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Categories of Algebraic Rewrite Rules

Thierry Boy de la Tour

CNRS and University Grenoble Alpes, LIG Lab. Grenoble, France,
thierry.boy-de-la-tour@imag.fr

Abstract. What are the legitimate morphisms between algebraic graph
rewrite rules? The question is complicated by the diversity of approaches.
From the familiar Double-Pushout (DPO) to the more recent PBPO and
many others, the rules have different shapes, semantics (defined by di-
rect transformation diagrams) and even matchings. We propose to repre-
sent these approaches by categories of rules, direct transformations and
matchings related by functors in Rewriting Environments with Match-
ings. From these we extract a so-called X-functor whose properties are
key to make rule morphisms meaningful. We show that these properties
are preserved by combining approaches and by restricting them to strict
matchings.

1 Introduction

Many “approaches” to algebraic (graph) rewriting have been developed. The
most familiar and oldest one is the Double-Pushout (DPO) approach [5], that
has a property unknown to term rewriting: a matching of a rule in the input
object G is not sufficient to apply the rule. Indeed, this approach imposes a
strict semantics of replacement where a matched vertex (say) cannot be removed
and replaced unless all adjacent edges are similarly matched and removed. An-
other semantics exists that tolerates the silent removal of such edges: the Single-
Pushout (SPO) approach [9]. It is based on pushouts of partial morphisms and
has been defined in a restricted class of categories compared to DPO. Other
approaches, namely the Sesqui-Pushout (SqPO) [4] and the Pullback-Pushout
(PBPO) [3], provide the possibility to duplicate matched parts of the input.

In this diversity it is difficult to isolate common features. An obvious one is
that they all end with a pushout, either in the category C whose objects are con-
sidered for computing (generally graph-like data structures), or an extension of C
to partial morphisms. A closer look reveals that the result of the transformation

is always obtained as a pushout of a C-span D
k
ÐÝ K

r
ÝÑ R, where D is called the

context and K the interface. The object R may or may not (for SqPO trans-
formations) be the right-hand side of the rule. Besides, all approaches define a

morphism G
f
ÐÝ D, though in different ways. Hence all approaches are based on

specific rule-based transformations, from which a diagram G
f
ÐÝ D

k
ÐÝ K

r
ÝÑ R

can always be extracted (by some mapping). Such diagrams are called partial
transformations in [2].



Hence in order to develop general methods related to rule-based algebraic
transformations, methods that are not committed to a specific approach, one
can certainly rely on partial transformations. In [2] a transformation is defined
that applies algebraic rewrite rules simultaneously to the input object G. This
transformation is not restricted to a particular approach to algebraic rewriting,
and can even be applied by mixing rules from different approaches.

One important feature that enhances the expressiveness of this transforma-
tion is the use of morphisms between rules. The idea is inspired by [11], where the
overlap of two matchings in a graph can be represented as a common subgraph
of the corresponding left-hand sides, or more generally as morphisms between
left-hand sides. But since the transformation in [2] is based on partial transfor-
mations, it relies on a notion of morphisms between such diagrams, and hence of
a category Cpt of partial transformations (see Definition 4 below). A morphism
s : pÑ p1 can be understood as a subsumption (of p by p1) due to the following
property: the simultaneous application of partial transformations p and p1 yields
the same result as p1 [2, Proposition 5.12].

Hence we should also be able to find subsumption morphisms between the
rule-based transformations (usually called direct transformations) of any given
approach, hence the map from these to partial transformations should involve
morphisms; in other words there should be a functor from a category D of di-
rect transformations of the given approach, to the category Cpt. Similarly, there
should be a functor from D to a category R of rules whose morphisms can then
be understood as subsumptions between rules. This constitutes a Rewriting En-

vironment (RE) R R
ÐÝ D P

ÝÑ Cpt. The simplicity of this model is very convenient
as it encompasses many different situations. In particular, the fact that Cpt does
not involve any notion of left-hand side and matching of rules makes it easy
for the PBPO approach to fit in, despite its non-standard left-hand sides and
matchings (see [2, Section 6.3]).

But this simplicity makes it difficult to understand, and even formulate,
certain aspects of algebraic rewriting. In particular, this model is too tolerant
on what should be the morphisms in R and D, as it allows D to be discrete even
if R is not. This model lacks the possibility to express in a general way how the
morphisms in D must depend on the morphisms in R. Intuitively, we understand
that if a rule r is subsumed by r1, and if they are applied at suitably overlapping
positions, then the corresponding transformation d should be subsumed by the
corresponding d1. But if r and r1 are applied at unrelated positions then d and
d1 are similarly unrelated (hence R is generally not full).

For this reason we need to enhance REs with a notion of matchings of left-
hand sides of rules, and of morphisms between matchings. This notion should
be general enough to encompass the standard situation, where matchings are
C-morphisms, but also the non standard matchings used in PBPO direct trans-
formations (that involve two consecutive C-morphisms, a match and a co-match),
and possibly many others. This is the subject of Section 3, where it is also shown
how different notions of matchings can be combined, and how the standard no-
tions of monic matches and identity matching may be generalized.



In Section 4 this general notion of matching is connected to Rewriting En-
vironments, and it is shown how it can contribute to analyze their properties.
The analysis involves the definition of a category of redexes, or pairs of rules and
of matchings of their left-hand side. This allows to define a so-called X-functor
whose properties are shown to characterize some key properties of REs. It is also
shown how different REs can be combined and how they can be restricted to
strict matchings.

But first we need to compile some definitions and results, mostly concerning
functors.

2 Background

The standard notions of Category Theory are assumed, see [10]. For any category
C, we write G P C to indicate that G is a C-object, and |C| is the discrete category
on C-objects. Then G may also denote the functor from the terminal category 1
to C or to |C| (as specified in the context) that maps the object of 1 to G.

2.1 Functors

We will use the following notion from [2].

Definition 1 (right-full). A functor F : A Ñ B is right-full if for all a1 P A,
all b P B and all B-morphism g : bÑ F a1, there exist a P A and an A-morphism
f : aÑ a1 such that F f “ g.

a1

a

F a1

b

f g

F

Note that a full functor may not be right-full (since b may have no preimage)
and a right-full functor may not be full (since a depends on g). It is obvious that
right-fullness is closed by composition and that all isomorphisms are right-full.

Lemma 1. For any functors F : A Ñ B and G : B Ñ C such that G is faithful
then F is faithful iff G ˝F is faithful. If G is faithful and right-full then F is
right-full iff G ˝F is right-full.

Proof. Suppose G ˝F is right-full and let a1 P A, b P B and g : bÑ F a1 in B, then

G g : G bÑ GF a1 is a C-morphism, hence there exists a P A and f : aÑ a1 in A
such that GF f “ G g, hence such that F f “ g, which shows that F is right-full.
The other claims are proven similarly (or well known).

Definition 2 (embedding, meet, inverse image). We call embedding a
functor that is both faithful and injective on objects (equivalently, that is left-
cancellable). If A is a subcategory of B then the canonical embedding of A into



B is the functor J : AÑ B defined by J a – a for all a P A and J f – f for all
A-morphisms f .

A meet of two functors F : A Ñ C and G : B Ñ C consists in a category P
and two functors G1 : P Ñ A and F1 : P Ñ B such that F ˝G1 “ G ˝F1 and for
all functors F2, G2 such that F ˝G2 “ G ˝F2 there is a unique functor H such
that F2 “ F1 ˝H and G2 “ G1 ˝H.

If F is an embedding then F1 is called an inverse image of F along G.

Since meets have the universal property of pullbacks (they are pullbacks in
the “category” of categories) they will be pictured as are standard pullbacks:

P 1

P A

B C

H

G
2

F
2

G
1

F
1 F

G

It is well-known (see [8]) that meets always exist: take for P the subcategory
of Aˆ B with objects pa, bq such that F a “ G b and with morphisms pf, gq such
that F f “ G g, and take for G1 the projection πA : P Ñ A on the first coordinate
and for F1 the projection πB : P Ñ B on the second coordinate. All meets are
isomorphic to this one, that we may therefore call the meet of F and G.

If F is an embedding of A into C, then FpAq is a subcategory of C and (a
restriction of) F is an isomorphism from A to its image FpAq, with inverse, say,

F´1 : FpAq Ñ A. Let B1 be the subcategory of B with all b P B such that

G b P FpAq and all B-morphisms g such that G g is a FpAq-morphism. It is easy
to see that the second projection π2 : P Ñ B1 is an isomorphism, that πB ˝π2

´1

is the canonical embedding of B1 into B and that πA ˝π2
´1 “ F´1 ˝G1 where

G1 : B1 Ñ FpAq is a restriction of G. Hence all inverse images of F along G are
isomorphic to B1, that we may therefore call the inverse image of F along G.

Besides, the following properties of functors are preserved by meets:

Lemma 2. If F is right-full (resp. full, resp. faithful, resp. an embedding, resp.
surjective on objects) then so is F1.

Proof. Suppose F is right-full and let pa1, b1q be an object in the meet of F and

G, let b P B and g : b Ñ b1 in B (since πBpa
1, b1q “ b1), then G g : G b Ñ F a1 is a

C-morphism (since F a1 “ G b1), hence there exists a P A and an A-morphism f :
aÑ a1 such that F f “ G g (and hence F a “ G b), so that pf, gq : pa, bq Ñ pa1, b1q
is a morphism such that πBpf, gq “ g, hence πB is right-full. This holds for F1

since it is obtained by composing πB with an isomorphism. The other claims are
proven similarly.

We will also use an instance of the well-known pullback composition and
decomposition lemma (see [1, Proposition 11.10]), applied to meets of functors:



Lemma 3. If the following diagram of functors

A

B

C

A1

B1

C1

commutes and the right face is a meet, then the left face is a meet iff the back
face is a meet.

Similarly we will use the fact that meets are mono-sources (see [1, Proposition
11.6]):

Lemma 4. If P with F1 and G1 is a meet of F and G, and H,H1 : P 1 Ñ P are
such that F1 ˝H “ F1 ˝H1 and G1 ˝H “ G1 ˝H1 then H “ H1.

Definition 3 (sum A1 ` A2, injections IAi
, functors rF1,F2s, F1`F2).

Given two categories A1 and A2, their sum is the category A1`A2 whose objects
are pairs pi, aq where i P t1, 2u and a P Ai, and morphisms f : pi, aq Ñ pi, a1q
are the Ai-morphisms f : a Ñ a1, with the obvious composition (the union
of the compositions in A1 and A2). The injections are the two embeddings
IAi

: Ai Ñ A1 ` A2 defined by IAi
a – pi, aq for all a P Ai and IAi

f – f
for all Ai-morphisms f .

For any functors Fi : Ai Ñ C let rF1,F2s : A1 ` A2 Ñ C be the functor
defined by rF1,F2spi, aq – Fi a for all pi, aq P A1 ` A2 and rF1,F2sf – Fi f for
all Ai-morphisms f .

For any functors Gi : Ai Ñ Bi let G1`G2 : A1`A2 Ñ B1`B2 be the functor
defined by G1`G2 – rIB1

˝G1, IB2
˝G2s.

Injections have the universal property of coproducts, i.e., that rF1,F2s is the
unique functor such that rF1,F2s ˝ IAi

“ Fi for i “ 1, 2. From this it is easy to
deduce that rIA1

, IA2
s “ 1A1`A2

, rF ˝F1,H ˝F2s “ F ˝rF1,F2s, rF1 ˝G1,F2 ˝G2s “

rF1,F2s ˝ pG1`G2q and pH1`H2q ˝ pG1`G2q “ pH1 ˝G1q ` pH2 ˝G2q.
As above the following properties of functors are preserved by sums.

Lemma 5. If Fi : Ai Ñ Bi are right-full (resp. full, resp. faithful, resp. embed-
dings) for i “ 1, 2 then so is F1`F2.

Proof. Suppose F1 and F2 are right-full and let pi1, a1q P A1`A2, pi, bq P B1`B2

and g : pi, bq Ñ pF1`F2qpi
1, a1q a B1 ` B2-morphism, since pF1`F2qpi

1, a1q “
pi1,Fi1 a

1q then i “ i1 and g : b Ñ Fi a
1 is a Bi-morphism, hence there exist

a P Ai and an Ai-morphism f : a Ñ a1 such that Fi f “ g, and therefore
pF1`F2qf “ pIBi

˝Fiqf “ Fi f “ g, hence F1`F2 is right-full. The other claims
are proven similarly.

Finally, we see that meets are also preserved by sums.



Lemma 6. If

Pi Ai

Bi Ci

G
1
i

F
1
i Fi

Gi

is a meet for i “ 1, 2 then so is

P1 ` P2 A1 `A2

B1 ` B2 C1 ` C2

G
1
1`G

1
2

F
1
1`F

1
2 F1`F2

G1`G2

The proof is left to the reader.

2.2 Rewriting Environments

We now introduce some definitions from [2], starting with subsumption mor-
phisms. The idea of a subsumption s : d Ñ d1 between direct transformations
is that d performs a part of the transformation d1, and hence that d can be ex-
tended to d1. This means that d removes less than d1 and also glues less. But this
also means that the context D1 of d1 should be smaller than the context D of d.
On the other hand, D may also be obtained by duplicating a part of the input G
and then D1 should be obtained by making at least as many duplications than d,
so that D1 may be bigger than D. But in both cases there should be a morphism
from D1 to D, which explains the contravariance of s1 below.

Definition 4 (category Cpt, functor In, Rewriting Environments). A par-
tial transformation p in C is a diagram

G D K R
f k r

For any category C, let Cpt be the category whose objects are partial transfor-
mations and morphisms s : p Ñ p1 are triples ps1, s2, s3q of C-morphisms such
that

G D K R

G1 D1 K 1 R1

f k r

f 1 k1 r1

“ s1 s2 s3

commutes in C, with the obvious composition ps11, s
1
2, s

1
3q ˝ ps1, s2, s3q – ps1 ˝

s11, s
1
2 ˝ s2, s

1
3 ˝ s3q.

Let In : Cpt Ñ |C| be the input functor defined as Inp “ G.



A Rewriting Environment (or RE) R for C consists of a category D of direct
transformations, a category R of rules and two functors

R D Cpt
R P

A rule system in R is a category S with an embedding J : S Ñ R (alternately,
S is a subcategory of R and J is the canonical embedding).

Given a rule system and an input C-object G, we build the categories D|G,
D|SG and functors JG, JS as inverse images of the embeddings G and J.

S R

D |C|

1

Cpt

D|GD|SG

R

J

P In

GJG

JS

R
1

Note that by our construction of inverse images and by Lemma 2 (since
G : 1 Ñ |C| is full), D|G is a full subcategory of D. Similarly, D|SG is a subcat-
egory of D that may not be full if J is not full. Hence D|SG contains all direct
transformations of G by the rules in S, and all the subsumptions between these
whose image by R also belongs to S (or its image by J). In this way rule systems
are used to specify subcategories of direct transformations.

It seems that in most cases the functor R is faithful. This is a consequence of
a property that seems ubiquitous in all approaches to algebraic rewriting (see [2,
Propositions 6.4, 6.6, 6.9] and [12, Theorem 3.5]), and we will see in Section 4
that this property (generalized as condition (1) in Theorem 1 below) has other
consequences. Understanding this property is one motivation of the present work.

Another important property is whether R1 is right-full, for this means that
for any direct transformation d1 P D|SG and any subsumption s : r Ñ R1 d1

in the rule system S, there exists a transformation d P D|SG subsumed by d1

(with subsumption s1 s.t. R1 s1 “ s), i.e., when a rule applies its subsumed rules
necessarily apply. This is a property that seems all too natural but it does not
always hold, e.g., in the DPO approach with unrestricted matchings. It is shown
in [2, Proposition 6.3] that R1 is right-full whenever R is right-full, hence we will
focus on R.

One important feature of REs is that they can be combined:

Definition 5. Given two REs Ri “ Ri
Ri
ÐÝ Di

Pi
ÝÑ |C| for C for i “ 1, 2, their

sum R1 `R2 is the RE

R1 `R2 D1 `D2 Cpt
R1`R2 rP1,P2s



By Lemma 5 we obviously have:

Proposition 1. If R1 and R2 are right-full (resp. faithful) then so is R1`R2.

3 Matching Environments

A matching is generally understood as a kind of relation between a source object,
that we call a pattern p, and a target object, in our case the input object G P
C. In most approaches this is simply a C-morphism, so that matchings may
be composed. In Term Rewriting a matching is a substitution together with
a position in G, but once again matchings can be composed since G can be
understood also as a pattern (a term with variables). However, in the PBPO
approach a matching in G is a commuting diagram

L

G

TL

m

c

tL

where tL belongs to the PBPO rule. More precisely, the pattern appears to be
the C-morphism tL, and the matching that relates it to G is the pair pm, cq that
factors tL through G. Anyway, the pattern and the target have different natures
and it therefore seems difficult to consider a target as a pattern. Thus we have
to drop the possibility to compose matchings.

For this reason we treat matchings and patterns as objects each in their
respective category. A matching designates the location in G of its pattern, and
such locations can be connected by morphisms only if their patterns are likewise
connected (and they are located in the same G). The converse is false; connected
patterns can be matched at unrelated locations. This yields a definition similar
to REs.

Definition 6 (Matching Environment M , categories M|G, M|p, M|Gp ).
A Matching Environment (or ME) M for C consists of a category M whose
objects are called matchings, a category P whose objects are called patterns,
and two source and target functors

P M |C|S T

An object m PM is a matching of Sm into Tm.
As in REs we extract from M the category M|p of matchings of a pattern

p P P, the category M|G of matchings into an object G P C, and the category
M|Gp of matchings of p into G, by taking the inverse image of the corresponding
embeddings p : 1 Ñ P and G : 1 Ñ |C| along S and T as pictured below (so that
we obtain subcategories of M).



M|Gp

M|p

M|G

M

P

|C|

1

1

p

G

T

S

This general definition is easily illustrated by the standard notion of match-
ings, where patterns are C-objects and matchings are C-morphisms to G and
are connected by pattern morphisms restricted by a trivial commuting condi-
tion. For PBPO rules the notions of matchings and patterns should be clear, but
their morphisms may not. The notion of subsumption morphism between PBPO
rules given in [2, Definition 6.8] spills the beans: a morphism from tL to tL1 is a
factorization of tL through tL1 .

Definition 7 (Matching Environments Mstd, Mfct). Let Mstd be the cate-
gory whose objects are the C-morphisms and whose morphisms f : m Ñ m1 are
C-morphisms such that

L

G

L1

G1

f

“

m m1

commutes, with the same composition as C. The functor Sstd : Mstd Ñ C is
defined by Sstdm – L where L is the domain of m, and Sstd f – f . The functor

Tstd : Mstd Ñ |C| is defined by Tstdm – G where G is the codomain of m, and

Tstd f – 1G for all f : m Ñ m1 in Mstd and G is the common codomain of m

and m1. Let Mstd be the Matching Environment C Sstd
ÐÝÝMstd

Tstd
ÝÝÝÑ |C|.

Let Pfct be the category whose objects are C-morphisms and whose morphisms
are pairs of C-morphisms pf, gq : pÑ p1 such that

L

T T 1

L1
f

p p1

g

commutes, with obvious composition pf 1, g1q˝pf, gq – pf 1˝f, g˝g1q. The category
of matchings Mfct has as objects pairs pm, cq of consecutive C-morphisms, i.e.,
such that c ˝m exists, and as morphisms pairs of C-morphisms pf, gq : pm, cq Ñ
pm1, c1q such that



L

G

T T 1

L1

G1

f

“

m

c

m1

c1

g

commutes, with composition as in Pfct. The functor Sfct : Mfct Ñ Pfct is defined
by Sfct pm, cq – c ˝m and Sfct pf, gq – pf, gq. The functor Tfct : Mfct Ñ |C| is
defined by Sfct pm, cq – G and Sfct pf, gq – 1G for all pf, gq : pm, cq Ñ pm1, c1q,
where G is the common codomain of m, m1 and domain of c, c1. Let Mfct be the

Matching Environment Pfct
Sfct
ÐÝÝMfct

Tfct
ÝÝÑ |C|.

Example 1. In Mstd where C is the category of graphs, we consider the pattern

p “ ‚ ‚
a

b and the graph G “ ‚

‚

‚

a1

a2

c

There are two monic matchings mi – tb ÞÑ c, a ÞÑ aiu of p into G for
i “ 1, 2, and one non monic matching m0 – ta, b ÞÑ cu. The C-morphism
f – ta, b ÞÑ bu : pÑ p is an Mstd-morphism from m0 to m1 since m1 ˝ f “ m0,
and also a Mstd-morphism from m0 to m2 since m2˝f “ m0. Hence the category
Mstd|

G
p is a span m1 Ð m0 Ñ m2.

We have the same problem with MEs as with REs since the notion allows M
to be discrete even when P is not. One may hope to constrain M-morphisms by
requiring S to be full, but neither Sstd nor Sfct are full. Fortunately they share
the following properties.

Lemma 7. The functors Sstd and Sfct are right-full and faithful.

Proof. Faithfulness is obvious. To show that Sstd is right-full, take m1 : L1 Ñ G1

an object of Mstd and f : LÑ Sstdm
1 a morphism in C, since Sstdm

1 “ L1 then
f : m1 ˝ f Ñ m1 is a morphism in Mstd such that Sstd f “ f .

Let pm1, c1q PMfct and pf, gq : pÑ c1˝m1 in Pfct, then pf, gq : pm1˝f, g˝c1q Ñ
pm1, c1q is a morphism in Mfct, hence Sfct is also right-full.

It therefore seems reasonable to require, at least, that S be right-full, which
obviously imposes a constraint on M-morphisms w.r.t. P-morphisms. This also
entails that for any P-morphisms g : p Ñ p1 and matching m1 of p1 in G there
is a matching m of p in G and a M-morphism f : m Ñ m1; for this reason we
may say that p1 is an instance of p and that g is an instance morphism. The
morphism f can be viewed as an inclusion of m in m1.

Next we see that, as in Definition 5 for REs, MEs can easily be combined
while preserving the properties of the source functors.



Definition 8 (sum of ME). The sum M1`M2 of two Matching Environments

Mi “ Pi
Si
ÐÝMi

Ti
ÝÑ |C| for i “ 1, 2 is the Matching Environment

P1 ` P2 M1 `M2 |C|S1` S2 rT1,T2s

By Lemma 5 we have:

Proposition 2. If S1 and S2 are right-full (resp. faithful) then so is S1`S2.

3.1 Strict and trivial matchings

We now try to generalize the notion of monic matchings in Mstd. Since match-
ings do not compose, we cannot rely on the standard notion of regularity (or
cancellability) on the left. Intuitively, we wish to avoid matchings that relate
distinct items (vertices, edges or whatever) of a pattern to the same item in G,
and hence to avoid that locations that exist in patterns should be confused by
matchings. If we see a matching as a map, we want every part of the map to
have a unique location. The location of a part of a map within the whole map
being given by a morphism, we are asking for a 1-1 correspondence between such
morphisms and the parts of the map. This idea leads to a simple definition.

Definition 9 (strict matchings). A matching s PM is strict if for all mor-
phisms f : mÑ s and f 1 : m1 Ñ s in M, m “ m1 entails f “ f 1.

We first check that this notion corresponds to monic standard matchings.

Proposition 3. A matching in Mstd is strict iff it is monic.

Proof. Obvious since for all f : mÑ s and f 1 : m1 Ñ s in Mstd we have m “ m1

iff s ˝ f “ s ˝ f 1.

We then see that strict factor matchings appear as a quite natural extension
of the standard case.

Proposition 4. A matching pm, cq PMfct is strict iff m is monic and c is epic.

Proof. Suppose pm, cq is strict, for all C-morphisms f1, f2, g1, g2 such that
m ˝ f1 “ m ˝ f2 and g1 ˝ c “ g2 ˝ c, since pf1, g1q : pm ˝ f1, g1 ˝ cq Ñ pm, cq and
pf2, g2q : pm ˝ f2, g2 ˝ cq Ñ pm, cq are Mfct-morphisms with identical domains,
then f1 “ f2 and g1 “ g2, hence m is monic and c is epic. The converse is similar.

Besides, in a category of strict matchings we only accept M-monomorphisms,
and similarly we restrict the category of patterns to P-monomorphisms. We
therefore need source functors that preserve monomorphisms, but we only know
that monomorphisms are reflected by faithful functors [6, Proposition 12.8]. For-
tunately we can use right-fullness.

Proposition 5. If S is right-full and faithful then S preserves monomorphisms.



Proof. For any M-monomorphism f : mÑ m1 and P-morphisms h and h1 such
that pS fq ˝h “ pS fq ˝h1, since S is right-full there exist M-morphisms g and g1

such that S g “ h and S g1 “ h1, hence Spf ˝ gq “ Spf ˝ g1q, so that f ˝ g “ f ˝ g1,
hence g “ g1 and h “ h1.

Thanks to this property we can restrict MEs to strict matchings and monomor-
phisms, provided we assume that the source functor is right-full and faithful.

Definition 10 (strict restriction M › of M ). Given a ME M as in Defi-
nition 6 and such that S is right-full and faithful, let M› be the subcategory of
strict matchings of M and M-monomorphisms between them, and P› be the sub-
category of P with all P-objects and all P-monomorphisms. Let T› : M› Ñ |C|
be the restriction of T to M› and S› : M› Ñ P› be the restriction of S to M›

(that exists according to Proposition 5). The strict restriction M › of M is the
Matching Environment

P› M› |C|S
›

T
›

Example 2. The pattern category of the standard ME Mstd is C, hence its re-
striction C› is the category with all C-objects and whose morphisms are the C-
monomorphisms. Similarly, the M›

std-objects are the C-monomorphisms, and the
M›

std-morphisms f : m Ñ m1 are the C-monomorphisms such that m “ m1 ˝ f .
The functors S›std and T›std are the obvious restrictions of Sstd and Tstd to monic
matchings and monomorphisms. Note that M›

std is a full subcategory of Mstd

(since m1 ˝ f monic entails f monic).

We can then prove that the relevant property of the source functor is pre-
served by this restriction. We first need an easy lemma.

Lemma 8. For any M-monomorphism f : m Ñ m1, if m1 is strict then so is
m.

Proof. Let g : n Ñ m and g1 : n1 Ñ m, if n “ n1 then f ˝ g “ f ˝ g1 : n Ñ m1,
hence g “ g1.

Proposition 6. The functor S› in Definition 10 is right-full and faithful.

Proof. That S› is faithful is obvious. Let m1 be a strict matching, p be a pattern
and g : pÑ Sm1 be a P›-morphism, i.e., a P-monomorphism, since S is right-full
there exists m P M and a M-morphism f : m Ñ m1 such that S f “ g. Since

S is faithful then f is an M-monomorphism, hence by Lemma 8 m is strict and
therefore f is a M›-morphism such that S› f “ g.

It is easy to see that pM ›q› “ M ›, hence this restriction is one-shot. Simi-
larly we see that restrictions and sums commute, i.e., pM1`M2q

› “ M ›
1 `M ›

2 .
Another notion that seems difficult to generalize in absence of composable

matchings is that of an identity matching, that first requires an identity between
a pattern and the input object G, which is out of reach. Obviously the notion
can only be generalized up to a point, and only up to M-isomorphisms. The idea
is to say that a matching into G is trivial if it is wider than all other matchings
into G, in the sense that they are all a part of it.



Definition 11 (trivial matchings). For any g P C, a matching into G is
trivial if it is terminal in M|G.

Hence a matching m into G is trivial if for all matchings m1 into G there is
a unique f : m1 Ñ m. This unicity obviously entails that m is strict.

We see that trivial standard matchings are only an approximation of identity
matchings, but the best we can expect.

Proposition 7. A matching in Mstd is trivial iff it is an isomorphism.

Proof. If m PMstd is a trivial matching into G, since 1G is a matching into G
then there exists f : 1G Ñ m, so that m ˝ f “ 1G, i.e., m is a retraction, and
since m is monic by Proposition 3, then m is an isomorphism (by [6, Proposition
6.7]). The converse is obvious.

Proposition 8. A matching pm, cq P Mfct is trivial iff m and c are isomor-
phisms.

Proof. If pm, cq is a strict matching into G then there exists pf, gq : p1G, 1Gq Ñ
pm, cq, hence m ˝ f “ 1G and g ˝ c “ 1G, i.e., m is a retraction and c is a
section, and since m is monic and c is epic by Proposition 4 then m and c are
isomorphisms. The converse is obvious.

This obviously means that a pattern p P Pfct admits trivial matchings (in
M|p) iff p is a C-isomorphism (and then only into C-objects isomorphic to p’s
domain and codomain).

4 Rewriting Environments with Matchings

We can now enhance Rewriting Environments by stating that every direct trans-
formation has a matching of the left-hand side of its rule into its input object.
This matching and the left-hand side are accessed by means of two new functors,
and their relations are expressed as commuting conditions.

Definition 12 (REM). A Rewriting Environment with Matchings (or REM)
E consists of a Rewriting Environment R as in Definition 4, a Matching Envi-
ronment M as in Definition 6 and two functors L and M such that

R D Cpt

P M |C|

R P

S T

L M In

commutes. For every rule r P R, the pattern L r is the left-hand side of r.

Example 3. In [2] the category RDPO of DPO rules (in C) is defined with mor-
phisms as triples ps1, s2, s3q of C-morphisms such that



L K R

L1 K 1 R1

s1 s2 s3

commutes and the left square is a pullback. Hence there is an obvious functor

LDPO : RDPO Ñ C where LDPOps1, s2, s3q “ s1. Similarly, the category DDPO

has DPO diagrams as objects, and morphisms ps1, s2, s3, s4q such that

G

G1

L

L1

K

K 1

D

D1

R

R1

=

s1
s2

s4

m

m1

s3

commutes and the top left square is a pullback. Again there is an obvious functor

MDPO : DDPO ÑMstd where MDPOps1, s2, s3, s4q “ s1. The DPO RE together
with Mstd and the two functors LDPO and MDPO constitute a REM. These
functors are neither full nor faithful. If C does not have pullbacks they are not
right-full either.

In a REM the category D is still free to be discrete and it does not seem that
we can prevent this by requiring some standard property on the functor M. In
order to formulate a realistic constraint we need further tools.

Definition 13 (redex category X , X-functor). In a REM E as in Defini-
tion 12, the redex category X of E and the projection functors πR : X Ñ R,
πM : X ÑM are obtained as the meet of L and S. We call X-functor of E the
unique functor X : D Ñ X such that R “ πR ˝X and M “ πM ˝X.

R X

P M

DR

πR

S

L πM

M

X

As explained in Section 2.2 we are interested in whether R is right-full and
faithful. We easily see that these are equivalent to properties of the X-functor.

Proposition 9. If S is faithful then R is faithful iff X is faithful. If S is right-full
and faithful then R is right-full iff X is right-full.



Proof. By Lemma 2 πR is faithful (resp. right-full and faithful), hence by Lemma 1,

X is faithful (resp. right-full) iff so is πR ˝X “ R.

Theorem 1. If S is faithful, then the X-functor is fully faithful iff

for all d, d1 P D, f : R dÑ R d1 in R and g : M dÑ M d1 in M such that

L f “ S g, there exists a unique s : dÑ d1 in D such that R s “ f .
(1)

Proof. Suppose X is fully faithfull and let d, d1, f and g as in (1), then pf, gq :
pR d,M dq Ñ pR d1,M d1q is a X -morphism, hence there exists a unique s : dÑ d1

in D such that X s “ pf, gq, hence R s “ f . Since R is faithful by Proposition 9,
then s is indeed unique such that R s “ f , hence property (1) holds.

Suppose now that (1) holds. We first see that R is faithful: for all s, s1 :
d Ñ d1 in D such that R s “ R s1, then R s : R d Ñ R d1 is a R-morphism and

M s : M dÑ M d1 is an M-morphism such that LpR sq “ SpM sq, hence there is a
unique s2 : d Ñ d1 such that R s2 “ R s “ R s1, hence s “ s1. By Proposition 9
we get that X is faithful.

To prove that X is full, let d, d1 P D and pf, gq : X dÑ X d1 be a X -morphism,
then f “ πRpf, gq : R dÑ R d1 is a R-morphism and g “ πMpf, gq : M dÑ M d1

is a M-morphism such that L f “ S g, hence by (1) there exists s : dÑ d1 in D
such that R s “ f . But then SM s “ LR s “ L f “ S g, and since S is faithful
then M s “ g, hence X s “ pR s,M sq “ pf, gq.

Example 4. It is shown in [2, Proposition 6.4] that if C is adhesive [7] then for
all d, d1 P DDPO, all ps1, s2, s3q : RDPO d Ñ RDPO d

1 in RDPO such that m “

m1 ˝ s1 there exists a unique s : dÑ d1 in DDPO such that RDPO s “ ps1, s2, s3q.
Since m and m1 refer to the corresponding morphisms in the DPO diagrams
d and d1, the equation m “ m1 ˝ s1 means that s1 : MDPO d Ñ MDPO d

1 is a
morphism in Mstd, and since LDPOps1, s2, s3q “ s1 “ Sstd s1, it is equivalent
to LDPOps1, s2, s3q “ Sstd g for any g : MDPO d Ñ MDPO d

1. Hence property (1)
holds for the DPO REM, and its X-functor is therefore fully faithful (in adhesive
categories).

We leave it to the reader to check that this also holds for the SPO REM
(in categories of presheaves) by [12, Theorem 3.5]), for the SqPO REM by [2,
Proposition 6.6] and for the PBPO REM by [2, Proposition 6.9].

4.1 Combining REMs

We can easily combine REMs as we did with REs and MEs. This can be done
by preserving the properties of the X-functors.

Definition 14 (sum of REMs). The sum E1 ` E2 of two REMs Ei given by

Ri Di Cpt

Pi Mi |C|

Ri Pi

Si Ti

Li Mi In



for i “ 1, 2 is the REM

R1 `R2 D1 `D2 Cpt

P1 ` P2 M1 `M2 |C|

R1`R2 rP1,P2s

S1` S2 rT1,T2s

L1` L2 M1`M2 In

Note that this diagram is easily seen to commute.

Proposition 10. If the X1-functor and the X2-functor are right-full (resp. full,
resp. faithful, resp. embeddings) then so is the X-functor of the sum.

Proof. Let X be the redex category of the sum, i.e., the meet of L1` L2 and

S1`S2, and X : D1 ` D2 Ñ X be the unique functor such that R1`R2 “

πR1`R2
˝X and M1`M2 “ πM1`M2

˝X. By Lemma 6 X1 `X2 with πR1
`πR2

and πM1
`πM2

is also a meet of L1` L2 and S1`S2, hence there exists a
unique isomorphism H : X1 ` X2 Ñ X such that πR1

`πR2
“ πR1`R2

˝H
and πM1 `πM2 “ πM1`M2 ˝H.

R1 `R2 X

P1 ` P2 M1 `M2

D1 `D2

X1 ` X2

R1`R2

πR1`R2

S1` S2

L1` L2 πM1`M2

M1`M2
H

X1`X2

πM1 `πM2

πR1 `πR2

But then we see that

πR1`R2
˝H ˝pX1`X2q “ pπR1

`πR2
q ˝ pX1`X2q

“ pπR1
˝X1q ` pπR2

˝X2q “ R1`R2

and similarly that πM1`M2
˝H ˝pX1`X2q “ M1`M2. By Lemma 4 we therefore

have X “ H ˝pX1`X2q and we conclude with Lemma 5.

4.2 The strict restriction of a REM

We finally see that it is possible, under suitable premise, to construct a REM cor-
responding to the restriction to strict matchings, while preserving the properties
of the X-functor.



Definition 15 (strict restriction E › of REM E ). Given a REM E as in
Definition 12 such that S is right-full and faithful, so that there is a strict re-
striction M › of its ME M as in Definition 10, let JR : R› Ñ R be the inverse
image of the canonical embedding JP : P› Ñ P along L, and L› : R› Ñ P› be
the corresponding restriction of L.

Similarly, let JD : D› Ñ D be the inverse image of the canonical embedding
JM : M› Ñ M along M, and M› : D› Ñ M› be the corresponding restriction
of M.

Let P› “ P ˝ JD.

R

P

R›

P›

D›

M›

D

M

Cpt

|C|
T

P
›

P

In
L

L
›

M
›

M

R
›

JP

R

S

S
›

T
›

It is easy to see that JP ˝S
› ˝M› “ L ˝R ˝ JD, and since R› with JR, L

›

is a meet of L and JP , then there exists a unique R› : D› Ñ R› such that

L› ˝R› “ S› ˝M› and JR ˝R
› “ R ˝ JD. Hence we get a REM E ›, called the

strict restriction of E .

Note that by our special construction of inverse images, the functors JR and
JD are canonical embeddings, so that L›, M›, R› and P› are restrictions of L,

M, R and P respectively. Besides, since P› and P have the same objects (JP
is surjective on objects) then so do R› and R (JR is surjective on objects by
Lemma 2), so that all rules are preserved by the restriction.

Example 5. We have build M ›
std in Example 2. We now build the strict restric-

tion of the DPO REM. We first see that R›DPO is obtained as the inverse image
of the canonical embedding of C› in C along LDPO, hence the R›DPO-objects
are all the RDPO-objects (all DPO-rules), and the R›DPO-morphisms are all the
ps1, s2, s3q : r Ñ r1 such that LDPOps1, s2, s3q is in C›, i.e., such that s1 is monic.
This is the category RmDPO in [2, Definition 3.3].

Similarly, the D›DPO-objects are the direct DPO-transformations d P DDPO

such that MDPO d is monic, and the D›DPO-morphisms are the DDPO-morphisms
ps1, s2, s3, s4q : dÑ d1 such that s1 is monic. This is a full subcategory of DDPO,
denoted DmDPO in [2, Definition 3.8].

Proposition 11. If X is right-full (resp. full, resp. faithful, resp. an embedding)
then so is X›.

Proof. We consider the following diagram where both X-functors are depicted,
together with their construction.



R

P

R›

P›

X ›

M›

X

M

D

D›

R

R
›

M

X
›

X

L

L
›

πM›

πM

πR›

JP

πR

S

S
›

M
›

It is easy to see that S ˝ JM ˝πM› “ L ˝ JR ˝πR› , and since X with πR,
πM is a meet of L and S then there exists a unique JX : X › Ñ X such that
πM ˝ JX “ JM ˝πM› and πR ˝ JX “ JR ˝πR› .

We therefore have a commuting cube from X › to P. Since its left and top
faces are meets, then by Lemma 3 the diagonal square pπM› , JP ˝S

›, JR ˝πR› , Lq
is a meet, and since its bottom face is also a meet then again by Lemma 3 its
right face is a meet. Hence JX is an embedding by Lemma 2.

We also have a square of X-functors, and we now show that it commutes.
Indeed, it is easy to see that πM ˝X ˝ JD “ πM ˝ JX ˝X

› and that πR ˝X ˝ JD “
πR ˝ JX ˝X

›, hence by Lemma 4 we get X ˝ JD “ JX ˝X
›.

We can thus apply again Lemma 3 to get that the square of X-functors is a
meet, and we conclude with Lemma 2.

5 Conclusion

We conclude that any combination of the REMs for DPO, SPO, SqPO and
PBPO approaches and their strict restrictions yields a REM with a fully faithful

X-functor.
At the abstract level it seems indispensable to require that the X-functor be

fully faithful and the source functor S be faithful, at the very least. For then we
see that for all d, d1 P D with a morphism g : M d Ñ M d1 and a subsumption
morphism f : R dÑ R d1 that is not an identity, there is a subsumption morphism
s : dÑ d1 that is not an identity either.

Requiring further that S be right-full enables the strict restriction. Other
constructions that seem universal (independent of rule semantics) could be in-
vestigated.
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