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Abstract 25 

During cancer therapy many patients experience significant malnutrition, leading to decreased 26 

tolerance to chemotherapy and decreased survival. Dietary citrulline supplementation 27 

improves nutritional status in situations such as short bowel syndrome and aging, and is of 28 

potential interest in oncology. However, a mandatory prerequisite is to test this amino acid for 29 

interaction with tumor growth and chemotherapy response.  30 

Dietary citrulline (Cit; 2 %), or an isonitrogenous mix of non-essential amino acids (control), 31 

was given to Ward colon tumor-bearing rats the day before chemotherapy initiation. 32 

Chemotherapy included 2 cycles, one week apart, each consisting of one injection of CPT-11 33 

(50 mg/kg) and of 5-fluorouracil (50 mg/kg) the day after. Body weight, food intake and 34 

tumor volume were measured daily. The day after the last injection, rats were killed, muscles 35 

(EDL, gastrocnemius), intestinal mucosa, tumor, spleen and liver were weighed. Muscle and 36 

intestinal mucosa protein content were measured. Phosphorylated 4E-BP1 was measured in 37 

muscle and tumor as a surrogate for biosynthetic activation. FRAPS (Ferric Reducing Ability 38 

of Plasma) and thiols in plasma, muscle and tumor were evaluated and plasma amino acids 39 

and haptoglobin were measured. 40 

Numerous parameters did not differ by diet overall: a) response of tumor mass to treatment, b) 41 

tumor antioxidants and phosphorylated 4E-BP1 levels, c) relative body weight and relative 42 

food intake, d) weight of EDL, gastrocnemius, intestinal mucosa, spleen and liver and e) 43 

plasma haptoglobin concentrations. Moreover, plasma citrulline concentration was not 44 

correlated to relative body weight, only cumulated food intake and plasma haptoglobin 45 

concentrations were correlated to relative body weight. 46 

Citrulline does not alter the tumor response to CPT-11/5FU based therapy but, has no effect 47 

on nutritional status, which could be due to the anorexia and the low amount of citrulline and 48 

protein ingested. 49 
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Introduction 53 

Patients with cancer are at high risk for malnutrition due to the combined effect of cancer and 54 

chemotherapy. Both cancer and chemotherapy are associated with inflammation and weight 55 

loss, and more specifically muscle loss, which, in turn, leads to decreased tolerance to 56 

chemotherapy and decreased survival rate (1-4). A vicious circle of malnutrition and toxicity 57 

worsens patient outcome, a point underlined by the European Society for Enteral and 58 

Parenteral Nutrition (ESPEN) expert group for action against cancer-related malnutrition (5). 59 

Skeletal muscle loss is a specific focus of ESPEN recommendations, since sarcopenia is an 60 

important prognostic factor for both mortality and treatment toxicity. Several strategies have 61 

been proposed to manage these patients, in particular using anabolic and/or anti-catabolic 62 

drugs and nutrients (6), however the amount and quality of evidence are insufficient and the 63 

recommendation is to continue research (5). Specific nutrients include a variety of amino 64 

acids and fatty acids and among these, citrulline could be a promising tool (7). Citrulline is an 65 

amino acid which is not incorporated into protein, and it is now well known to be an activator 66 

of muscle protein synthesis (MPS) and to increase muscle mass (8-10), particularly in 67 

conditions of muscle mass loss (11-13). However, to date, there is no data concerning the use 68 

of this amino acid in cancer patients, especially as plasma citrulline concentration (a marker 69 

of functional intestinal mass (14)) is decreased in cancer patients (15). 70 

But, before giving citrulline to cancer patients to thwart muscle mass loss, a prerequisite is to 71 

check the safety of this amino acid and to determine whether there is any interaction between 72 

citrulline and chemotherapy. Citrulline is able to activate mTORC1 pathway in muscle 73 

(11;16), and could induce mTOR activation in tumor cells, and thus increase tumor size (17). 74 

Citrulline has also important antioxidant properties (9;18) and this property could interfere 75 

with chemotherapy treatment (19-20). 76 
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The purpose of this study was to evaluate the interaction of citrulline with tumor response to 77 

chemotherapy in an animal model of colon cancer and chemotherapy. Secondarily, we 78 

assessed the ability of this amino acid to modify muscle mass loss. 79 

80 
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Material and methods 81 

Animals 82 

Animal use was reviewed and approved by the Institutional Animal Care Committee and 83 

conducted in accordance with the Guidelines of the Canadian Council on Animal Care 84 

(Number ACC12200). 85 

Thirty-four 11-week-old female Fischer 344 rats (110–130 g body weight) were obtained 86 

from Charles River Laboratories (St. Constant, QC, Canada). Rats were housed two per cage 87 

in a temperature (22 ± 2°C) and light (12 h light/12 h dark) controlled room with a positive air 88 

pressure; water and food were available for ad libitum consumption. 89 

After a 7-days period of acclimatization, the rats received a nutritionally complete semi-90 

synthetic diet (“basal diet”) : 80% “Basal Mix with Fat Source Omitted” (Teklad TD.84172; 91 

Harlan Laboratories, Madison, WI, USA) and 20% fat (11.7% canola stearine, 5.2% 92 

sunflower oil, 3.1% canola oil) (Table 1) (21;22). Rats were weighed and the food intake 93 

recorded every other day. 94 

 95 

Experimental design (Figure 1) 96 

Tumor 97 

After 3 days of semi-synthetic diet, 28 rats received a subcutaneous injection of Ward colon 98 

tumor (~ 0.1 g), via trocar, on the back (22-24). The Ward colorectal carcinoma was provided 99 

by Dr Y. Rustum, Roswell Park Institute (25). Subcutaneous injection was selected to 100 

facilitate continuous evaluation of tumour dimensions. Tumors were measured in three 101 

dimensions with a caliper: the length (L), width (W), and height (H). Then, tumor size was 102 

calculated according to the following equation: tumor volume (cm3) = 0.5 x L (cm) x W (cm) 103 

x H (cm) (23). Tumor volume was recorded every other day prior to initiation of 104 

chemotherapy, and daily after the 1st dose of chemotherapy was administered. During 105 
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chemotherapy, relative tumor volume for each animal was compared to the baseline volume 106 

(Day 0). 107 

 108 

Diet 109 

Rats were separated into individual cages 5 days before chemotherapy in order to measure 110 

their food intake. 111 

After two weeks of tumour growth, when it reached ~ 2 cm3, the 28 rats were divided into 2 112 

groups (D-1): the Cit group (n=14) which received the citrulline diet which is the basal diet 113 

complemented with citrulline (gift from Citrage® Company) at 2% of diet weight 114 

(corresponding to around 1 g/kg/day; 12;16) and the Control group (Ctrl; n=14) which 115 

received the diet containing an isonitrogenous mix of amino acids (alanine, glycine, histidine 116 

and serine in equimolar ratio) instead of citrulline (Table 1). From the day of the start of 117 

citrulline or control diets (D-1), weight of the rats, food intake, and tumor growth were 118 

recorded daily. Relative food intake for each animal was compared to the baseline food intake 119 

(mean of the food intake of the 4 days before the beginning of the chemotherapy; i.e. Cit: 120 

8.1±0.6 and Ctrl: 7.9±0.8 g/day). Relative cumulative food intake at the end of the study was 121 

calculated as the summed daily food intake from D0 (beginning of the chemotherapy) to D9 122 

(euthanasia), and relative to baseline food intake (see above). 123 

 124 

Chemotherapy 125 

The day after beginning of the citrulline or control diets (D0), rats received one intra-126 

peritoneal injection of irinotecan (7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxy-127 

camptothecin; CPT-11; Camptosar®; 50 mg/kg) and the day after (D1), one injection of 5-128 

fluorouracil (5-FU; 50 mg/kg). This corresponds to one cycle of chemotherapy. Atropine 129 

(1 mg/kg body weight, subcutaneous) was administered immediately prior to each CPT-11 130 
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injection to alleviate early onset cholinergic symptoms (26). One week after, they received a 131 

second cycle of chemotherapy (CPT-11 on D7 and 5-FU on D8). 132 

 133 

Another set of rats (Reference group; n=6), of the same age as the tumour-bearing rats at the 134 

beginning of the chemotherapy, but without cancer or chemotherapy and fed the basal diet, 135 

were used as control for plasma amino acid and haptoglobin concentrations. 136 

 137 

Euthanasia 138 

The day after the end of the second cycle of chemotherapy (D9), in order to study the animals 139 

in a catabolic state. Animals were killed by CO2 asphyxia and cervical dislocation. This was 140 

done at least 2 h after lights on in the animal room, at which time animals would be in the 141 

postabsorptive state. Blood was collected by cardiac puncture on EDTA and centrifuged to 142 

collect plasma. 143 

Tibialis and proximal half of the colon were rapidly removed, weighed and frozen in liquid 144 

nitrogen. The entire weight of the dissected tumor was recorded, and that a sample was taken 145 

of the tissue at the tumor margin, avoiding any necrotic central portion, and frozen in liquid 146 

nitrogen for biochemical assays. The proximal part of the jejunum, the distal part of the ileum 147 

and the distal part of the colon were scraped and mucosa were collected, weighed and frozen 148 

in liquid nitrogen. Gastrocnemius, spleen and liver were removed and weighed. 149 

Plasma, muscle, tumour, and intestinal samples were stored at –80°C until analysis. 150 

 151 

Plasma amino acid measurements 152 

Plasma was deproteinized with 10% (w/v) sulfosalicylic acid and centrifuged for 10 min. 153 

Individual free amino acids (Alanine, Arginine, Asparagine, Aspartate, Citrulline, Cysteine, 154 

Glutamate, Glutamine, Glycine, Histidine, Isoleucine, Leucine, Lysine, Methionine, 155 
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Ornithine, Phenylalanine, Proline, Serine, Taurine, Threonine, Tyrosine, and Valine) were 156 

measured in the supernatant by cation exchange chromatography with ninhydrin post-column 157 

derivatization and spectrophotometric detection on an Aminotac-JLC-500/V analyzer (Jeol, 158 

Croissy-sur- Seine, France) (27). Only plasma amino acids were analysed because citrulline 159 

and related amino acids in muscle are well correlated to plasma amino acids after citrulline 160 

administration (9;13;16), and the tumour is too heterogeneous (with necrotic and non necrotic 161 

parts) to be measured and a global value does not reflect the complexity of the tissues. 162 

 163 

Haptoglobin measurements 164 

Commercial ELISA kits for rat haptoglobin was purchased from Life Diagnostics (West 165 

Chester, Pennsylvania, USA) and used according to the manufacturer’s instructions on rat 166 

plasma. 167 

 168 

Antioxidant measurements 169 

Ferric reducing antioxidant power (FRAP), and thiol groups were determined as described 170 

previously (28). 171 

 172 

Tissue protein content 173 

Frozen tibialis, jejunum mucosa and colon mucosa were ground and homogenised in 10 174 

volumes of ice-cold 10% trichloroacetic acid, 0.5 mmol/l EDTA. After delipidation with 175 

ethanol/ether (v/v), the pellets were solubilised in NaOH 1N and total protein content was 176 

determined by a method based on bicinchoninic acid (Pierce™ BCA Protein Assay Kit; 177 

ThermoScientific, Rockford, IL, USA). 178 

 179 

 180 
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mTORC1 pathway activation 181 

The most pertinent way to measure mTORC1 pathway activation is to determine the ratio 182 

between the phosphorylated form of eukaryotic initiation factor 4E-binding protein 1 (4E-183 

BP1) on serine 65 and the total form of 4E-BP1, the downstream target of mTORC1 (11). 184 

Tibialis muscles were homogenized in extraction buffer (Mammalian buffer -GE Healthcare 185 

Bukinghamshire, UK-, DTT 1mM, protease inhibitor 1X, phosphatase inhibitor 1X, EDTA 1 186 

mM, EGTA 1 mM) using a ball extractor at 4°C. After centrifugation, the supernatant was 187 

collected and the soluble proteins were measured by BCA method. Samples were then 188 

standardized to 2 mg/ml by dilution with 3X Laemmli SDS sample buffer containing 30% 189 

glycerol, 1 M Tris (pH 6.8), 20% (wt/vol) SDS, 0.1% (wt/vol) bromophenol blue, dH2O, and 190 

2mM β-mercaptoethanol and heated at 95°C for 10 min. 191 

Proteins at 30 µg/lane were loaded onto sodium dodecyl sulfate polyacrylamide gel (15%) 192 

and transferred on a nitrocellulose membrane (AmershamTM Protran TM; GE Healthcare). 193 

Proteins were revealed on the membrane with Ponceau Red (Sigma- Aldrich). After 194 

incubation in blocking buffer (10 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.05% Tween 20, 5% 195 

nonfat skimmed milk powder), the membranes were incubated overnight at 4°C with the 196 

phosphorylated form of 4E-BP1 on serine 65 (Cell Signaling Technology, Ozyme, France). 197 

After washing, the primary antibody was removed and a 1 hr-incubation was done with 198 

horseradish peroxidase-conjugated secondary antibodies (1:10 000 dilution; Jackson 199 

ImmunoResearch Laboratories, Baltimore, Maryland, United States).  200 

Proteins were then visualized using enhanced chemiluminescence (ECL SelectTM Western 201 

Blotting Detection Reagents; GE Healthcare) on ImageQuant Las 4000 system (GE-202 

Healthcare) using a CCD camera. Band density was quantified using ImageJ software. For 203 

normalization, blots were stripped using antibody stripping buffer (Gene Bio-Application, 204 
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Paris, France) and then reprobed for total 4E-BP1 proteins (Cell Signaling Technology) to 205 

verify the relative amount analyzed. 206 

 207 

Statistics 208 

Data are expressed as means ± SEM. The effect of citrulline on body weight, food intake and 209 

tumor growth following chemotherapy was tested using 2-way repeated-measures analysis of 210 

variance (ANOVA) (dietary treatment x time) followed by Holm Sidak post-hoc tests. 211 

Treatment differences on tumor, oxidative stress and anthropometric data were analysed using 212 

the t test for independent samples, or Mann-Whitney rank sum test when necessary. Plasma 213 

parameters were analyzed using Kruskal-Wallis one way ANOVA on ranks (SigmaPlot). 214 

p<0.05 was considered significant. 215 

To establish the effects of plasma citrulline concentration, food intake, plasma haptoglobin 216 

concentration, relative tumor volume and relative protein content of both jejunum and colon 217 

on relative body weight, multiple linear regression analysis was carried out. All required 218 

assumptions of homogeneity of variance and linearity, and the residuals distribution were 219 

assessed to validate the relevance of the model. Independence of observations was assessed 220 

using Durbin-Watson statistic (1.920). The included variables met both the assumptions of 221 

homogeneity of variance and linearity, and the residuals were approximately normally 222 

distributed. 223 

224 
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Results 225 

Mortality 226 

No animal died during the study, whatever the group. 227 

 228 

Chemotherapy efficacy 229 

Tumor response to chemotherapy 230 

Tumor volume and weight 231 

Mean initial tumor volume was 1.7±0.2 cm3 and its decrease in response to the chemotherapy 232 

is illustrated in Fig. 2. Tumor response to treatment over time did not differ between diets.  233 

Concerning tumor weight obtained at the end of the study, there was no significant difference 234 

between the two groups (Table 2). 235 

 236 

mTORC1 activation in the tumor 237 

mTORC1 activation showed no difference attributable to diet (Table 2). 238 

 239 

Antioxidant measurements 240 

Antioxidant capacity has been measured thought FRAP (Ferric Reducing Ability of Plasma) 241 

and thiols amount in plasma, muscle, and colon. FRAP and thiols quantities were not altered 242 

by citrulline whatever the tissues considered (Table 2).  243 

 244 

Nutritional status 245 

Rat body weight 246 

Body weight decreased (-6%) after the first cycle of chemotherapy, then increased from day 6 247 

to day 7 and decreased again after the second cycle of chemotherapy to 94% of initial body 248 

weight, whatever the diet (Figure 3A).  249 



 13

Relative body weight was positively correlated to cumulated food intake from D0 to D9 and 250 

negatively correlated to plasma haptoglobin concentration. On the other hand, citrullinemia, 251 

relative tumor volume, and protein content of the intestine were not significantly explaining 252 

the relative bodyweight variation (Table 3). 253 

 254 

Food intake 255 

Animals presented an anorexia due to chemotherapy administration: food intake dropped from 256 

the first day after the chemotherapy to correspond to 20% of the initial food intake of the rats, 257 

and increased from day 4 to reach 100% of the initial food intake, and even 115% at days 5, 258 

and 6, whatever the diet. Food intake decreased again after the second cycle of chemotherapy 259 

without any difference between the 2 groups (Figure 3B). The cumulative food intake at the 260 

end of the study was also the same in the 2 groups (Cit: 76.9±5.1 vs Ctrl: 85.0±5.0% of the 261 

pre-chemotherapy value) 262 

Owing to individual variations in overall food intake, citrulline intake varied from 0.34 to 263 

1.34 g/kg/day between days after start of chemotherapy, with a mean citrulline intake of 264 

0.89±0.03 g/kg/day over 9 days. Amino acid intake from the control amino acid mixture 265 

varied from 0.39 to 2.06 g/kg/day (Figure 3C). 266 

Nitrogen intake from citrulline or control amino acid mix was the same in the two groups 267 

(Figure 3D). 268 

 269 

Organ weight 270 

Liver, spleen and muscle (Tibialis and gastrocnemius) weights were similar in the 2 groups 271 

(Table 4). The size of the small intestine (from duodenum to ileum) (data not shown) and the 272 

weight of the small intestine mucosa (jejunum and ileum) and this of the large intestine 273 

mucosa (colon) were not different between the 2 groups (Table 4). 274 
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 275 

Tissue protein content 276 

Total protein content of the Tibialis, jejunum mucosa and colon mucosa were similar between 277 

the groups (Table 4). 278 

 279 

Plasma amino acid levels  280 

As expected, plasma citrulline, arginine and ornithine concentrations were higher in rats of Cit 281 

group compared to rats of control group. Plasma citrulline was lower in the control group 282 

compared to the pre-chemotherapy values in the Reference group (Table 5). 283 

Concerning alanine, glycine, histidine and serine (non-essential amino acids contained in the 284 

control diet), plasma glycine and serine concentrations were increased in the control group 285 

(Serine: Cit: 307 ± 11 µmol/l vs Control: 352 ± 23; Glycine: Cit: 258 ± 12 vs Control: 316 ± 286 

15) and alanine and histidine were not modified (Alanine: Cit: 465 ± 32 µmol/l vs Control: 287 

468 ± 26; Histidine: Cit: 86 ± 3 vs Control: 85 ± 2). 288 

Plasma phenylalanine and glutamine concentrations were not modified by diet, or the cancer 289 

(Table 5). 290 

Citrulline supplementation had no effects on the concentration of branched amino acids but 291 

they were decreased in plasma of cancer and chemotherapy rats compared to the Reference 292 

group (Table 5). 293 

 294 

Haptoglobin measurements 295 

Plasma haptoglobin was the same whatever the diet (Table 5). As expected, it was higher in 296 

cancer and chemotherapy rats compared to the Reference group. 297 

298 
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Discussion 299 

In this study, we evaluated the interaction of citrulline with chemotherapy in an animal model 300 

of colon cancer and chemotherapy, and its potential beneficial effect on nutritional status. We 301 

show, in our model, that citrulline had no effect on CPT-11/5-FU-based chemotherapy 302 

toxicity, with no modification of Ward colon tumor response to therapy. Concerning 303 

nutritional status, citrulline supplementation had no effect.  304 

 305 

Citrulline interaction with chemotherapy 306 

Chemotherapy in cancer patients is a situation with an important challenge for nutrition. It is 307 

important to nourish the person, but it is also fundamental to not nourish the tumour or to not 308 

interfere with the action of the chemotherapy (5). In our study, as well known in this rat 309 

model of cancer and chemotherapy, the initiation of the chemotherapy led to a large decrease 310 

in the tumor size (22-23) and, in this animal model, citrulline supply did not modify the size 311 

and the weight of the tumor. This point deserves to be clarified because citrulline increased 312 

tumor growth in two different cancer models (29-30). In the first study, citrulline (1g/kg/day) 313 

was injected subcutaneously to C26 cells-injected mice, and in the second study, Ward colon 314 

tumor bearing-Fisher 344 rats (same animal model than ours) received citrulline by parenteral 315 

nutrition. This discrepancy could be related to the fact that, in our work, our animals received 316 

chemotherapy, which is more relevant to the clinic situation. In fact, citrulline action observed 317 

in their studies, i.e. tumor growth activation by citrulline, could be too weak compared to 318 

chemotherapy action, explaining the fact that citrulline had no effect on tumor size evolution 319 

in our study. 320 

To the best of our knowledge, the mechanism of action of citrulline at the tumor site has never 321 

been studied, but some hypothesis can be proposed. First, citrulline is known to be a potent 322 

activator of mTORC1 (11;16), and mTORC1 pathway in the tumor is thought to be implicated 323 
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in tumor growth (17), but, in our study, citrulline did not activate mTORC1 pathway in the 324 

tumor. This can explain the fact that citrulline did not increase tumor size. But, a very recent 325 

set of data allowed us to make progress in the mechanism of action of citrulline on the 326 

mTORC1 pathway and the regulation of MPS. Citrulline, unlike leucine, is not an activator of 327 

the mTORC1 pathway but a normalizer of its activity (31). Indeed, in healthy conditions, 328 

citrulline is ineffective but under certain stress conditions, citrulline increases MPS by 329 

specifically reallocating mitochondrial fuel to the protein synthesis machinery (and to restore 330 

mTORC1 activity). Secondly, some studies showed that antioxidant could impair the 331 

chemotherapy used in our model (CPT-11 and 5-FU) (19;20), even if the mechanisms of 332 

CPT-11 and 5-FU are not based on oxidative stress (32;33). So it was important to verify if 333 

the antioxidant properties of citrulline did not interact with the chemotherapy (9;34). In the 334 

present study, citrulline supplementation had no effect on antioxidant parameters in plasma, 335 

muscle or colon. Thirdly, at the tumor site, citrulline, due to its ability to generate nitric oxide 336 

(°NO) by endothelial cells (35), could activate angiogenesis. In our study, an absence of effect 337 

of citrulline on tumor size could be due to the action of chemotherapy which thwart citrulline 338 

effect at this level. So citrulline effect on tumor growth could be multifactorial (figure 4), but, 339 

in any case, in our study, these potential effects have been thwarted by the CPT-11/5-FU-340 

based chemotherapy. 341 

On the contrary, citrulline could have potentiate this treatment, due to its ability to generate 342 

°NO by macrophages (36;37) and to activate immunity at the tumour site (figure 4), but, in 343 

our study, citrulline has no beneficial effects on tumour size. 344 

 345 

Citrulline effects on nutritional status  346 

As it has been well demonstrated in this model (22;23), the animals suffered an important 347 

degree anorexia, associated with a significant body weight loss (6%) due to chemotherapy. 348 
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As citrulline did not interact negatively with chemotherapy, it seemed of interest to evaluate 349 

its capacities to maintain the nutritional status in this model. Citrulline could act either 350 

directly on muscle mass (8-10;13), or indirectly by decreasing inflammation (36;37) or by 351 

improving intestinal integrity (38). Citrulline supply had no effect on muscle weight or 352 

muscle protein content. It is important to note that, in our model, citrulline supplementation at 353 

0.89 g/kg BW/day (from 0.34 to 1.34, depending on food intake), leads to double plasma 354 

citrulline concentration compared to healthy rat values, and to multiply the values of control 355 

rats by four (confirming that despite anorexia, citrulline is well ingested). But this increase in 356 

plasma citrulline concentration was not sufficient to have beneficial effect on muscle. The 357 

lack of effect of citrulline on muscle mass could be due to anorexia and the reduced amount of 358 

citrulline ingested but also the reduced amount of protein ingested. Hence, citrulline is known 359 

to activate MPS but, as limiting amino acids availability strongly affects MPS, the presence of 360 

enough available amino acids is needed (16;39). These results are consistent with the use of 361 

enteral nutrition to go over the anorexia, especially since the body weight of the animals was 362 

correlated to the cumulated food intake throughout the study. 363 

Finally, in our study, citrulline did not improve inflammation or intestine integrity as already 364 

observed in other situations (36-38). 365 

 366 

Limitation of the study 367 

Even if our data support the idea of an absence of effect of citrulline on CPT-11/5-FU-based 368 

chemotherapy, it is impossible in the current state of things to generalize the absence of 369 

effects of citrulline on all the chemotherapies. In fact, available data are only on Ward colon 370 

tumour and CPT-11/5-FU-based chemotherapy. Some additional studies on other types of 371 

tumours and assessment of effects citrulline on side effects due to different chemotherapeutic 372 

agents are needed. 373 
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 374 

Conclusion 375 

In this cancer and chemotherapy animal model, citrulline does alter the tumour response to 376 

CPT-11/5FU based therapy but, failed to improve nutritional status. This could be due to the 377 

anorexia which leads to reduced citrulline and energy ingestion. In conclusion, this study is 378 

not favour for the use of citrulline during cancer, but further studies are required to clarify 379 

whether higher citrulline doses associated to higher food intake, maintained by enteral 380 

nutrition, would render additional nutritional benefit. 381 

382 
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Figure legend 534 

 535 

Figure 1: Experimental design of the study 536 

After a 1-week acclimation period, 28 11-week old Fisher female rats received the control 537 

diet, and tumour implantation 1 week after. Then, after 13 days of tumor growth (D-1), the 538 

rats received either citrulline (n=14) or control (n=14) diet. The day after, the first 539 

chemotherapy cycle was initiated: irinotecan (CPT-11; 50 mg/kg) at D0, and 5-fluorouracil 540 

(5-FU; 50 mg/kg) at D1. One week after, the rats received the second cycle of chemotherapy 541 

(CPT-11 at D7 and 5-FU at D8). They are euthanized at D9. 542 

 543 

Figure 2: Relative tumor size of the tumor-bearing rats under chemotherapy 544 

Relative tumor size compared to the first day of chemotherapy for each animal. The rats 545 

received a first chemotherapy cycle: irinotecan (CPT-11; 50 mg/kg; ) at D0, and 5-546 

fluorouracil (5-FU; 50 mg/kg; ) at D1, and a second cycle of chemotherapy (CPT-11  at D7 547 

and 5-FU  at D8). 548 

Results are expressed in Mean ± SEM. a,b,c: Mean values with unlike letters were 549 

significantly different 550 

 551 

Figure 3: Relative body weight, relative food intake, citrulline or NEAA ingestion and 552 

nitrogen from Citrulline or NEAA ingestion of tumor-bearing rats under chemotherapy 553 

Relative body weight (A) and relative food intake (B) compared to the first day of 554 

chemotherapy for each animal. Citrulline and NEAA (from control diet) ingestion (C) and 555 

nitrogen from Citrulline and NEAA ingestion (D). The rats received the first chemotherapy 556 
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cycle: irinotecan (CPT-11; 50 mg/kg; ) at D0, and 5-fluorouracil (5-FU; 50 mg/kg; ) at D1, 557 

and a second cycle of chemotherapy (CPT-11  at D7 and 5-FU  at D8). 558 

Results are expressed in Mean ± SEM. a,b,c,d: Mean values with unlike letters were 559 

significantly different. 560 

 561 

Figure 4: Role and mechanism of action of citrulline at the tumor site and on nutritional 562 

status 563 
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Table 1: Diets composition 

 Basal diet Citrulline diet Control diet 

 (g/100g) (g/100g) (g/100g) 

Basal Mix 80 77.7 77.7 

Casein 27 26.22 26.22 

L-Méthionine 0.25 0.24 0.24 

Dextrose 20.85 20.25 20.25 

Corn starch 20 19.43 19.43 

Cellulose 5 4.86 4.86 

Mineral mix 5.09 4.94 4.94 

Sodium selenite 0.03 0.03 0.03 

Manganese sulfate 0.02 0.02 0.02 

Vitamin mix 1 0.97 0.97 

Inositol 0.63 0.61 0.61 

Choline chloride 0.14 0.13 0.13 

Fat 20 19.42 19.42 

Canola stearine 11.7 11.36 11.36 

Sunflower oil 5.2 5.05 5.05 

Canola oil 3.1 3.01 3.01 

Amino Acids 0 2.9 2.9 

Citrulline 0 2 0 

Alanine 0 0 0.75 

Glycine 0 0 0.65 

Histidine 0 0 0.6 

Serine 0 0 0.9 

Corn starch 0 0.9 0 



Three days before tumor injection, rats of cancer and chemotherapy groups received the basal 

diet which is a nutritionally complete semi-synthetic diet with 80% “Basal Mix with Fat 

Source Omitted” (Teklad TD.84172; Harlan Laboratories, Madison, WI, USA) and 20% fat 

(11.7% canola stearine, 5.2% sunflower oil, 3.1% canola oil). The day before the start of the 

chemotherapy, rats were divided into 2 groups, and received the associated diet (i.e. Citrulline 

or control diet). Rats of reference group received the basal diet only. 



Table 2: Chemotherapy efficacy according to the diet in cancer rats under 

chemotherapy 

 

Tumor-bearing rats have received, as soon as the day before the initiation of the first 

chemotherapy cycle, the control diet (Control group -n=14-, isonitrogenous to citrulline 

group) or the citrulline diet (Cit group -n=14-, 2% of the diet). Then, the animals received the 

 Control 

group 

Citrulline 

group 

Citrulline effect 

Tumor    

Weight (g) 0.92 ± 0.24 1.22 ± 0.32 p=0.566 

mTORC1 pathway 

(Relative 4EBP1 

phosphorylated values 

(AU)) 

0.72 ± 0.05 0.82 ± 0.09 p=0.782 

Oxidative stress    

Plasma    

FRAPS (µmol/l) 370 ± 33 399 ± 45 p=0.685 

Thiols (µmol/l) 256 ± 19 272 ± 14 p=0.583 

Muscle (Tibialis)    

FRAPS (µmol/g prot) 28.7 ± 0.6 27.0 ± 0.6 p=0.070 

Thiols (µmol/g prot) 50.6 ± 0.8 50.3 ± 0.5 p=0.773 

Colon    

FRAPS(µmol/g prot) 159 ± 14 167 ± 18 p=0.726 

Thiols (µmol/g prot) 34.7 ± 3.3 36.1 ± 4.6 p=0.807 



2 cycles of chemotherapy: irinotecan (CPT-11; 50 mg/kg) at D0 and D7, and 5-fluorouracil 

(5-FU; 50 mg/kg) at D1 and D8. They are euthanized at D9.  

Data are presented as mean ± SEM. 



Table 3: Multiple regression analysis results, with the coefficients of each parameters explaining the relative bodyweight variation. 

 

 

 

 

 

 

 

 

 

 

Adjusted R² = 0.643. Dependent Variable: Relative body weight. VIF: Variable Inflation Factor. 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% Confidence 

Interval for B 

Collinearity 

Statistics 

B Std. Error Beta 

Lower 

bound 

Upper 

bound 

Tolerance VIF 

(Constant) 73.751 4.828  15.276 .000 63.680 83.822   

Citrullinemia .001 .004 .042 .262 .796 -.006 .008 .504 1.983 

Relative tumor 

volume 

.012 .009 .151 1.263 .221 -.008 .031 .921 1.085 

Cumulative food 

intake 

.248 .079 .454 3.126 .005 .083 .414 .626 1.597 

Food intake at D9 .215 .281 .145 .764 .454 -.372 .801 .365 2.737 

Relative protein 

content in colon 

.311 .408 .095 .762 .455 -.540 1.161 .858 1.165 

Relative protein 

content in jejunum 

1.357 .868 .243 1.563 .134 -.454 3.168 .548 1.826 

Haptoglobin -1.127 .451 -.405 -2.497 .021 -2.068 -.185 .502 1.991 



Table 4: Organ weight, muscles and intestine mucosa data in cancer rats under 

chemotherapy fed control diet or a citrulline enriched diet 

 Control 

group 

Citrulline 

group 

Citrulline effect 

Organ weight    

Liver    

g 5.2 ± 0.1 5.1 ± 0.1 NS 

g/100g final BW 4.0 ± 0.1 3.9 ± 0.1 NS 

Spleen    

mg 392 ± 21 360 ± 19 NS 

g/100g final BW 0.30 ±0.02 0.27 ± 0.01 NS 

Muscles    

Gastrocnemius    

Weight    

mg 780 ± 20 798 ± 17 NS 

g/100g final BW 0.59 ± 0.01 0.61 ± 0.01 NS 

Tibialis    

Weight     

mg 236 ± 9 237± 6 NS 

g/100g final BW 0.18 ± 0.006 0.18 ± 0.003 NS 

Protein content    

mg 21.5 ± 1.1 23.2 ± 1.1 NS 

g/100g muscle 9.1 ± 0.38 9.8 ± 0.26 NS 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mTOR pathway  

Relative 4EBP1 

phosphorylated 

values (AU) 

 

0.84 ± 0.05 

 

1.06 ± 0.16 

 

NS 

Intestine mucosa    

Jejunum    

Weight    

mg/10cm jej. 377 ± 28 371 ± 29 NS 

g/100g final BW 0.72 ± 0.05 0.71 ± 0.06 NS 

Protein content     

mg/10cm 16.4 ± 1.3 17.4 ± 1.6 NS 

g/100g mucosa 4.4 ± 0.1 4.6 ± 0.2 NS 

g/100g final BW 0.031 ± 0.002 0.033 ± 0.003 NS 

Ileum    

Weight    

mg/10cm ileum 285 ± 15 268 ± 14 NS 

g/100g final BW 0.55 ± 0.04 0.51 ± 0.03 NS 

Colon    

Weight    

g 0.39 ± 0.04 0.33 ± 0.05 NS 

g/100g final BW 0.30 ± 0.03 0.25 ± 0.04 NS 

Protein content    

g/100g mucosa 3.8 ± 0.3 4.1 ± 0.3 NS 



Tumor-bearing rats have received, as soon as the day before the initiation of the first 

chemotherapy cycle, the control diet (Control group -n=14-, isonitrogenous to citrulline 

group) or the citrulline diet (Cit group -n=14-, 2% of the diet). Then, the animals received the 

2 cycles of chemotherapy: irinotecan (CPT-11; 50 mg/kg) at D0 and D7, and 5-fluorouracil 

(5-FU; 50 mg/kg) at D1 and D8. They are euthanized at D9.  

Data are presented as mean ± SEM. 

NS: Non significant 



Table 5: Plasma parameters in cancer rats under chemotherapy (CC), fed the control 

diet or a citrulline enriched diet compared to reference group 

Tumor-bearing rats have received, as soon as the day before the initiation of the first 

chemotherapy cycle, the control diet (Control group -n=14-, isonitrogenous to citrulline 

group) or the citrulline diet (Citrulline group -n=14-, 2% of the diet). Then, the animals 

received the 2 cycles of chemotherapy: irinotecan (CPT-11; 50 mg/kg) at D0 and D7, and 5-

fluorouracil (5-FU; 50 mg/kg) at D1 and D8. They are euthanized at D9. The “reference 

group” correspond to healthy control rats of the same strain. 

Data are presented as mean ± SEM. 

NS: Non significant 

 Reference 

group 

Control 

group 

Citrulline 

group 

CC 

effect 

Citrulline 

effect 

Selected Amino 

Acids (µmol/l) 

     

Citrulline  129 ± 9 47 ± 5 213 ± 47 p<0.05 p<0.05 

Arginine 175 ± 13 135 ± 5 260 ± 24 NS p<0.05 

Ornithine 49 ± 7 44 ± 4 67 ± 7 NS p<0.05 

Glutamine 651 ± 16 757 ± 20 727 ± 36 NS NS 

Phenylalanine 74 ± 2 73 ± 3 71 ± 3 NS NS 

Leucine 249 ± 11 206 ± 6 206 ± 10 p<0.05 NS 

Isoleucine 150 ± 5 122 ± 4 120 ± 6 p<0.05 NS 

Valine 350 ± 14 264 ± 7 268 ± 13 p<0.05 NS 

Inflammatory 

marker 

Haptoglobin (g/l) 

 

 

0.36 ± 0.04 

 

 

2.10 ± 0.38 

 

 

1.59 ± 0.22 

 

 

p<0.05 

 

 

NS 




