with the object diagram of
Figure In this sequence, the account manager Bob creates two customers
(Paul and Martin) and two accounts (cpt; and cpty) and then Paul deposits
money into his own account.

3.3 Insider threats identification

One major advantage of B is theorem proving, which refers to the demonstration
of logical formulas (called proof obligations, POs) to ensure a correctness claim
for a given property (such as an invariant property). For example, the correct-
ness of an operation guarantees that the invariant is true before and after the
execution of the operation. For our example, we proved the correctness of our

A Process Centric Approach to Insider Threats Identification 11

-> Process: MAIN -> UI
Connect(Bob, {AccountManager}) ;
setCurrentUser(Bob) ;

-> Process: MANAGER_FUNCTIONS -> CREATE_ACCOUNT
secure_Account_NEW(cpty, 111) ;
secure_Account_NEW(cpta, 222) ;

-> Process: MANAGER_FUNCTIONS -> CREATE_CUSTOMER
secure_Customer NEW(Paul,{cpt1}) ;
secure_Customer_SetName(Paul, “Paul Durand”) ;
secure_Customer_NEW/(Martin,{cpt2})
secure_Customer_SetName(Martin, “Martin Favier”) ;

-> Process: MANAGER_FUNCTIONS -> SKIP
disconnectUser

-> Process: UI
Connect(Paul, {CustomerUser}) ;
setCurrentUser(Paul) ;

-> Process: CLIENT_FUNCTIONS -> DEPOSIT
secure_Account__depositFunds(cpt;,500)

-> Process: CLIENT_FUNCTIONS -> SKIP
disconnectUser

Fig. 11. Execution trace

[Z] cptl: Account [Z] cpt2: Account
[Z] Paul: Customer [Z] Martin: Customer
balance : Integer = 500 balance : Integer = 0
overdraft : Integer = -100 overdraft : Integer = -100
IBAN : Integer =111 IBAN : Integer = 222

Fig. 12. Resulting state represented with an object diagram

B specifications. The advantage is that when looking for threats, the security
analyst has the guarantee that flaws are not issued from invariant violations, but
rather from the functional or the security logic. In this sense, the identification
of attack scenarios is mainly a validation task, which can be done by animation
and/or model-checking. Indeed, an exhaustive model exploration may exhibit a
malicious sequence of operations leading to a state (where a property holds) that
represents an unwanted situation.

To exhibit a malicious scenario based on our simple example, we start the ex-
ploration from a normal state, that of Figure[12] In this state Paul is a customer
and owns account c¢pt; whose balance is equal to 500. Bob as AccountManager
cannot execute operations transferFunds or withdrawCash on cpt,. The answer
to a static query such as “Is Bob able to transfer funds from Paul’s account?”
would be NO, since the permission given to a manager on class Account only al-
lows instance creation. In fact, the good question should be “Is there a sequence
of operations that can be executed by Bob in order to become able to transfer
funds from Paul’s account?”. To answer the question, one naive solution is to use
the model-checking feature of ProB to exhaustively explore the state space and

12 Akram Idani et al.

find states that satisfy property: AccountOwner(cpt;) = Bob. We are therefore
looking for a sequence of operations executed by Bob allowing him to become
the owner of cpt; meaning that he may reach a state granting him the permis-
sion to execute an action that initially he cannot do. Without considering the
CSP guidance, ProB reached a time out after exploring millions of transitions,
meaning that the state space is too big to be explored efficiently.

To solve this issue we propose to describe insider threats using a CSP model
and take benefit of the CSP||B approach of ProB to check if the business pro-
cess contains traces that are conformant to this attack model. Figureshows
the proposed insider threat model for the example discussed above. Statement
[1x:Set(S)@P used in process ATTACKER is a replicated external choice. This
statement evaluates process P for each value of set S and composes the result-
ing processes together using external choice. Hence, process ATTACKER means
that Bob is trying to connect to the system by varying his roles. Statement
P|[|Q used in process ATTACK is an interleaving, which runs P and Q in parallel
without any synchronisation. In fact, the goal of the attack is to run operation
secure_transferFunds on account cpt; by the attacker who abuses his/her roles.

MAIN = UI [|{| Connect, secure_Account_transferFunds |}|] ATTACK

ATTACK = ATTACKER ||| secure_Account_transferFunds!cptl -> goal -> SKIP

ATTACKER = [Jrole:Set(ROLES) @ Connect!Bob!role -> ATTACKER

Fig. 13. Insider threat model

The synchronisation of process UL with the attack model is done in the MAIN
process. The latter applies a generalized parallel composition with synchroni-
sation on critical actions. In fact, statement P[|A|]Q runs processes P and Q
in parallel forcing them to synchronise on events in A; any event not in A may
be performed by either process. In other words, if event goal is produced by
ATTACK therefore the critical operation has been also executed by process UI;
which means that a flaw conformant to the attack model is detected.

Based on this model, ProB explored about 70000 states and 200000 transi-
tions and was able to exhibit sequence of Figure We structure it in three
steps. In step 1 Bob adds himself to the system as a customer. As the creation
of a customer requires at least one account, Bob creates a fictive account cpts
and then he calls operation secure_Customer_NEW. In step 2, the attacker be-
comes the owner of ¢pt;. To this purpose he must first remove the link between
Paul and cpt;. But, in the functional model a customer must have at least one
account, consequently operation secure_Customer-RemoveAccount(Paul,{cpt;})
is possible only if Paul has another account. For this reason, Bob creates an-
other fictive account cpty and adds it to Paul’s accounts. The last action of step
2 reaches the malicious state where Bob is the owner of cpt;. Finally, step 3
realizes the attack.

A Process Centric Approach to Insider Threats Identification 13

/* step 1: create customer Bob */
Connect(Bob, {AccountManager}) ;
setCurrentUser(Bob) ;
secure_Account_NEW/(cpts, 333) ;
secure_Customer_.NEW(Bob,{cpts}) ;
secure_Customer_SetName(Bob,"...") ;

/* step 2: get the ownership of Paul’s Account */
secure_Account_NEW(cpty, 444) ;
secure_Customer_AddAccount(Paul,{cpts}) ;
secure_Customer_RemoveAccount(Paul,{cpt1 }) ;
secure_Customer_AddAccount(Bob,{cpt1}) ;

/* step 3: attack */
disConnect(Bob) ;
Connect(Bob, {CustomerUser}) ;
secure_Account_transferFunds(cpt1, 333, 500) ;

Fig. 14. Malicious scenario

This malicious scenario can be countered by enhancing the functional model
and/or the security model. If the analyst assumes that the flaw is favored by
the functional logic, one possible solution would be to introduce the following
invariant: Account__balanceValue # 0 = AccountOwner[{ Instance}| # (). In fact,
operation secure_Customer_RemoveAccount(Paul, {cpty}) is the dangerous oper-
ation. This invariant means that accounts whose balance is not equal to zero
must be owned by a customer. By introducing this invariant, several functional
operations must be corrected and proved, such as: Customer_RemoveAccount
and Account_SetBalance. In other words, to remove the ownership relation be-
tween cpt; and Paul, the account of Paul must be empty. If the analyst assumes
that the flow is favored by the security logic, a possible solution would be to
limit the scope of permission AccountManagerPerm1 because it currently grants
a full access to role AccountManager on customer’s data, including the deletion
of his accounts.

4 Related works

Model-Driven Security [3] advocates for the separation of concerns principle and
suggests the validation of functional and security models in isolation. Hence,
most existing works [5] in MDS are stateless and they mostly validate security
policies statically without taking into account the dynamic evolution of the IS. A
major contribution of our proposal in MDS is that it favours dynamic analyses,
using animation and model-checking, of the interactions between the IS concerns.

As far as we know, works that addressed access control together with a for-
mal method, did not deal with the insider threat problem, such as discussed in
this paper. However, we can assume that this kind of threat is a typical reach-
ability problem. In [16], the authors proposed a plain model-checking approach,

14 Akram Idani et al.

built on security strategies, in order to check specifications written in the RW
(Read-Write) language. However, the proposed algorithm faces scalability issues
because the RW language is poor compared to B. A similar approach is proposed
in [9] in order to validate access control in web-based collaborative systems. Even
though their experiments show that they achieve better results compared to [16],
the approach still has a partial coverage of realistic policies.

In [13], the authors proposed two approaches to prove reachability properties
in a B formal information system modelling. In the first one, they used substi-
tution refinement techniques based on Morgan’s specification statement, and in
the second one, they proposed an algorithm that produces a proof obligation in
order to prove whether a given sequence of operations reaches (or not) a defined
state. However, unlike our approach, they don’t search sequences leading to a
goal state from an initial one. Their approach starts from a given sequence of
operations, and tries to prove its reachability.

Existing works, including our previous work [11]15] in the field, do not deal
with business processes, which is indeed a limitation because, in IS, the three
concerns (functional models, security policies and business processes) are impor-
tant. This work introduced the business process dimension via CSP||B, which
brings the ability to limit the state space exploration during model-checking.

This work led to the development of an extension of B4MSecure that is used
to exhibit execution paths from a B modelling of an IS. The approach has been
experimented with several case studies such as the meeting scheduler example
discussed in [2]|, the medical IS studied in [1I] and the conference review IS
inspired by|16]. For each example, the tool aimed to reach the same malicious
goal as handled in the article which addressed the same example, and it was able
to extract all reported attacks. Some metrics about these experiments are given

in Table

Case study Operations|Variables|Permissions|Roles|Users|scenarios
Library 13 4 3 2 3 8
Medical IS 15 9 3 4 3 10
1]
Meeting scheduler 23 7 5 3 3 8
-
Bank IS 31 11 4 2 3 9
T
Conference Review 48 24 8 3 4 14
16|

Table 1. Summary table of experiments

Several research works have been devoted to the validation of access control
policies. They are mainly focused on detecting external intrusion. Recently, the
interest to insider attacks grew leading to two categories of validation: state-
less and dynamic access control validation. Stateless access control validation is

A Process Centric Approach to Insider Threats Identification 15

dedicated to validate security policies in a given state without taking into ac-
count the dynamic evolution of the IS states. Among these works we can cite the
SecureMova tool |2] which models security policies using SecureUML and OCL
expressions. In this paper we proposed to take into account business processes
in order to identify these attacks. A business process model represents a set
of steps in which intrinsically operations concerning the IS data (like reading,
modification, etc.) and responsibilities for performing tasks are defined.

5 Conclusion

Authorized actions often lead to evolutions of the functional state, which may
favour insider threats. A well known attack that was possible due to evolutions
of the functional state is that of ’Société Générale’. This attack resulted in a
net loss of $7.2 billion to the ban The insider circumvented internal security
mechanisms to place more than $70 billion in secret, unauthorized derivatives
trades. Through authorized actions, he was able to cover up operations he has
made on the market by introducing into the functional system fictive offsetting
inverse operations, so that the unauthorized trades were not detected. Dynamic
analysis is therefore crucial because it would establish that a system evolves as
expected and that unwanted situations are not possible.

Perspectives. One major perspective of this work is to identify inconsistencies
between functional models, security policies and business processes. Indeed, in-
sider threats may also come from a bad alignment of these models, such as when
the access control policy gives more permissions than the actions required by
the business process. In this case following the process may hide several au-
thorizations giving the impression that some bad actions are not possible while
they can still be done from outside the process, which is a typical example of
insider attacks. We also plan to extend the notion of attack models. A security
expert, when faced with the challenge of finding a way of performing a malicious
operation, will often try to break down the requirements for performing this
operation and try to find how to achieve them, one by one. We may translate
this problem solving technique with ”checkpoints”, that is, intermediate steps
necessary for the attack to take place, similarly to how a privilege escalation
attack is composed of various steps that must be climbed.

B4MSecure addresses the modeling activities and is based on Platform Inde-
pendent Models (PIM), described using UML models and their associated formal
B specifications. However, in addition to modeling notions, MDS also promotes
the transformation of the PIM into a PSM. One interesting perspective is to
translate the models into concrete security mechanisms of a target infrastruc-
ture. In practice, this transformation usually includes manual coding activities.
The challenge is therefore to guarantee that security models, graphically designed
and formally validated, correspond to a deployed security policy.

4 The New York Times. French Bank Says Rogue Trader Lost $7 Billion. January
2008.

16 Akram Idani et al.
References
1. Bandara, A., Shinpei, H., Jurjens, J., Kaiya, H., Kubo, A., Laney, R., Mouratidis,

10.

11.

12.

13.

14.

15.

16.

H., Nhlabatsi, A., Nuseibeh, B., Tahara, Y., Tun, T., Washizaki, H., Yoshioka, N.,
Yu, Y.: Security Patterns: Comparing Modeling Approaches. IGI Global (2010)
Basin, D., Clavel, M., Doser, J., Egea, M.: Automated analysis of security-design
models. Information & Software Technology 51 (2009), http://dblp.uni-trier.de/
db/journals/infsof /infsof51.html#BasinCDE09

Basin, D., Doser, J., Lodderstedt, T.: Model driven security: From UML models to
access control infrastructures. ACM Trans. Softw. Eng. Methodol. 15(1) (2006).
https://doi.org/10.1145/1125808.1125810

Butler, M.J., Leuschel, M.: Combining CSP and B for specification and property
verification. In: International Symposium of Formal Methods - FM 2005. Lecture
Notes in Computer Science, vol. 3582, pp. 221-236. Springer (2005)

Geismann, J., Bodden, E.: A systematic literature review of model-driven security
engineering for cyber—physical systems. Journal of Systems and Software 169,
110697 (2020). https://doi.org/https://doi.org/10.1016/j.jss.2020.110697
Greitzer, F.L.: Insider Threats: It’s the HUMAN, Stupid! In: Proceedings of the
Northwest Cybersecurity Symposium. NCS 19, Association for Computing Ma-
chinery, New York, NY, USA (2019). https://doi.org/10.1145/3332448.3332458
Homoliak, I., Toffalini, F., Guarnizo, J., Elovici, Y., Ochoa, M.: Insight Into In-
siders and IT: A Survey of Insider Threat Taxonomies, Analysis, Modeling, and
Countermeasures. ACM Computing Surveys 52(2) (2019)

Idani, A., Ledru, Y.: B for Modeling Secure Information Systems - The B4MSecure
Platform. In: 17th International Conference on Formal Engineering Methods and
Software Engineering - ICFEM. LNCS, vol. 9407, pp. 312-318. Springer (2015)
Koleini, M., Ryan, M.: A knowledge-based verification method for dynamic access
control policies. In: 13th International Conference on Formal Engineering Methods,
ICFEM. LNCS, vol. 6991, pp. 243-258. Springer (2011)

Kont, M., Pihelgas, M., Wojtkowiak, J., Trinberg, L., Osula, A.M.: Insider Threat
Detection Study. The NATO Cooperative Cyber Defence Centre of Excellence
(2018)

Ledru, Y., Idani, A., Milhau, J., Qamar, N., Laleau, R., Richier, J.L., Labiadh,
M.A.: Validation of IS security policies featuring authorisation constraints. Inter-
national Journal of Information System Modeling and Design (IJISMD) (2014)
Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: FME 2003: Formal
Methods Europe. LNCS, vol. 2805. Springer-Verlag (2003)

Mammar, A., Frappier, M.: Proof-based verification approaches for dynamic prop-
erties: application to the information system domain. Formal Asp. Comput. 27(2),
335-374 (2015). https://doi.org/10.1007/s00165-014-0323-x

Probst, C.W., Hunker, J., Gollmann, D., Bishop, M. (eds.): Insider Threats
in Cyber Security, Advances in Information Security, vol. 49. Springer (2010).
https://doi.org/10.1007/978-1-4419-7133-3

Radhouani, A., Idani, A., Ledru, Y., Rajeb, N.B.: Symbolic Search of Insider Attack
Scenarios from a Formal Information System Modeling. LNCS Transactions on
Petri Nets and Other Models of Concurrency 10, 131-152 (2015)

Zhang, N., Ryan, M., Guelev, D.P.: Synthesising verified access control systems
through model checking. Journal of Computer Security 16(1), 1-61 (2008)

