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A New Statistic for Testing Covariance Equality in
High-Dimensional Gaussian Low-Rank Models

R. BEISSON, Student Member, IEEE, P. VALLET, Member, IEEE, A. GIREMUS, Member, IEEE, G. GINOLHAC,
Member, IEEE

Abstract—In this paper, we consider the problem of testing
equality of the covariance matrices of L complex Gaussian
multivariate time series of dimension M . We study the special
case where each of the L covariance matrices is modeled as a rank
K perturbation of the identity matrix, corresponding to a signal
plus noise model. A new test statistic based on the estimates of
the eigenvalues of the different covariance matrices is proposed.
In particular, we show that this statistic is consistent and with
controlled type I error in the high-dimensional asymptotic regime
where the sample sizes N1, . . . , NL of each time series and the
dimension M both converge to infinity at the same rate, while
K and L are kept fixed. We also provide some simulations
on synthetic and real data (SAR images) which demonstrate
significant improvements over some classical methods such as
the GLRT, or other alternative methods relevant for the high-
dimensional regime and the low-rank model.

I. INTRODUCTION

DETECTING changes in the behaviour of multivariate
time series is a fundamental problem in many appli-

cations going from remote sensing [2], [3], [4], [5] and
wireless communications [6] to finance [7], climatology [8] or
genomics [9]. In several of those applications, a usual approach
consists in modeling the changes using the distribution of
the time series, and in particular through an evolution in the
structure of the covariance matrix.

Consider the context of M -dimensional time series
(yn,1)n∈Z , . . . , (yn,L)n∈Z, assumed mutually independent
and such that for all ℓ ∈ {1, . . . , L},

(yn,ℓ)n∈Z
i.i.d.∼ NCM (0,Rℓ) , (1)

where NCM (0,Rℓ) denotes the zero-mean complex normal
distribution with covariance matrix Rℓ. Detecting the changes
in the distribution of (yn,ℓ)n∈Z, for all ℓ ∈ {1, . . . , L}, can
be formalized as the following binary hypothesis test dealing
with the equality of the L covariance matrices R1, . . . ,RL,

H0 : R1 = . . . = RL

H1 : ∃(i, j) ∈ {1, . . . , L}2 : Ri ̸= Rj

. (2)

Assume that for all ℓ ∈ {1, . . . , L}, Nℓ observations
y1,ℓ, . . . ,yNℓ,ℓ are available and let N = N1 + · · · + NL. A
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de l’Information et de la Connaissance (Univ. Savoie/Mont-Blanc, Polytech
Annecy), 5 chemin de Bellevue, 74940 Annecy (France)

This work was partially supported by Agence de l’Innovation de Défense
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large class of test statistics widely encountered in the literature
[3] involves, provided that M < N1, . . . , NL, linear spectral
statistics of the matrices R̂−1

ℓ R̂ of the form:

S =

L∑
ℓ=1

Nℓ

N

1

M

M∑
k=1

φ
(
λk(R̂

−1
ℓ R̂)

)
, (3)

where λk(R̂−1
ℓ R̂), for all k ∈ {1, . . . ,M}, are the eigenvalues

of the matrix R̂−1
ℓ R̂ with

R̂ℓ :=
1

Nℓ

Nℓ∑
n=1

yn,ℓy
∗
n,ℓ, (4)

denoting the sample covariance matrix (SCM) associated with
Rℓ and

R̂ =

L∑
ℓ=1

Nℓ

N
R̂ℓ. (5)

In (3), φ denotes some continuous function defined on
(0,+∞). In particular, the Generalized Likelihood Ratio
(GLR) [3] with φ(x) = log(x) or the Nagao statistic with
φ(x) = (x − 1)2 are included in the class of statistics
(3). The presence of a change in the covariance is decided
by comparing (3) to a threshold ϵ chosen to guarantee a
certain type I error and the null hypothesis H0 is rejected if
S > ϵ. Moreover, the test statistics based on (3) have the key
property that the distribution of S under H0 is independent of
R1 = . . . = RL, which allows to control its type I error.

However, in practice, the distribution of statistics of type
(3) under H0 is untractable and only known in a few special
cases for finite M,N1, . . . , NL (e.g. for the GLR, see [10]). To
circumvent this issue, approximations in the low-dimensional
(or large sample size) regime in which N1, . . . , NL → ∞
while M,L are fixed can be derived, see e.g. [11, Th. 10.8.4].
While the latter are meant to be used in practical scenarios
where N1, . . . , NL ≫ M , they may not be reliable in
contexts involving high-dimensional (large M ) observations
or moderate sample sizes N1, . . . , NL. Indeed, in that high-
dimensional case, it is often more reasonable to assume that
M,N1, . . . , NL are of the same order of magnitude in which
case the predictions of the distribution of (3) under H0 in the
low-dimensional regime become irrelevant.

The context where M,N1, . . . , NL are of the same order
of magnitude can be modeled more realistically by the high-
dimensional regime in which it is assumed that M converges
to infinity together with N1, . . . , NL such that M

Nℓ
→ cℓ > 0,
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while L is kept fixed. In this non-standard regime, the asymp-
totic distribution of the statistic S can be derived using random
matrix theory techniques (see e.g. [12] for the case L = 2).

Moreover, in several applications involving high-
dimensional observations, the potential changes in the
covariance Rℓ may only be carried by a low-rank component
(see e.g. [13], [14], [15]). This is the case, e.g., in array
processing when dealing with a large array of M sensors and
a small number K of source signals compared to M [15].

In that case, we have the model

Rℓ = Γℓ + σ2I, (6)

with Γℓ the covariance matrix of rank K < M of a useful
signal and σ2I the covariance matrix of a spatially white
additive noise. When the rank K remains constant in the
high-dimensional regime, the matrices R−1

ℓ Rℓ′ are fixed rank
perturbations of the identity. Using well-known results [16],
[17] on the asymptotic spectral distribution of the Fisher type
random matrices R̂−1

ℓ R̂, one can show under both H0 and
H1 that

S −→
L∑

ℓ=1

c

cℓ

∫ x+
ℓ

x−
ℓ

φ

(
c

cℓ
(1 + x)

)
fℓ(x)dx, (7)

almost surely (a.s.) where c = (c−1
1 + . . .+ c−1

L )−1 and where
fℓ is the so-called Wachter distribution given by

fℓ(x) =

(
1

cℓ
− 1

) √(x− x−ℓ )(x
+
ℓ − x)

2πx(1 + x)
1[x−

ℓ ,x+
ℓ ](x), (8)

with x±ℓ = cℓ−c
c(1−cℓ)2

(
1±

√
cℓ +

ccℓ
cℓ−c −

cc2ℓ
cℓ−c

)2

. Thus S

converges to the same limit under both hypotheses H0 and
H1, which indicates that test statistics relying on (3) might
not be relevant in the high-dimensional regime and for the
low-rank model in (6).

So far from our knowledge, the problem of covariance
equality testing under low-rank models has not received much
attention in the literature. The work of [18] considers the
GLRT, under a low-rank Gaussian model, for a covariance
equality test with a different alternative hypothesis H′

1 : R1 ̸=
R2 = . . . = RL. An extension to the specific case of subspace
equality test has also been proposed by the same authors in
[19].

Under the model (6), the information about a potential
change is contained in the K largest eigenvalues and asso-
ciated eigenvectors of Rℓ. Therefore, classical results on the
spiked models for random matrices of the Fisher type [17] can
be exploited to characterize the asymptotic behaviour of the
extreme eigenvalues of (R̂−1

ℓ R̂)ℓ=1,...,L, from which infor-
mation about a potential change can be extracted. In the same
way, the asymptotic behaviour of the largest eigenvalues of
the spiked Wishart-type matrices [20] R̂, (R̂ℓ)ℓ=1,...,L convey
information about changes in the true covariances R1, . . . ,RL

[1], which can also be exploited to build test statistics relevant
for the low-rank model in the high-dimensional regime. This
latter option is the path followed in this paper.

Contributions. In this paper, we derive a new test statistic,
no longer based on the family of statistics S studied in [3],

but which relies on the K largest eigenvalues of the matrices
R̂1, . . . , R̂L, R̂. More precisely, the test statistic compares in
a certain sense estimates of the eigenvalues of the matrices
Γ1, . . . ,ΓL with estimates of the eigenvalues of the mixture
Γ =

∑L
ℓ=1

Nℓ

N Γℓ. We show that the proposed test statistic is
consistent under the high-dimensional regime and the low-rank
model (6), and with a controlled asymptotic type I error. To
that purpose, the results of [21], which provides the asymptotic
distribution of the K largest eigenvalues of R̂ℓ for a fixed ℓ,
are extended to provide the joint asymptotic distribution of
the K largest eigenvalues of the matrices R̂, R̂1, . . . , R̂L. The
proposed test statistic is then compared to various alternatives,
including the GLRT for the low-rank model (6) as well
as a statistic built from the results of [17] on the extreme
eigenvalues of the spiked Fisher matrices (R̂−1

ℓ R̂)ℓ=1,...,L. We
also provide an empirical study of the proposed test statistic on
Synthetic Aperture Radar (SAR) images for detecting changes
between two scenes.

Organization. The paper is organized as follows. In Section
II, we study an extension of the results of [21] on the asymp-
totic distribution of the largest eigenvalues of R̂1, . . . , R̂L, R̂.
In Section III, we exploit the results derived in the previous
section to build a new test statistic, for which we study its
performance in the high-dimensional regime. Sections IV and
V are dedicated to compare, both theoretically and numeri-
cally, our proposed test statistic with alternative approaches.
Simulations on synthetic data and on real data (SAR images)
are provided.

Notations. For a ∈ R, a+ denotes the positive part. Vectors
and matrices are denoted with boldface lower case and upper
case letters respectively. For a complex matrix A, we denote
by AT and A∗ its transpose and conjugate transpose. If A
is a n × n complex matrix, tr(A) denotes its trace and
λ1(A), . . . , λn(A) denote its eigenvalues. If A is Hermitian,
the eigenvalues are considered in decreasing order λ1(A) ≥
. . . ≥ λn(A). For matrices A1, . . . ,An, bdiag(A1, . . . ,An)
denotes the the block diagonal matrix formed by A1, . . . ,An.
The complex circular Gaussian distribution on Cn with co-
variance matrix R is denoted as NCn(0,R), while the real
Gaussian distribution on Rn with mean µ and covariance
matrix R is denoted as NRn(µ,R).

II. SPECTRUM OF R̂

In this section, we study the asymptotic behavior at 1st and
2nd orders of the largest eigenvalues of R̂ when the matrices
R̂1, . . . , R̂L follow the low-rank model (6).

Consider the following two assumptions, which describe the
high-dimensional regime and specify the asymptotic behavior
of the eigenvalues of Γ1, . . . ,ΓL.

Assumption 1. The sample sizes N1 = N1(M), . . . , NL =
NL(M) are functions of M such that

M

Nℓ
= cℓ + o

(
1√
M

)
, (9)

as M → ∞, where c1, . . . , cL > 0 and K,L are independent
of M .
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In comparison with the classical low-dimensional regime
where M is assumed fixed while N1, . . . , NL → ∞ (see
e.g. [22], [11]), the high-dimensional regime described in
Assumption 1 models practical scenarios where the sample
sizes N1, . . . , NL are of the same order of magnitude as the
dimension M and where K is small compared to M . This
regime has been widely used in the high-dimensional statistics
literature (see e.g. [23]), as well as in the signal processing
applications (see e.g. [15], [24], [25]).

In what follows the high-dimensional regime described in
Assumption 1 is represented by the notation M → ∞. We
also define

c :=

(
L∑

ℓ=1

1

cℓ

)−1

, (10)

as well as

Γ :=

L∑
ℓ=1

Nℓ

N
Γℓ. (11)

One can notice that Γ is the the pooling of the low-rank
covariance matrices Γ1, . . . ,ΓL and has rank at most KL. In
the following, we also need to ensure the convergence of the
eigenvalues of matrices Γℓ,Γ in the high-dimensional regime.

Assumption 2. For all k ∈ {1, . . . ,K}, ℓ ∈ {1, . . . , L},

λk(Γℓ) = γk,ℓ + o
(

1√
M

)
, (12)

and for all k ∈ {1, . . . ,KL},

λk(Γ) = γk + o
(

1√
M

)
. (13)

We note that Assumption 2 is a purely technical assumption
which is not restrictive in practice as the corresponding results
derived from it are meant to be used for fixed values of
M,N,K.

Under Assumptions 1 and 2, the global behaviour of the
eigenvalues of R̂ can be described through its empirical
spectral distribution defined as the random probability measure

µ̂ =
1

M

M∑
k=1

δλk(R̂), (14)

where δx is the Dirac measure centered at x. Under the
model (6), each covariance matrix R1, . . . ,RL is a fixed
rank K perturbation of the matrix σ2I and it can be shown
using standard perturbations arguments that µ̂ asymptotically
behaves as the Marcenko-Pastur distribution, i.e. µ̂ converges
weakly almost surely (a.s.) to the probability measure:

µ(dx) =

√
(x− x−)(x+ − x)

2πσ2cx
1[x−,x+](x)dx

+

(
1− 1

c

)+

δ0(dx), (15)

where x± = σ2(1±
√
c)2. Consequently, any functional of the

type

µ̂(φ) :=
1

M

M∑
k=1

φ(λk(R̂)), (16)

where φ is a bounded continuous function, satisfies

µ̂(φ) =

∫
R
φ(λ)dµ̂(λ)

a.s.−−−−→
M→∞

∫
R
φ(λ)dµ(λ). (17)

As the limit in (17) only depends on σ2 and c, it is not possible
to recover information on the low-rank matrices Γ1, . . . ,ΓL

in the high-dimensional regime from statistics of type (16).
However, under the previous assumptions, it can be shown
that the information related to the spectrum of Γ can be found
in the largest KL eigenvalues of R̂, thanks to the following
result.

Theorem 1. Under Assumptions 1 and 2, ∀k ∈ {1, . . . ,KL},

λk

(
R̂
)

a.s.−−−−→
M→∞

ϕc
(
γk, σ

2
)
, (18)

with

ϕc(γ, σ
2) :=

{
(γ+σ2)(γ+σ2c)

γ if γ > σ2
√
c

σ2(1 +
√
c)2 if γ ≤ σ2

√
c
, (19)

Moreover, λKL+1(R̂) → σ2 (1 +
√
c)

2
a.s. when M → ∞.

Proof. The proof of Theorem 1 is deferred to Appendix B.

The matrix R̂ being a mixture of L independent but not
identically distributed Wishart matrices, we note that Theorem
1 provides an extension of the results of [21, Th. 2.7] (see
also [26]) to the case L > 1. It shows in particular that the
largest eigenvalues of R̂ converge to some limits depending
directly of the eigenvalues of Γ, provided that for all k ∈
{1, . . . ,KL} the ratios γk

σ2 are above
√
c. The threshold

√
c

can be interpreted as a minimal SNR above which the kth

largest signal related eigenvalues of R̂ splits from the largest
noise related eigenvalue λKL+1(R̂).

The next result shows, under hypothesis H0, a joint Cen-
tral Limit Theorem (CLT) on the largest eigenvalues of
R̂1, . . . , R̂L, R̂.

Theorem 2. Let Assumptions 1-2 hold. Assume moreover that
Γ1 = . . . = ΓL (thus γk,ℓ = γk) and that

γ1 > . . . > γK > σ2 max{
√
c,
√
c1, . . . ,

√
cL}. (20)

Then we have

√
M

 λk

(
R̂
)
− ϕc(γk, σ

2)(
λk

(
R̂ℓ

)
− ϕcℓ(γk, σ

2)
)
ℓ=1,...,L


k=1,...,K

D−−−−→
M→∞

NRK(L+1) (0,Θ) , (21)

where Θ is a positive definite block diagonal matrix given by
Θ = bdiag (Θ1, . . . ,ΘK) with

Θk :=


θ2k,0 ϑk,1 . . . ϑk,L

ϑk,1
. . . (0)

... (0)
. . .

ϑk,L θ2k,L

 , (22)

and by denoting c0 = c,

θ2k,ℓ = cℓ
(γ2k − σ4cℓ)(γk + σ2)2

γ2k
, ℓ ≥ 0, (23)
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ϑk,ℓ = c0
(γ2k − σ4cℓ)(γk + σ2)2

γ2k
, ℓ ≥ 1. (24)

Proof. The proof is postponed to Appendix C.

The result of Theorem 2 provides an extension of [20, Th.
1.4] which studies a CLT for the K largest eigenvalues of
R̂ℓ. We note that the result of Theorem 2 cannot be inferred
directly from [20, Th. 1.4] and requires a careful study due to
the strong dependency between the eigenvalues of R̂ and the
ones of R̂1, . . . , R̂L.

Theorems 1 and 2 are exploited in the following section to
build a new statistic for the test (2), relevant for the low-rank
model (6).

III. PROPOSED TEST STATISTIC

Before introducing our new test statistic, we first notice that
the test (2) can be reformulated as:

H0 : Γ1 = . . . = ΓL

H1 : ∃(i, j) ∈ {1, . . . , L}2 s.t. Γi ̸= Γj

, (25)

and we assume in the following that the rank K is known (see
also Remark 1 below in case the rank is unknown). Next, we
consider the following lemma, which shows that hypothesis
H0 can be verified by comparing the eigenvalues of matrix Γ
with the ones of matrices Γ1, . . . ,ΓL.

Lemma 1. The following assertions are equivalent:
(a) Γ1 = . . . = ΓL,
(b) For all k = 1, . . . ,K, ℓ = 1, . . . , L, λk (Γℓ) = λk (Γ).

Proof. The proof of Lemma 1 can be found in [1].

From Lemma 1, one can equivalently formulate the test (25)
as follows

H0 : ∀k, ℓ, λk (Γℓ) = λk (Γ)

H1 : ∃k, ℓ : λk (Γℓ) ̸= λk (Γ)
. (26)

Consequently, it is possible to discriminate between hypothe-
ses H0 and H1 by exploiting only the eigenvalues of the
matrices Γ1, . . . ,ΓL,Γ for which we can also build consistent
estimators in the high-dimensional regime as follows. Let us
consider first the maximum likelihood estimator of the noise
variance σ2 given by

σ̂2 :=

L∑
ℓ=1

Nℓ

N

1

M −K

M∑
k=K+1

λk

(
R̂ℓ

)
. (27)

From (6) and Theorem 1, one can easily show that σ̂2 −→ σ2

a.s. as M → +∞ under both H0 and H1. Next, for all
k ∈ {1, . . . ,KL}, let γ̂k be the largest solution to the equation
ϕc(γk, σ̂

2) = λk(R̂) if λk(R̂) > σ̂2(1+
√
c)2, or γ̂k = σ̂2

√
c

otherwise. Similarly, for all k ∈ {1, . . . ,K}, let γ̂k,ℓ be the
largest solution to the equation ϕcℓ(γk,ℓ, σ̂

2) = λk(R̂ℓ) if
λk(R̂ℓ) > σ̂2(1 +

√
cℓ)

2, or γ̂k,ℓ = σ̂2√cℓ otherwise. Then
we have the following immediate result, as a consequence of
Theorem 1.

Corollary 1. Under Assumptions 1 and 2,

γ̂k
a.s.−−−−→

M→∞

{
γk if γk > σ2

√
c

σ2
√
c otherwise

, (28)

γ̂k,ℓ
a.s.−−−−→

M→∞

{
γk,ℓ if γk,ℓ > σ2√cℓ
σ2√cℓ otherwise

. (29)

Considering this result we propose the following test statis-
tic

T (ϵ) = 1(ϵ,+∞)

(
∥γ̂∥22

)
, (30)

where
γ̂ = (γ̂k − γ̂k,ℓ)k=1,...,K

ℓ=1,...,L
. (31)

To study the performance in terms of consistency and asymp-
totic type I error of the test statistic (30), we consider the
following assumption which ensures that the signal and noise
eigenvalues of matrices R̂, R̂1, . . . , R̂L are separated in the
high-dimensional regime.

Assumption 3. For all k ∈ {1, . . . ,K} and ℓ ∈ {1, . . . , L},

γ1,ℓ > . . . > γK,ℓ > σ2 max{
√
c1, . . . ,

√
cL}, (32)

γ1 > . . . > γK > σ2
√
c. (33)

Moreover, under H1, there exist k, ℓ such that γk ̸= γk,ℓ.

As a consequence of Corollary 1, we have under Assump-
tions 1-3,

∥γ̂∥22
a.s.−−−−→

M→∞
∥γ∥22 , (34)

with

γ = (γk − γk,l)k=1,...,K
ℓ=1,...,L

, (35)

such that γ = 0 under H0 and γ ̸= 0 under H1. This implies
the following consistency result.

Theorem 3. Let Assumptions 1-3 hold and denote ϵ1 =
∥γ∥22 > 0 under H1. Then for all ϵ ∈ (0, ϵ1),

Pi

(
lim

M→∞
T (ϵ) = i

)
= 1, (36)

for i ∈ {0, 1}, where Pi is the probability measure under
hypothesis Hi.

To control the asymptotic type I error of the proposed test
statistic (30), we also need the following result which, as a
consequence of Theorem 2, provides a CLT for (31).

Corollary 2. Under hypothesis H0 and Assumptions 1-3, we
have √

M γ̂
D−−−−→

M→∞
NRKL

(
0,HΥHT

)
, (37)

where H is the KL × K(L + 1) matrix defined by H =

bdiag
(
H̃, . . . , H̃

)
, Υ = bdiag (Υ1, . . . ,ΥK) with H̃ the

L× (L+ 1) matrix given by

H̃ =



1 −1 0 . . . . . . 0

1 0 −1
. . .

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . . 0
1 0 . . . . . . 0 −1


, (38)
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and with

Υk =


ω2
k,0 ξk . . . ξk

ξk
. . . (0)

... (0)
. . .

ξk ω2
k,L

 , (39)

where

ω2
k,ℓ =

cℓγ
2
k(γk + σ2)2

γ2k − σ4cℓ
, ℓ = 0, . . . , L,

ξk =
c0γ

2
k(γk + σ2)2

γ2k − σ4c0
.

(40)

Proof. The proof is deferred to Appendix D.

From Corollary 2, we can adjust the threshold ϵ in (30) to
control the asymptotic type I error in the high-dimensional
regime, as described in the next result. Let us define Υ̂ =

bdiag
(
Υ̂1, . . . , Υ̂K

)
with

Υ̂k =


ω̂2
k,0 ξ̂k . . . ξ̂k

ξ̂k
. . . (0)

... (0)
. . .

ξ̂k ω̂2
k,L

 , (41)

where

ω̂2
k,ℓ =

cℓγ̂
2
k(γ̂k + σ̂2)2

γ̂2k − σ̂4cℓ
, ℓ ≥ 0

ξ̂k =
c0γ̂

2
k(γ̂k + σ̂2)2

γ̂2k − σ̂4c0
.

(42)

From Corollary 1, it is clear that Υ̂ → Υ a.s. as M → ∞.

Theorem 4. Let x ∈ NRKL(0, I) and F (t,Ξ) =
P
(
xTΞx ≤ t

)
, α ∈ (0, 1) and set

ϵ̂ =
1

M
inf
{
t ∈ R : F

(
t,HΥ̂HT

)
≥ 1− α

}
. (43)

Then under Assumptions 1 and 3, we have

P0(T (ϵ̂) = 1) −−−−→
M→∞

α. (44)

In practice, Theorem 4 is used as follows. For a fixed
realization of Υ̂, we sample the distribution of the Gaussian
quadratic form xTHΥ̂HTx and the threshold ϵ̂ is then set as
the (1− α)-quantile of xTHΥ̂HTx.

Remark 1. For a more general approach where each Γℓ

has unknown rank Kℓ, one can obtain consistent estimates of
K1, . . . ,KL thanks to Theorem 1. Assuming K1, . . . ,KL fixed
with respect to M , and if for ℓ ∈ {1, . . . , L}, γKℓ,ℓ > σ2

√
cℓ,

under Assumption 2 the quantity

K̂ℓ = max
{
k : λk

(
R̂ℓ

)
> σ2(1 +

√
cℓ)

2 + ϵℓ

}
, (45)

converges almost surely to Kℓ in the high-dimensional regime,
for all ϵℓ ∈

(
0, ϕcℓ

(
γKℓ,ℓ, σ

2
)
− σ2(1 +

√
cℓ)

2
)
. This shows

that we can build consistent test statistics to capture changes
in the rank (see further [27]).

Remark 2. It is easy to show that under Assumption 3,
the matrix HΥHT is non singular. Therefore, an alternative
approach to obtain a test statistic with controlled asymptotic
type I error would be to consider the statistic

T̃ (ϵ) = 1(ϵ,+∞)

(
M

∥∥∥∥(HΥ̂HT
)− 1

2

γ̂

∥∥∥∥2
2

)
, (46)

since from Corollary 2, we have

M

∥∥∥∥(HΥ̂HT
)− 1

2

γ̂

∥∥∥∥2
2

D−−−−→
M→∞

χ2(KL). (47)

Nevertheless, although this approach looks simpler, it appears
that the covariance matrix HΥHT is ill-conditioned. This can
be readily seen, e.g. in the special case where c1 = . . . = cL
and for a large SNR. If κ(Υk) denotes the condition number
of Υk defined in (39), then we can verify (details are omitted)
that κ(Υk) scales with γ2 as γ2 → ∞. Therefore, in practice,
setting the threshold ϵ based on the χ2(KL) distribution gives
poor performance.

IV. SOME COMPARISONS WITH ALTERNATIVE METHODS

In this section, we compare the test statistic given in (30)
with two relevant alternatives for the low-rank model (6) and
the high-dimensional regime described in Assumption 1. To
that purpose, we consider scenarios involving a change of sub-
space/eigenvalues for the rank K = 1 model Γℓ = γ1,ℓuℓu

∗
ℓ ,

where ∥uℓ∥2 = 1, and where γ1,ℓ is independent of M .
We precise that our objective is not to provide an exhaustive
analysis of all the possible scenarios under H1, but to draw
some performance comparisons, in terms of consistency, out
of a few simple cases. In the remainder of this section, we
also assume that L = 2 and N1 = N2 so that c1 = c2 = 2c.

A. A test based on spiked Fisher matrices

Although test statistics of the form (3) are not consistent
in the high-dimensional regime, we can build consistent test
statistics by exploiting the behaviour of the largest and smallest
eigenvalues of the Fisher matrices R̂−1

2 R̂1 (see [17]). We
propose 1 to use TFisher(ϵ) = 1(ϵ,+∞)(F ) with

F =

L∑
ℓ,ℓ′=1
ℓ′ ̸=ℓ

K∑
k=1

[(
λk

(
R̂−1

ℓ R̂ℓ′

)
− ν+ℓ,ℓ′

)+

+
(
ν−ℓ,ℓ′ − λM−k

(
R̂−1

ℓ R̂ℓ′

))+]
,

(48)

where ν±ℓ,ℓ′ =
(

1±
√
cℓ+cℓ′−cℓcℓ′
1−cℓ

)2
.

Change of subspace. Let us consider that under H1, γ1,1 =
γ1,2 and u∗

1u2 → 0 as M → ∞, so that the changes between

1Although outside the scope of this paper, we note that the results of [17,
Th. 6.1] could be exploited to build a test statistic with controlled asymptotic
type I error, which is not the case for (48).
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Γ1 and Γ2 are only carried by the unit norm eigenvector u2.
It is easily seen that

λk
(
R−1

2 R1

)
−−−−→
M→∞


γ1,1+σ2

σ2 if k = 1,

1 if k = 2, . . . ,M − 1,
σ2

γ1,1+σ2 if k =M,

(49)

so that applying [17, Th. 3.1] shows that for all small ϵ > 0,
Pi(limTFisher(ϵ) = i) = 1 for i ∈ {0, 1} as M → ∞ iff

γ1,1
σ2

> β =
2
(
c+

√
c− c2

)
1− 2c

. (50)

One can see that β >
√
2c and therefore, from Assumption

3 and Theorem 3, we deduce that the Fisher based statistic
requires a larger SNR γ1,1

σ2 compared to the Wishart based
statistic proposed in (30) to be consistent in the change of
subspace scenario.

Change of eigenvalues. In that case, we assume that γ1,2 =
γ1,1(1 + δ) with δ > 0 and u1 = u2, so that the changes are
only carried by the largest eigenvalue of Γ2. Note that under
these settings, Assumption 2 is verified and it holds that

λk
(
R−1

2 R1

)
−−−−→
M→∞

{
γ1,1+σ2

γ1,1(1+δ)+σ2 if k = 1,

1 if k = 2, . . . ,M.

(51)

Using again [17, Th. 3.1], we have that for all small ϵ > 0,
P(limTFisher(ϵ) = i) = 1 for i ∈ 0, 1 as M → ∞ iff

δ >
2(c+

√
c− c2)

1− 2c
, (52)

and

γ1,1
σ2

> β =
2(c+

√
c− c2)

(1 + δ)(1− 2c)− (1 + 2
√
c− c2)

. (53)

In this scenario, one can see that the minimal SNR β de-
creases when δ increases, which can be exploited to produce
conditions where the Fisher test statistic is consistent while
the Wishart one is not. Indeed, choose

√
c <

γ1,1

σ2 <
√
2c and

δ large enough so that (52) and (53) are verified. Then it can
be seen from Corollary 1 that ∥γ̂∥22 → 2(γ1,1 − σ2

√
2c)2

a.s. as M → ∞ and therefore for all small ϵ > 0,
P0 (limT (ϵ) = 1) = 1.

B. The GLR for (25)

As an alternative to the GLR for the general covariance
equality test (2), the GLR for the low-rank test (25) can be
derived. Classical computations (details are omitted) provide
the following test statistic TGLR−LR(ϵ) = 1(ϵ,+∞)(G) where

G = −
L∑

ℓ=1

Nℓ

K∑
k=1

log

(
λk(R̂ℓ)

λk(R̂)

)

−N(M −K) log


1

M−K

L∑
ℓ=1

Nℓ

N

M∑
k=K+1

λk(R̂ℓ)

1
M−K

M∑
k=K+1

λk(R̂)

 .

(54)

Using Theorem 1, it can be shown that G → G∞ a.s. as
M → ∞ where

G∞ =

L∑
ℓ=1

c

cℓ

K∑
k=1

(
ψ

(
ϕc(γk)

σ2

)
− ψ

(
ϕcℓ(γk,ℓ)

σ2

))
, (55)

with ψ(x) = x− log(x).
Let us consider a change of eigenvalues with γ1,2 = γ1,1+δ

and u1 = u2 under H1. Then it is easy to see that under
both H0 and H1, G∞ = −c + O

(
1

γ1,1

)
as γ1,1 → +∞.

Regarding the proposed test (30), we have ∥γ∥22 = δ2

2 under
H1 which shows the limit (34) under H0 and H1 cannot be
made arbitrarily close as γ1,1 → ∞. This suggests that for
a large γ1,1 and a fixed change δ, the GLR for the low-rank
model might experience a performance loss compared to the
test (30).

V. SIMULATIONS

In this section, we provide simulations to illustrate the
performance of the test statistic T proposed in (30), and to
perform some comparisons with the alternative test statistics
introduced in Section IV. We consider σ2 = 0.5, K = 2, L =
2 as well as a Toeplitz model of rank K = 2 for the covariance
matrix Γℓ which can therefore be written as

Γℓ = γ1,ℓa (θ1,ℓ) a∗ (θ1,ℓ) + γ2,ℓa (θ2,ℓ) a∗ (θ2,ℓ) , (56)

with a(θ) = 1√
M
(1, eiθ . . . , ei(M−1)θ)T . Note that the model

(56) is common in spectral analysis and array processing [28].

A. Empirical and asymptotic Type I error of T (ϵ)

We first illustrate the result of Theorem 4 and consider
θk,ℓ = 0 for (k, ℓ) ∈ {1, 2}2, γ1,ℓ = 3 and γ2,ℓ = 1.5 for
ℓ ∈ {1, 2} and N1 = N2 = 2M . The threshold ϵ of (30)
is set as the (1− α)-quantile of the Gaussian quadratic form
xTHΥ̂HTx with x ∼ NRKL(0, I), and we provide in TABLE
I the empirical Type I error of T (ϵ) (evaluated over 100000
iterations) for M ∈ {10, 20, 50, 100}. Table I thus shows that

TABLE I
TYPE I ERROR OF T (ϵ)

T (ϵ)
α 0.005 0.01 0.02 0.05 0.10

M = 10 0.002 0.004 0.009 0.028 0.065
M = 20 0.0025 0.005 0.01 0.03 0.073
M = 50 0.003 0.006 0.013 0.038 0.083
M = 100 0.004 0.008 0.016 0.043 0.09

the empirical type I error is close to the asymptotic type I
error predicted in Theorem 4, when M is increasing.

B. Comparisons of powers

In this section, we evaluate the proposed test statistic on
synthetic data by considering the following two scenarios.

(1) Change of subspace: under H0, θ1,1 = θ1,2 = 0, θ2,1 =
θ2,2 = π

8 and under H1, θ1,1 = 0, θ1,2 = π
2 , θ2,1 =

π
8 , θ2,2 = π

2 + π
8 . We will also consider under both
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hypothesis γ1,1 = γ1,2 = 2, γ2,1 = γ2,2 = 1 and N1 =
N2 = 2M thus c1 = c2.

(2) Change of Eigenvalues: under H0, γ1,1 = γ1,2 = 2,
γ2,1 = γ2,2 = 1.5 and under H1, γ1,1 = 2, γ1,2 = 5,
γ2,1 = 1.5, γ2,2 = 4. We will also consider under both
hypothesis θ1,1 = θ1,2 = 0, θ2,1 = θ2,2 = 0 and N1 =
N2 = 4M thus c1 = c2.

In the simulations that follow, for both scenarios, we compute
the power of different test statistics for a given type I error
α and different values of M . The statistic T (ϵ), which will
be termed as ”Wishart” below, will be compared to the statis-
tics TFisher(ϵ) (termed as ”Fisher”), TGLR−LR(ϵ) (termed as
”GLR-LR”) and TGLR(ϵ) = 1(ϵ,+∞)(S|φ=log

) where S is
given in (3) (termed as ”GLR”). For each of the statistics, the
threshold ϵ is adjusted separately to achieve a type I error of
α. Note that for both scenarios, Assumptions 2, 3 are verified
and that the condition for the Fisher statistic to be consistent
is verified as well. We observe that in both scenarios,

TABLE II
POWER FOR DIFFERENT VALUES OF M (CHANGE OF EIGENVALUES

SCENARIO)

Statistics
α 0.005 0.01 0.02 0.05 0.1

M = 10
GLR 0.120 0.181 0.266 0.412 0.550

GLR-LR 0.381 0.483 0.588 0.734 0.832
Fisher 0.309 0.397 0.5 0.653 0.775

Wishart 0.998 0.999 0.999 1 1
M = 20

GLR 0.137 0.197 0.277 0.424 0.569
GLR-LR 0.736 0.808 0.87 0.934 0.967

Fisher 0.578 0.672 0.762 0.861 0.923
Wishart 1 1 1 1 1

M = 50
GLR 0.145 0.209 0.297 0.445 0.591

GLR-LR 0.992 0.996 1 1 1
Fisher 0.946 0.965 0.98 0.992 0.997

Wishart 1 1 1 1 1
M = 100

GLR 0.154 0.207 0.290 0.445 0.591
GLR-LR 1 1 1 1 1

Fisher 0.998 0.999 1 1 1
Wishart 1 1 1 1 1

the proposed Wishart statistic shows a significantly better
performance as M is increasing. Second, while the GLR-LR
statistic outperforms the Wishart one for low dimensions M
in the change of subspace scenario, the Wishart statistic still
demonstrates a higher power compared to the Fisher and GLR
statistics for both scenarios.

The next simulation in Table IV shows the evolution of
the power for different values of the noise variance in the
change of eigenvalues scenario (M = 100). The same can
be done for the change of subspace scenario in Table V. We
observe that the test statistics designed for a low-rank scenario
(Wishart, Fisher, GLR-LR) outperform the GLR in general.
Additionally, when the noise variance σ2 becomes too large,
the conditions on the SNR ensuring the consistency of these
statistics (Assumption 3 and the conditions of [17]) are not
met anymore, and one observes in that case a significant drop
of the performance (σ2 = 5.5 in Table IV and σ2 = 2.5 in

TABLE III
POWER FOR DIFFERENT VALUES OF M (CHANGE OF SUBSPACE SCENARIO)

Statistics
α 0.005 0.01 0.02 0.05 0.1

M = 10
GLR 0.493 0.592 0.701 0.826 0.906

GLR-LR 0.992 0.996 0.998 0.999 1
Fisher 0.149 0.215 0.312 0.473 0.624

Wishart 0.026 0.056 0.119 0.3 0.519
M = 20

GLR 0.757 0.829 0.89 0.949 0.978
GLR-LR 1 1 1 1 1

Fisher 0.398 0.493 0.597 0.739 0.84
Wishart 0.646 0.812 0.924 0.988 1

M = 50
GLR 0.832 0.883 0.927 0.968 0.987

GLR-LR 1 1 1 1 1
Fisher 0.783 0.846 0.894 0.944 0.972

Wishart 1 1 1 1 1
M = 100

GLR 0.838 0.891 0.934 0.972 0.988
GLR-LR 1 1 1 1 1

Fisher 0.955 0.971 0.984 0.993 0.997
Wishart 1 1 1 1 1

TABLE IV
POWER FOR DIFFERENT VALUES OF σ2 (CHANGE OF EIGENVALUES

SCENARIO)

Statistics
α 0.005 0.01 0.02 0.05 0.1

σ2 = 0.75
GLR 0.1 0.153 0.226 0.368 0.512

GLR-LR 0.999 1 1 1 1
Fisher 0.925 0.95 0.97 0.987 0.944

Wishart 1 1 1 1 1
σ2 = 1

GLR 0.079 0.121 0.185 0.310 0.448
GLR-LR 0.995 0.998 0.999 1 1

Fisher 0.662 0.736 0.809 0.89 0.938
Wishart 1 1 1 1 1

σ2 = 5.5
GLR 0.008 0.019 0.037 0.083 0.152

GLR-LR 0.029 0.045 0.07 0.13 0.207
Fisher 0.008 0.015 0.029 0.07 0.133

Wishart 0.315 0.409 0.498 0.649 0.762

Table V).

Remark 3. In view of the simulations results described in
Tables II-V, we observe that the proposed test statistic (30)
performs poorly when the conditions described in Assumptions
1 and 3 are not met, i.e. when the dimension M or the SNR are
not large enough. Scenarios where the rank K is also of the
same order of magnitude than M , thus violating Assumption
1, will also invalidate Theorem 4 and the asymptotic type I
error will be poorly controlled in that case.

C. An application to change detection in SAR images

In this section, we evaluate the performance of the proposed
test statistic on images drawn from the UAV-SAR dataset
of NASA/JPL-Caltech (SanAnd 26524 03, Segment 4). We
consider two scenes with respective sizes 2360 × 600 and
2300 × 600 pixels, which have been previously used in [4],
[18], and which are formed of L = 2 images acquired within
a 5 years interval (see Figures 1 and 2). The azimuthal
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TABLE V
POWER FOR DIFFERENT VALUES OF σ2 (CHANGE OF SUBSPACE SCENARIO)

Statistics
α 0.005 0.01 0.02 0.05 0.1

σ2 = 0.75
GLR 0.4 0.496 0.602 0.749 0.849

GLR-LR 1 1 1 1 1
Fisher 0.329 0.414 0.510 0.625 0.763

Wishart 1 1 1 1 1
σ2 = 1

GLR 0.172 0.246 0.34 0.505 0.646
GLR-LR 1 1 1 1 1

Fisher 0.077 0.119 0.18 0.297 0.424
Wishart 1 1 1 1 1

σ2 = 2.5
GLR 0.017 0.031 0.057 0.120 0.209

GLR-LR 0.341 0.423 0.537 0.695 0.809
Fisher 0.007 0.015 0.03 0.068 0.129

Wishart 0.256 0.327 0.414 0.566 0.655

Fig. 1. Scene 1 (Pauli representation) at two different times and its ground
truth

resolution is approximately 0.6 m while the distance resolution
is 1.67 m. The dimension of each pixel, which was initially
of M = 3, has been increased to M = 12 using the wavelet
decomposition technique of [29]. Local patches of sizes 5× 5
centered around each pixel under test are used for estimation,

Fig. 2. Scene 2 (Pauli representation) at two different times and its ground
truth

(a) Scene 1 (b) Scene 2

Fig. 3. Ratio k 7→ r(k) for both scenes

(a) Scene 1 (b) Scene 2

Fig. 4. ROC plots for the two scenes

that is N1 = N2 = 25. In Figure 3, the ratio

r(k) =
E
[∑k

i=1 λi

(
R̂1

)]
E
[
tr
(
R̂1

)] , (57)

is plotted for both scenes, where the expectations are estimated
by a sample mean over all the local patches. The rank K is
set to 5 in the following to reach a ratio of r(K) ⪆ 95%.
In Figure 4 are plotted the ROC curves for scenes 1 and 2,
where we have compared the performance of the proposed test
statistic (30), the GLR, the GLR-LR and the method of [18].
We observe some improvement of the proposed test statistic
for type I errors greater than 15% for the scene 1 or greater
than 5% for the scene 2.

VI. CONCLUSION

In this paper, the problem of covariance equality testing
in low-rank Gaussian models has been studied. A new test
statistic has been proposed, which is based on the asymptotic
behaviour of the largest eigenvalues of certain Wishart matri-
ces in the high-dimensional regime where the dimension of
the observations and the number of samples both converge to
infinity at the same rate. In particular, it is shown that the
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proposed statistic has a controlled type I error in the high-
dimensional regime. Simulations on both synthetic and real
datasets have demonstrated that the proposed test statistic is
relevant compared to other alternative approaches.

APPENDIX

Notations. Throughout this Appendix, we use the follow-
ing notations. For a sequence of random matrices (Xn)n≥1,
Xn = oP(1) denotes the convergence of (∥Xn∥2) to 0 in
probability, while Xn = OP(1) denotes the tightness of
(∥Xn∥2), as n→ ∞, where ∥.∥2 stands for the spectral norm.
If X is a random matrix, we denote by X◦ = X − E[X].
Finally, C1(U) (resp. C∞

c (U)) denotes the set of continuously
differentiable functions (resp. infinitely differentiable functions
with compact support) defined on an open set U .

A. Useful results around the Marcenko-Pastur distribution

In this section, we provide well-known results on the
Stieltjes transform

m(z) =

∫
R

dµ(λ)

λ− z
, z ∈ C\R, (58)

of the Marcenko-Pastur distribution µ with parameters (σ2, c)
defined in (15), having the interval [x−, x+] as support with
x± = σ2(1±

√
c)2, and which will be of constant use for the

proofs of Theorems 1, 2 and Corollary 2 below.
We first recall that the limit m(x) = limz∈C+,z→xm(z) ex-

ists for all x ∈ R\{x−, x+}, and that for all z ∈ C\{x−, x+},
m(z) satisfies the equation:

m(z) =
1 + σ2cm(z)

σ2 − z (1 + σ2cm(z))
=

w(z)

z(σ2 − w(z))
, (59)

with

w(z) = z
(
1 + σ2cm(z)

)
. (60)

Moreover, m is continuously differentiable on R\{0, x−, x+}.
We now provide some results on the function w, which plays a
central role in describing the behaviour of the largest eigenval-
ues of R̂. From (59), we observe that for all z ∈ C\{x−, x+},

ϕ(w(z)) = z, (61)

where ϕ is defined as:

ϕ(w) = w

(
1− σ2c

σ2 − w

)
. (62)

Function ϕ is increasing on (−∞, w−) ∪ (w+,∞) and de-
creasing on (w−, σ2) ∪ (σ2, w+), with w± = σ2 (1±

√
c)

and ϕ(w±) = x±.
Next, we consider the following lemma (see [30]) regarding

w.

Lemma 2. For all x ∈ R\{x−, x+}, w(x) ∈ ϕ−1({x}).
Moreover, among the preimages of x under ϕ,

• if x ∈ (x−, x+), w(x) is the unique one such that
Im(w(x)) > 0;

• if x ∈ R\ [x−, x+], w(x) is real and is the unique
preimage such that ϕ′(w(x)) > 0.

Finally, z ∈ C\R implies that w(z) ∈ C\R.

Let γ ≥ 0. From Lemma 2, it is easily deduced that the
equation w(x) = γ + σ2 admits a solution iff γ > σ2

√
c, and

that the solution is unique and given by

x = ϕ(γ + σ2) =
(γ + σ2)(γ + σ2c)

γ
. (63)

Finally, we also have the following result giving various
useful formulas. Define m̃(z) = − 1

z(1+σ2cm(z)) and τ(z) =

zm(z)m̃(z).

Lemma 3. If γ > σ2
√
c, then we have

m(ϕ(γ + σ2)) = − 1

γ + σ2c
, (64)

m̃(ϕ(γ + σ2)) = − 1

γ + σ2
, (65)

m′(ϕ(γ + σ2)) =
γ2

(γ + σ2c)2(γ2 − σ4c)
, (66)

m̃′(ϕ(γ + σ2)) =
γ2

(γ + σ2)2(γ2 − σ4c)
, (67)

τ(ϕ(γ + σ2)) =
1

γ
, (68)

τ ′(ϕ(γ + σ2)) = − 1

γ2 − σ4c
. (69)

B. Proof of Theorem 1

This proof is based on techniques developed in [21].
1) Some notations: Denote by e1, . . . , eN the column vec-

tors of the standard basis of CN , and let

J1 =

N1∑
n=1

ene
∗
n, (70)

and for ℓ = 2, . . . , L,

Jℓ =

N1+...+Nℓ∑
n=N1+...+Nℓ−1+1

ene
∗
n. (71)

We also consider the following eigendecomposition of Γℓ

Γℓ = UℓDℓU
∗
ℓ , (72)

with Uℓ a M × K isometric matrix and Dℓ =
diag (λ1(Γℓ), . . . , λK(Γℓ)).

2) Linearization: Let Y be the M × N matrix given
by Y = [y1,1, . . . ,yN1,1, . . . ,y1,L, . . . ,yNL,L]. Due to the
Gaussian model, one can assume, without loss of generality,
that

Y = ΩS∗ +W, (73)

where W is M ×N matrix with i.i.d. NC(0, σ
2) entries and

where Ω =
[
U1D

1
2
1 , . . . ,ULD

1
2

L

]
and S = [S1, . . . ,SL]. with

Sℓ = JℓX and X a N ×K matrix with i.i.d. NC(0, 1) entries
and independent of W. In particular, we have R̂ = 1

NYY∗,
and Y is a fixed rank (at most KL) perturbation of W so that
from Weyl’s inequality and the classical results on the extreme
eigenvalues of Wishart matrices (see e.g. [31]), it holds that

λM (R̂)
a.s.−−−−→

M→∞
x−, (74)



10

while a.s.

lim sup
M→∞

λKL+1

(
R̂
)
≤ lim sup

M→∞
λ1

(
1

N
WW∗

)
= x+. (75)

To study the remaining eigenvalues of R̂, we use the lineariza-
tion trick which consists in studying the following Hermitian
block matrix

Y̌ =

[
0 1√

N
Y

1√
N
Y∗ 0

]
, (76)

for which it is well-known that [32, Th. 7.3.7]

sp
(
Y̌
)
=

{
±
√
λk

(
R̂
)}

∪ {0}. (77)

3) Asymptotics for the characteristic polynomial of Y̌:
Obviously, we have:

Y̌ = BǏB∗ + W̌, (78)

where B, Ǐ and W̌ are given by:

B =

[
Ω 0
0 1√

N
S

]
, Ǐ =

[
0 I
I 0

]
,W̌ =

[
0 1√

N
W

1√
N
W∗ 0

]
.

(79)
Let ϵ > 0 and let Dϵ the ϵ-neighborhood in C of the set D =
[x−, x+]. Let K be a compact subset of C\ (Dϵ ∪ (−∞, 0)).
Then (see again [31]), with probability one for all large M ,

sp
(
W̌
)
∩
{√

z : z ∈ K
}
= ∅, (80)

and the following factorization

det
(
Y̌ −

√
zI
)
= det

(
W̌ −

√
zI
)
det
(
Ǐ
)
P̂ (z), (81)

where
P̂ (z) = det

(
Ǐ+ Ξ̂(z)

)
, (82)

and Ξ̂(z) = B∗ (W̌ −
√
zI
)−1

B, holds for all z ∈ K. Then
from the block matrix inversion formula, we have

Ξ̂(z) =

[ √
zΩ∗Q(z)Ω 1

NΩ∗Q(z)WS
1
N S∗W∗Q(z)Ω

√
z 1
N S∗Q̃(z)S

]
, (83)

where Q(z) and Q̃(z) are the resolvent matrices of 1
NWW∗

and 1
NW∗W given by

Q(z) =

(
1

N
WW∗ − zI

)−1

, Q̃(z) =

(
1

N
W∗W − zI

)−1

.

(84)
We then use the following result.

Proposition 1. We have

sup
z∈K

∥Ω∗Q(z)Ω−m(z)Ω∗Ω∥2
a.s.−−−−→

M→∞
0, (85)

as well as

sup
z∈K

∥∥∥∥∥ 1

N
S∗
kQ̃(z)Sℓ +

δk−ℓ
Nk

N

z (1 + σ2cm(z))
I

∥∥∥∥∥
2

a.s.−−−−→
M→∞

0, (86)

and

sup
z∈K

∥∥∥∥ 1

N
S∗
kW

∗Q(z)Ω

∥∥∥∥
2

a.s.−−−−→
M→∞

0. (87)

Proof. Proposition 1 is obtained as a trivial modification of
standard results in random matrix theory regarding quadratic
forms of resolvents of standard Wishart matrices (see e.g. [33,
Sec. 5.5]) and the proof is therefore omitted.

Using Proposition 1, we deduce that:

sup
z∈K

∥∥∥Ξ̂(z)−Ξ(z)
∥∥∥
2

a.s.−−−−→
M→∞

0, (88)

where

Ξ(z) =

[√
zm(z)Ω∗Ω 0

0 A(z)

]
, (89)

with A(z) the KL×KL block diagonal matrix given by

A(z) = − 1√
z (1 + σ2cm(z))


N1

N I
. . .

NL

N I

 . (90)

It is straightforward to check that

det
(
Ǐ+Ξ(z)

)
= det

(√
zm(z)Ω∗ΩA(z)− I

)
= det

(
− m(z)

1 + σ2cm(z)
Γ− I

)
, (91)

where Γ is defined in (11). Consequently, from Assumption
2, one has

sup
z∈K

∣∣∣P̂ (z)− P (z)
∣∣∣ a.s.−−−−→

N→∞
0, (92)

where P (z) =
∏KL

k=1

(
− m(z)

1+σ2cm(z)γk − 1
)

. Using the
equation (59), one can rewrite P (z) as P (z) =∏KL

k=1

(
γk

w(z)−σ2 − 1
)

, with w defined in (60).

4) Spectrum of R̂: Using Lemma 2 and the discussion
below, we immediately obtain that the set of zeros of P is
given by

Z =
{
ϕ(γk + σ2) : k = 1, . . . ,KL, γk > σ2

√
c
}
. (93)

Moreover, Lemma 2 also implies that P has no pole and thus
P is holomorphic on C\[x−, x+].

Let Q = |Z| and denote by x1 > . . . > xQ the elements of
Z . We also set ϵ > 0 small enough such that

Dϵ ∩
Q⋂

q=1

[xq − ϵ, xq + ϵ] = ∅. (94)

For all q = 1, . . . , Q, let Cq be a continuously differentiable
simple closed curve intersecting the real axis only at the two
points xq ± ϵ and enclosing xq so that Cq is a compact subset
of C\ (Dϵ ∪ (−∞, 0)). Applying (92) with K = Cq provides
that with probability one for all large M ,∣∣∣P̂ (z)− P (z)

∣∣∣ < |P (z)| , (95)

for all z ∈ Cq , with both P̂ and P being holomorphic on any
open set enclosed by Cq . Thus, for all q = 1, . . . , Q, we deduce
from Rouché’s Theorem that P̂ admits a unique zero in the
interval [xq − ϵ, xq + ϵ]. With a similar reasoning, P̂ does not
have any zero in (0, x− − ϵ) ∪ (x1 + ϵ,∞) with probability
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one for all large M . Therefore, getting back to (81) and since
ϵ can be made arbitrarily small, it follows that

λk

(
R̂
)

a.s.−−−−→
M→∞

ϕ(γk + σ2) =
(γk + σ2)(γk + σ2c)

γk
, (96)

for all k = 1, . . . ,KL such that γk > σ2
√
c. Moreover,

with probability one for all large M , λk(R̂) ∈ Dϵ for all
k = 1, . . . ,KL such that γk ≤ σ2

√
c. Since the empirical

spectral distribution µ̂ of R̂ converges a.s. to the Marcenko-
Pastur distribution as M → ∞, this further implies that for
all k = 1, . . . ,KL such that γk ≤ σ2

√
c, λk

(
R̂
)

a.s.−−−−→
M→∞

x+

and similarly λKL+1

(
R̂
)

a.s.−−−−→
M→∞

x+.

C. Proof of Theorem 2

1) Some notations.: Let us first recall that under hypothesis
H0, we have Γ1 = . . . = ΓL = Γ, and we denote by
Γ = UDU∗ its eigendecomposition with U a M × K
isometric matrix and D = diag (λ1(Γ), . . . , λK(Γ)). To unify
some notations, define as in the previous section Yℓ =
[y1,ℓ, . . . ,yNℓ,ℓ] for all ℓ = 1, . . . , L so that we have

Yℓ = ΩS∗
ℓ +Wℓ, (97)

where Ω = UD1/2, S1, . . . ,SL are independent matrices such
that Sℓ = [s1,ℓ, . . . , sK,ℓ] is Nℓ × K with i.i.d. NC(0, 1)
entries, and where W1, . . . ,WL are independent matrices
with Wℓ having i.i.d. NC(0, σ

2) entries. We also define
Y0 = [Y1, . . . ,YL] so that

Y0 = ΩS∗
0 +W0, (98)

with S0 = [S∗
1, . . . ,S

∗
L]

∗ and W0 = [W1, . . . ,WL], and
write N0 = N1 + . . . + NL, so that R̂0 =

Y0Y
∗
0

N0
= R̂.

Moreover, let c0 = c = ( 1
c1

+ . . .+ 1
cL

)−1 and

a = σ2 min
ℓ=0,...,L

(1−
√
cℓ)

2
, b = σ2 max

ℓ=0,...,L
(1 +

√
cℓ)

2
,

(99)
and consider φ ∈ C∞

c (R) such that supp(φ) = [a− ϵ, b+ ϵ]
and φ(t) = 1 for all t ∈

[
a− ϵ

2 , b+
ϵ
2

]
, where ϵ < a . The

following quantity defined as

χ =

L∏
ℓ=0

detφ

(
WℓW

∗
ℓ

Nℓ

)
, (100)

verifies χ = 1 with probability 1 for all large M from
the classical results on the localization of the eigenvalues of
Wishart matrices [31]. Recall also the definition of m and w in
(58) and (60) respectively and denote for all ℓ = 0, . . . , L by
mℓ the Stieltjes transform of the Marcenko-Pastur distribution
with parameter (cℓ, σ2), as well as for all z ∈ C\[x−ℓ , x

+
ℓ ]

wℓ(z) = z
(
1 + σ2cℓmℓ(z)

)
, (101)

m̃ℓ(z) = − 1

z(1 + σ2cℓmℓ(z))
, (102)

τℓ(z) = zmℓ(z)m̃(z), (103)

with x±ℓ = σ2
(
1±√

cℓ
)2

.

2) Characteristic Polynomials Approximation: The first
step of the proof consists in using the trick from [34] whose
main idea is to relate the cumulative distribution function of
the spiked eigenvalues with the determinant of certain random
matrices.

Using Theorem 1 and the same arguments used to obtain
the factorization (81) and (83) in Appendix B, we have that
λ1(R̂ℓ), . . . , λK(R̂ℓ) are the zeros of

P̂ℓ(z) = det
(
Ǐ+ Ξ̂ℓ(z)

)
, (104)

for all ℓ ∈ {0, . . . , L}, with probability one for all large M ,
with

Ξ̂ℓ(z) =

[ √
zΩ∗Qℓ(z)Ωχ

1
Nℓ

Ω∗Qℓ(z)WℓSℓχ
1
Nℓ

S∗
ℓW

∗
ℓQℓ(z)Ωχ

√
z 1
Nℓ

S∗
ℓQ̃ℓ(z)Sℓχ

]
,

(105)

where Qℓ(z) =
(

WℓW
∗
ℓ

Nℓ
− zI

)−1

and Q̃ℓ(z) =(
W∗

ℓWℓ

Nℓ
− zI

)−1

. For all ℓ, k, let −∞ < xk,ℓ < yk,ℓ < +∞
and denote

ρk,ℓ =
(γk + σ2)(γk + σ2cℓ)

γk
. (106)

Then with probability one for all large M , we have
√
M
(
λk(R̂ℓ)− ρk,ℓ

)
∈ [xk,ℓ, yk,ℓ]

⇔ P̂ℓ

(
ρk,ℓ +

xk,ℓ√
M

)
P̂ℓ

(
ρk,ℓ +

yk,ℓ√
M

)
< 0. (107)

Therefore, as M → ∞,

P

(
K⋂

k=1

L⋂
ℓ=0

{√
M
(
λk(R̂ℓ)− ρk,ℓ

)
∈ [xk,ℓ, yk,ℓ]

})
=

P

(
K⋂

k=1

L⋂
ℓ=0

{
P̂ℓ

(
ρk,ℓ +

xk,ℓ√
M

)
P̂ℓ

(
ρk,ℓ +

yk,ℓ√
M

)
< 0

})
+ o(1). (108)

The following proposition provides the expansion of
P̂ℓ

(
ρk,ℓ +

x√
M

)
around ρk,ℓ.

Proposition 2. For all x ∈ R,

P̂ℓ

(
ρk,ℓ +

x√
M

)
=

1√
M

∏
i ̸=k

(γiτℓ(ρk,ℓ)− 1)

×

(
xγkτ

′
ℓ(ρk,ℓ)− 2

√
γkRe (η3,k,ℓ) + γkρk,ℓm̃ℓ(ρk,ℓ)η1,k,ℓ

+ γkρk,ℓmℓ(ρk,ℓ)η2,k,ℓ)

)
+ oP

(
1√
M

)
, (109)

where τℓ(z) = zmℓ(z)m̃ℓ(z) and

η1,k,ℓ =
√
Mu∗

k (Qℓ(ρk,ℓ)χ)
◦
uk, (110)

η2,k,ℓ =

√
M

Nℓ

(
s∗k,ℓQ̃ℓ(ρk,ℓ)sk,ℓχ

)◦
, (111)

η3,k,ℓ =

√
M

Nℓ
u∗
kQℓ(ρk,ℓ)Wℓsk,ℓχ. (112)

Proof. The proof is deferred to Appendix E1.
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From (108) and Proposition 2, it is clear that we have to
study a CLT for the following generic quantity

η =

L∑
ℓ=0

K∑
k=1

(
β1,k,ℓη1,k,ℓ + β2,k,ℓη2,k,ℓ +Re

(
β3,k,ℓη3,k,ℓ

))
,

(113)
where (βi,k,ℓ) i=1,2

k=1,...,K
ℓ=0,...,L

∈ R2K(L+1) and (β3,k,ℓ)k=1,...,K
ℓ=0,...,L

∈

CK(L+1).
3) Central Limit Theorem: Let us consider the characteris-

tic function Ψ(u) = E [ξ(u)], with ξ(u) = exp (iuη). Our ap-
proach consists in deriving a perturbed differential equation for
Ψ as shown in the following proposition. Let bdiag() denotes
the block diagonal operator. Define K = bdiag (K1, . . . ,KK)
with Kk = bdiag(K1,k, . . . ,K4,k) and where (Ki,k)i=1,...,4

are (L+ 1)× (L+ 1) symmetric matrices with entries given
by

[K1,k]ℓ+1,ℓ′+1 =

σ4cℓ
(γk+σ2cℓ)2(γ2

k−σ4cℓ)
if ℓ = ℓ′

σ4c0
(γk+σ2c0)(γk+σ2cℓ′ )(γ

2
k−σ4c0)

if ℓ = 0 < ℓ′

0 if 0 < ℓ < ℓ′

, (114)

[K2,k]ℓ+1,ℓ′+1 =



cℓ
(γk+σ2)2(γ2

k−σ4cℓ)
if ℓ = ℓ′

c0
(γk+σ2)2(γ2

k−σ4c0)
if ℓ = 0 < ℓ′

0 if 0 < ℓ < ℓ′

,

(115)

and for i ∈ {3, 4},

[Ki,k]ℓ+1,ℓ′+1 =


1
2

σ2cℓ
γ2
k−σ4cℓ

if ℓ = ℓ′

1
2

σ2c0
γ2
k−σ4c0

if ℓ = 0 < ℓ′

0 if 0 < ℓ < ℓ′

(116)

Denote also β =
(
βT
1 , . . . ,β

T
K

)T
with

βk =
(
β1,k,0, . . . , β1,k,L, β2,k,0, . . . , β2,k,L,

Re(β3,k,0), . . . ,Re(β3,k,L), Im(β3,k,0), . . . , Im(β3,k,L)
)T
.

(117)

Proposition 3. The matrix K is positive definite and

Ψ′(u) = −uβTKβΨ(u) +
∆(u)√
M

, (118)

where ∆ is a continuous function such that |∆(u)| < P(u)
for some polynomial P with positive coefficients independent
of M .

Proof. The proof is deferred to Appendix E2.

From Proposition 3, by solving the perturbed differential
equation in (118), we deduce that

Ψ(u) −−−−→
M→∞

exp

(
−βTKβ

u2

2

)
, (119)

which of course implies that

η
D−−−−→

M→∞
NR

(
0,βTKβ

)
. (120)

The final step of the proof consists in transferring the CLT to
the K largest eigenvalues of (R̂ℓ)ℓ=1,...,L. From Proposition
(2), we have that:

P̂ℓ

(
ρk,ℓ +

x√
M

)
=

1√
M
γkτ

′
ℓ(ρk,ℓ) (x− ζk,ℓ + oP (1))

∏
i ̸=k

(γiτℓ(ρk,ℓ)− 1) ,

(121)

with

ζk,ℓ =
1

γkτ ′ℓ(ρk,ℓ)

(
2
√
γkRe (η3,k,ℓ)− γkρk,ℓm̃ℓ(ρk,ℓ)η1,k,ℓ

− γkρk,ℓmℓ(ρk,ℓ)η2,k,ℓ

)
. (122)

Thus, going back to (108), we get

P

(
K⋂

k=1

L⋂
ℓ=0

{√
M
(
λk(R̂ℓ)− ρk,ℓ

)
∈ [xk,ℓ, yk,ℓ]

})
=

P

(
K⋂

k=1

L⋂
ℓ=0

{xk,ℓ < ζk,ℓ + oP(1) < yk,ℓ}

)
+ o(1). (123)

Using (120) with suitable values for β as well as the equal-
ities of Lemma 3, we have ζ = (ζk,ℓ) ℓ=0,...,L

k=1,...,K

D−−−−→
M→∞

NRK(L+1) (0,Θ), where Θ is given in the statement of Theo-
rem 2. Finally, noticing that

det(Θ) =

K∏
k=1

L∏
ℓ=1

θ2k,ℓ

(
θ20 −

L∑
ℓ′=1

ϑ2k,ℓ′

θ2k,ℓ

)

=
(
σ4c20(L− 1)

)K K∏
k=1

(
γk + σ2

γk

)2(L+1)

×
L∏

ℓ=1

cℓ(γ
2
k − σ4cℓ),

(124)

we obtain that det(Θ) > 0 thanks to Assumption 3 which
concludes the proof of Theorem 2.

D. Proof of Corollary 2

Denote c0 = c and for all ℓ = 0, . . . , L, let ϕ̂ℓ(w) =

w
(
1− σ̂2cℓ

σ̂2−w

)
. Denote as well R̂0 = R̂ and γ̂k,0 = γ̂k for

ease of reading. Under Assumption 3, we first observe from
Theorem 1 that

λk

(
R̂ℓ

)
a.s.−−−−→

M→∞
ϕℓ(γk + σ2) =

(γk + σ2)(γk + σ2cℓ)

γk
,

(125)
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so that λ̂k(R̂ℓ) > σ̂2√cℓ with probability one for all large M ,
and therefore γ̂k,ℓ + σ̂2 coincides with the largest solution to
the equation ϕ̂ℓ(w) = λk(R̂ℓ). From Lemma 2, we deduce that
γ̂k,ℓ = ŵℓ

(
λ̂k(R̂ℓ)

)
− σ̂2. with probability one for all large

M , where ŵℓ(z) = z
(
1 + σ̂2cℓm̂ℓ(z)

)
with m̂ℓ the Stieltjes

transform of the Marcenko-Pastur distribution with parameter
(σ̂2, cℓ). It is easy to see that σ̂2 = σ2 +OP

(
1
M

)
and:

m̂ℓ

(
λ̂k(R̂ℓ)

)
= mℓ

(
λ̂k(R̂ℓ)

)
+OP

(
1

M

)
. (126)

Therefore, we deduce that

γ̂k,ℓ = wℓ

(
λ̂k(R̂ℓ)

)
− σ2 +OP

(
1

M

)
. (127)

As wℓ(ϕℓ(γk+σ
2)) = γk+σ

2 and wℓ is differentiable at point
γk + σ2, a straightforward use of the delta-method provides

√
M (γ̂k,ℓ − γk) ℓ=0,...,L

k=1,...,K

D−−−−→
M→∞

NRK(L+1) (0,GΘG) ,

(128)

where G = diag

(
(w′

ℓ(ϕℓ(γk + σ2))) ℓ=0,...,L
k=1,...,K

)
. Noticing

that w′
ℓ(ϕℓ(γk + σ2)) =

γ2
k

γ2
k−σ2cℓ

from Lemma 3, we end
up with GΘG = Ω, where Ω is given in the statement of
Corollary 2. Another immediate use of the delta-method allows
to transfer the CLT from (γ̂k,ℓ) ℓ=0,...,L

k=1,...,K
to γ̂.

E. Additional proofs

1) Proof of Proposition 2: It is easy to see using Proposi-
tion 1 that for all x ∈ R,

Ξ̂ℓ

(
ρk,ℓ +

x√
M

)
=[√

ρk,ℓmℓ(ρk,ℓ)D 0
0

√
ρk,ℓm̃ℓ(ρk,ℓ)I

]
+∆,

(129)

where

∆ =[√
ρk,ℓΩ

∗ (Qℓ(ρk,ℓ)χ)
◦
Ω 1

Nℓ
Ω∗Qℓ(ρk,ℓ)χWℓSℓ

1
Nℓ

S∗
ℓW

∗
ℓQℓ(ρk,ℓ)χΩ

√
ρk,ℓ

1
Nℓ

(
S∗
ℓQ̃ℓ(ρk,ℓ)Sℓχ

)◦]

+
x√
M

[
h (ρk,ℓ)D 0

0 h̃ (ρk,ℓ) I

]
+ oP

(
1√
M

)
, (130)

with hℓ(z) = mℓ(z)
2
√
z

+
√
zm′

ℓ(z) and h̃ℓ(z) = m̃ℓ(z)
2
√
z

+
√
zm̃′

ℓ(z). Note that ∥∆∥2 = OP

(
1√
M

)
and we also consider

the partition ∆ = (∆i,j)i,j=1,2 where each block ∆i,j is
K×K. Consider the event A =

{
∥∆2,2∥2 <

√
ρk,ℓm̃ℓ(ρk,ℓ)

}
.

From the block matrix determinant formula, we have:

P̂ℓ

(
ρk,ℓ +

x√
M

)
1A = Φ det

(√
ρk,ℓm̃ℓ(ρk,ℓ)I+∆2,2

)
1A,

(131)

with

Φ = det

(
√
ρk,ℓmℓ(ρk,ℓ)D+∆1,1

− (I+∆2,1)
(√

ρk,ℓm̃ℓ(ρk,ℓ)I+∆2,2

)−1

(I+∆1,2)

)
1A.

(132)

Moreover,(
√
ρk,ℓm̃ℓ(ρk,ℓ)I+∆2,2

)−1

1A =(
I

√
ρk,ℓm̃ℓ(ρk,ℓ)

− ∆2,2

ρk,ℓm̃ℓ(ρk,ℓ)2

)
1A + oP

(
1√
M

)
,

(133)

which yields

Φ = det

(
√
ρk,ℓmℓ(ρk,ℓ)D− I

√
ρ
k,ℓ
m̃ℓ(ρk,ℓ))

+∆1,1

− ∆1,2 +∆2,1√
ρk,ℓm̃ℓ(ρk,ℓ)

+
∆2,2

ρk,ℓm̃ℓ(ρk,ℓ)2

)
1A + oP

(
1√
M

)
.

(134)

Since D = diag(γ1, . . . , γK) + o
(

1√
M

)
from Assumption 2,

and from Lemma 3, we have

det

(
√
ρk,ℓmℓ(ρk,ℓ)D− I

√
ρk,ℓm̃ℓ(ρk,ℓ)

)
= o

(
1√
M

)
.

(135)

Using the differential of the determinant, we further have

Φ = tr

[
com

(
√
ρk,ℓmℓ(ρk,ℓ)D− I

√
ρ
k,ℓ
m̃ℓ(ρk,ℓ)

)T

×

(
∆1,1 −

∆1,2 +∆2,1√
ρ
k,ℓ
m̃ℓ(ρk,ℓ)

+
∆2,2

ρk,ℓm̃ℓ(ρk,ℓ)2

)]
1A

+ oP

(
1√
M

)
, (136)

where com() denotes the comatrix operation. A direct com-
putation together with Assumption 2 provides

com

(
√
ρk,ℓmℓ(ρk,ℓ)D− I

√
ρk,ℓm̃ℓ(ρk,ℓ)

)
=∏

i ̸=k (γiρk,ℓmℓ(ρk,ℓ)m̃ℓ(ρk,ℓ)− 1)

(
√
ρk,ℓm̃ℓ(ρk,ℓ))K−1

eke
∗
k + o

(
1√
M

)
.

(137)

Consequently,

Φ = oP

(
1√
M

)
+

∏
i ̸=k (γiρk,ℓmℓ(ρk,ℓ)m̃ℓ(ρk,ℓ)− 1)

(
√
ρk,ℓm̃ℓ(ρk,ℓ))K−1

×
[
∆1,1 −

∆1,2 +∆2,1√
ρk,ℓm̃ℓ(ρk,ℓ)

+
∆2,2

ρk,ℓm̃ℓ(ρk,ℓ)2

]
k,k

1A.

(138)

In the same way,

det
(√
ρk,ℓm̃ℓ(ρk,ℓ)I+∆2,2

)
=(√

ρk,ℓm̃ℓ(ρk,ℓ)
)K

+OP

(
1√
M

)
,

(139)
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so that

P̂ℓ

(
ρk,ℓ +

x√
M

)
1A =[

√
ρk,ℓm̃ℓ(ρk,ℓ)∆1,1 +

∆2,2√
ρk,ℓm̃ℓ(ρk,ℓ)

− (∆1,2 +∆2,1)

]
k,k

×
∏
i ̸=k

(γiρk,ℓmℓ(ρk,ℓ)m̃ℓ(ρk,ℓ)− 1) + oP

(
1√
M

)
. (140)

Since 1A = 1 + oP(1), we also deduce that

P̂ℓ

(
ρk,ℓ +

x√
M

)
1Ac = oP

(
1√
M

)
, (141)

and using Assumption 2 leads to the result of Proposition 2.
2) Proof of Proposition 3: The proof makes use of well-

known techniques specific to the Gaussian distribution, namely
the Stein’s lemma and the Poincaré’s inequality which we
recall below and which have already been exploited in e.g.
[35], [15], [24]. Therefore, we only give the main steps of the
proof and skip some details of the computations.

a) Useful tools.: A function f : Cn → C is said to
be C1(Cn) if f(z) = f̃(Re(z), Im(z)) with f̃ ∈ C1(R2n).
Moreover, we also recall the definition of the standard complex
differential operators

∂f

∂zk
(z) =

1

2

(
∂f̃

∂xk
(x,y)− i

∂f̃

∂yk
(x,y)

)
(142)

∂f

∂zk
(z) =

1

2

(
∂f̃

∂xk
(x,y) + i

∂f̃

∂yk
(x,y)

)
(143)

with x = Re(z) and y = Im(z).

Lemma 4 (Stein’s lemma). Let w ∼ NCn(0, I) and f ∈
C1(Cn), assumed polynomially bounded together with its
partial derivatives. Then for all k = 1, . . . , n,

E[f(w)wk] = E

[
∂f

∂wk
(w)

]
, E[f(w)wk] = E

[
∂f

∂wk
(w)

]
.

Lemma 5 (Poincaré inequality). Let w ∼ NCn(0, I) and
f ∈ C1(Cn), assumed polynomially bounded together with
its partial derivatives. Then,

V[f(w)] ≤
n∑

k=1

(
E

∣∣∣∣ ∂f∂wk
(w)

∣∣∣∣2 + E

∣∣∣∣ ∂f∂wk
(w)

∣∣∣∣2
)
. (144)

For ease of reading, we introduce the following differentia-
tion operators with respect to the entries of the M×Nℓ matrix
Wℓ, which will be constantly used in the derivations below,

∂
(ℓ)
i,j =

∂

∂[Wℓ]i,j
, ∂

(ℓ)

i,j =
∂

∂[Wℓ]i,j
. (145)

We will also need the following auxiliary result (see [33])
related to the quantity χ defined in (100).

Lemma 6. For all p ∈ N and r ∈ N, E [χr] = 1 + O
(

1
Np

)
and for ℓ ∈ {0, . . . , L} and for any i ∈ {1, . . . ,M}, j ∈
{1, . . . , Nℓ},

E
[
∂
(ℓ)
i,j χ

r
]
= O

(
1

Np

)
and E

[
∂
(ℓ)

i,jχ
r
]
= O

(
1

Np

)
.

(146)

Lemma 6 shows in particular that the presence of the
regularization term χ can be removed from expectations, up
to an error term of arbitrary polynomial decay.

In the following, ∆ is a generic notation for a continuous
function such that |∆(u)| < P(u) for some polynomial P with
positive coefficients independent of M , and whose value may
change from one line to another.

b) Development of Ψ′: Write

Ψ′(u) = i

K∑
k=1

L∑
ℓ=0

E

[(
β1,k,ℓη1,k,ℓ + β2,k,ℓη2,k,ℓ

+Re

(
β3,k,ℓη3,k,ℓ

))
ξ(u)

]
. (147)

In the following, we only provide some details for the devel-
opment of E[η1,k,0ξ(u)], as the other terms can be obtained
similarly. Using the resolvent identity, we start by writing

E [η1,k,0ξ(u)] =

√
M

ρk,0
E

[(
u∗
kQ0(ρk,0)

W0W
∗
0

N0
ukχ

)◦

ξ(u)

]
.

(148)

Next, we apply Stein’s lemma, Poincaré’s inequality and
Lemma 6 to obtain

E

[
u∗
kQ0(ρk,0)

W0W
∗
0

N0
ukχξ(u)

]
=

iuσ2
∑

i,j E
[
[u∗

kQ0(ρk,0)]i[W
∗
ℓuk]jχ∂

(0)

i,j {η}ξ(u)
]

N0(1 + α0(ρk,0))

+
σ2E [u∗

kQ0(ρk,0)ukχξ(u)]

1 + α0(ρk,0)
+

∆(u)

M
, (149)

where αℓ(z) = E
[
σ2

Nℓ
trQℓ(z)χ

]
for all ℓ = 0, . . . , L. Using

the fact that α0(ρk,0) = σ2c0m0(ρk,0) +O( 1
M2 ), this gives

E [η1,k,0ξ(u)] =

iuσ2
√
M
∑

i,j E
[
[u∗

kQ0(ρk,0)]i[W
∗
ℓuk]jχ∂

(0)

i,j {η}ξ(u)
]

N0 (ρk,0(1 + σ2c0m0(ρk,0))− σ2)

+
∆(u)√
M

. (150)

Developing further the derivatives and using Lemma 6, we
have∑

i,j

E
[
[u∗

kQ0(ρk,0)]i[W
∗
ℓuk]jχ∂

(0)

i,j {η1,k′,ℓ}ξ(u)
]
=

−
√
ME

[
u∗
kQ0(ρk,0)Qℓ(ρk′,ℓ)uk′u∗

k′Qℓ(ρk′,ℓ)

× WℓW
∗
ℓ

Nℓ
ukχξ(u)

]
+

∆(u)√
M

=
√
Mθk,ℓδk−k′Ψ(u) +

∆(u)√
M

, (151)
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with

κk,ℓ =
σ2m0(ρk,0)m

′
0(ρk,0)

1+σ2c0m0(ρk,0)
if ℓ = 0,

σ2mℓ(ρk,ℓ)m0(ρk,0)(1+σ2c0m0(ρk,0))
σ2−ρk,ℓ(1+σ2c0m0(ρk,0))(1+σ2cℓmℓ(ρk,ℓ))

if ℓ ≥ 1

(152)

=

− σ2γk

(γk+σ2c0)2(γ2
k−σ2c0)

if ℓ = 0

− σ2γk

(γk+σ2c0)(γk+σ2cℓ)(γ2
k−σ2c0)

if ℓ ≥ 1
, (153)

where the second equality in the expression of θk,ℓ can be
obtained with Lemma 3. Moreover,∑

i,j

E
[
[u∗

kQ0(ρk,0)]i[W
∗
ℓuk]jχ∂

(0)

i,j {η2,k′,ℓ}ξ(u)
]

= −
√
M

N2
ℓ

E

[
u∗
kQ0(ρk,0)WℓQ̃ℓ(ρk′,ℓ)sk′,ℓ

× s∗k′,ℓQ̃ℓ(ρk′,ℓ)W
∗
ℓukχξ(u)

]
+

∆(u)√
M

=
∆(u)√
M

, (154)

and∑
i,j

E
[
[u∗

kQ0(ρk,0)]i[W
∗
ℓuk]jχ∂

(0)

i,j {η3,k′,ℓ}ξ(u)
]

= −
√
M

Nℓ
E

[
u∗
kQ0(ρk,0)Qℓ(ρk′,ℓ)Wℓsk′,ℓ

× u∗
k′Qℓ(ρk′,ℓ)

WℓW
∗
ℓ

Nℓ
ukχξ(u)

]
+

∆(u)√
M

=
∆(u)√
M

. (155)

Finally, using again Lemma 3, we obtain

E [η1,k,0ξ(u)]

=
iuσ2c0

∑L
ℓ=0 β1,k,ℓκk,ℓ

ρk,0(1 + σ2c0m0(ρk,0))− σ2
Ψ(u) +

∆(u)√
M

= −iu

(
β1,k,0σ

4c0
(γk + σ2c0)2(γ2k − σ2c0)

+

L∑
ℓ=1

β1,k,ℓσ
4c0

(γk + σ2c0)(γk + σ2cℓ)(γ2k − σ2c0)

)
Ψ(u) +

∆(u)√
M

.

(156)

Using similar computations for the remaining terms
(E [ηi,k,ℓξ(u)]) ℓ≥1

i=2,3
in Ψ′(u), we finally obtain the result of

Proposition 3.
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