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Abstract

This paper introduces theoretical conditions for the computation of a novel type of state-feedback controller that
makes use of Linear Parameter Varying approaches for synthesis. The novelty of this new State-Feedback controller
lies on the fact that the controller has a fixed structure with constants matrix gains. However, the controller gains are
affine on a parameter dependent basis function, which allows the controller to self-schedule according to real-time
changes of the varying parameters. This type of controller is conceived with a focus on implementation, as in contrast
with most other LPV approaches. The implementation of this Parameter-Dependent State-Feedback controller does
not require any online interpolation or matrix inverse operations, independently of the number of varying parameters.
The performance of the proposed approach is validated in a Scaled Autonomous Vehicle for steering control in a path
tracking application.
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1. Introduction

In this paper, we introduce a simple to implement
Linear Parameter Varying (LPV) controller with fixed
structure but depending on some time-varying parame-
ters. In the following subsection, we describe the most
well known LPV methods, e.g Polytopic and Grid based
approaches, to explore their trade-off, both from a ro-
bustness and stability guarantees and from their imple-
mentation complexity perspectives. Then, we define the
control problem for this new type of LPV controllers
followed by a description of the paper objectives and
contributions.

1.1. Literature review

The LPV approach (Shamma, 2012) is nowadays a
well-established approach in the literature. Part of the
success of the LPV framework comes from its ability to
capture the dynamics of complex non-linear system as a
time-varying linear system thanks to the use of schedul-
ing parameters. This enables the use of Linear Matrix
Inequalities (LMI) based LTI control techniques (Boyd
et al., 1994) as a basis for the control and analysis so-
lution for non-linear systems, while providing perfor-
mance and robustness guarantees. From an implementa-
tion point of view, the practical implementation of LPV

controllers depends on the approach used for synthesis,
with the most popular synthesis approaches being the
Polytopic and Grid based approaches. A brief introduc-
tion of each approach is given in the following.

The Polytopic approach assumes a finite family of
LTI systems whose convex combination covers the be-
haviour of the LPV system (López-Estrada et al., 2019).
In this way, defining the synthesis conditions on the ver-
tices of this convex bounding polytope guarantees sta-
bility and performance for all points inside the polytopic
region of the varying parameters. These strong guaran-
tees are achieved by making use of a common Lyapunov
function for all vertices with shared constant positive
definite Lyapunov matrix (Apkarian et al., 1995). Al-
though theoretically strong, this approach in practice is
often conservative as usually the parameter space is over
bounded by the convex polytopic region, which may
lead to vertices with parameter combination which are
not physically feasible. This issue has been tackled in a
number of works on proposed algorithms for polytope
size reduction, e.g. (Kwiatkowski and Werner, 2008;
Hoffmann et al., 2012; Rizvi et al., 2016; Sanjuan et al.,
2022), or on the use of ad-hoc methods for polytope re-
duction for some specific systems as in (Baldelli et al.,
2008; Kapsalis et al., 2022).

The other distinctive source of conservatism in the
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Polytopic approach is the use of a constant positive-
definite matrix in the common Lyapunov function of
the LPV system. In the case of Discrete-Time LPV
(DT LPV) systems, this issue has been solved with the
introduction of the Poly-Quadratic Lyapunov Function
(Daafouz and Bernussou, 2001a,b). The synthesis con-
ditions introduced in these works make use of a type
of Parameter-Dependent Lyapunov Functions (PDLF)
such that a unique positive-definite Lyapunov matrix is
defined at each polytope vertex. In addition, these con-
ditions make use of the additional slack variable G in-
troduced in (de Oliveira et al., 1999). This new slack
variable allows to decouple the Lyapunov matrix from
the standard change of variable associated with the con-
troller gain, which alleviate the Lyapunov matrix from
extra constraints. The use of this new slack variable
is referred to as G-shaping paradigm (Oliveira et al.,
2002). Overall, this G-shaping paradigm in addition
to Poly-Quadratic Lyapunov Function offers many ad-
vantages in terms of reduction of conservatism when
compared with the standard Polytopic approach. De-
spite these improvements, there is still another impor-
tant source of conservatism that both Poly-Quadratic
and traditional Polytopic methods share. The use of a
constant Lyapunov matrix, or a polytopic set of constant
Lyapunov matrices in the Poly-Quadratic case, repre-
sents that the varying parameter can change in value
arbitrarily fast, something which is extremely conser-
vative and in fact is not suitable for some systems (Wu
et al., 1996).

The Grid based approach is the most similar to the
traditional ”gain-scheduling” approach for non-linear
systems, since the LPV model is obtained as a set of LTI
systems defined alongside the trajectory of the schedul-
ing functions evaluated at fixed values of the varying
parameters (Wu et al., 1996). During the synthesis step,
it is commonly considered affine Parameter Dependent
Lyaounov Matrices (PDLM), with the so-called basis
functions that form the affine PDLM being an important
decision to be made by the control designer (Apkarian
and Adams, 1998). An important consequence of using
such Lyapunov functions with parameter dependency is
that Grid based methods can account for limits on the
rate of variation for the varying parameters.

By using a set of LTI models over frozen points of the
scheduling variables space, the induced issue of over
bounding by the Polytopic approach is avoided. To-
gether with the use of PDLF and limits on the rate
of variation for the varying parameters means that
the Grid-based approach allows to alleviate much of
the conservatism that is associated with the Polytopic
method. However, this is achieved with the trade-off

that there is no strong guarantees outside of the frozen
values on the scheduling space that were considered for
synthesis. For this reason, it is recommended very dense
grids of frozen values on the parameter space. However,
this is usually difficult to achieve due to computational
limitations. Moreover, the need for a dense grid for the
synthesis of robust Grid based LPV controllers requires
in practice a large family of pointwise LTI controllers
to be implemented, a larger family of LTI controllers
than an equivalent Polytopic design would require. A
common approach to alleviate this implementation is-
sue is to carry out the synthesis of Grid based LPV con-
trollers on a first grid, and check if the performance of
the closed-loop still holds on a much tighter grid in a
second step (Becker, 1996). Alternatively, recent sta-
bility analysis results introduced in (Cox et al., 2018)
could be used as a substitute for this second step.

All these families of modelling and synthesis ap-
proaches for LPV systems, with their advantages and
disadvantages, have been successfully applied in many
works including experimental validation in some of
them (see (Mohammadpour and Scherer, 2012; Hoff-
mann and Werner, 2015; Liu et al., 2018; Li et al., 2021;
Hang and Chen, 2021; Corno et al., 2021; Atoui et al.,
2022) and references therein). Notably, in (Atoui et al.,
2022) LPV approaches are compared in an experimental
setup for the lateral control of an autonomous vehicle.
The authors of this work concluded that the Polytopic
approach can be too conservative for some ranges of the
parameter space, meanwhile the Grid based approach
showed quite robust performances.

1.2. Motivation
Although successfully validated, and clearly better

than pure robust LTI approaches (Kajiwara et al., 1999),
the LPV approach can suffer from practical difficulties
during implementation, particuarly when the complex-
ity of the controlled system increases. The Polytopic
method requires 2n controllers to be computed and im-
plemented, n being the number of vertices for the con-
vex polytope. Similarly, in the Grid based approach
the number of point-wise controllers increases exponen-
tially with the number of frozen values of the varying
parameters (remember that it is recommended a quite
dense grid in order to obtain robustness guarantees). It
can be easily seen how for the Polytopic and Grid-based
approaches the amount of point-wise controllers to be
implemented and stored in memory quickly increases
in number as the complexity of the system increases.

These issues are in part the main motivation of works
in the Polytopic approach for vertex reduction, which
have been commented before. Also it has led to some
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works that seek explicitly to reduce and address the
complexity of implementation of the obtained controller
after synthesis (Hoffmann et al., 2014; Bianchi and
Sánchez-Peña, 2022; Sato, 2022). Clearly the practi-
cal implementation of LPV controllers is still a subject
which deserves great attention in order to enable the
widespread use of LPV techniques.

On the other hand, comparing approaches for LPV
synthesis conditions, the least conservative synthesis
conditions for LPV systems are those introduced for
DT LPV systems with the G-Shaping paradigm, spe-
cially those introduced in (Pandey and de Oliveira,
2019). However, in the LPV literature the G-Shaping
is used exclusively for Polytopic LPV systems, which
induce conservatism due to over bounding of the pa-
rameter space and the assumption on an infinitely fast
rate of varying parameter change. To the best of the
author knowledge no work has extrapolated the use of
G-Shaping like conditions for DT LPV Grid based ap-
proaches.

For these reasons, the main motivation of this work is
to propose a new LPV approach that can be easily im-
plementable, and whose synthesis makes use of the less
conservative G-Shaping conditions in a DT Grid based
approach. The control problem formulation for this new
type of controllers is given in the following subsection.

1.3. Notation
The vector and matrix notation is standard. ∥·∥2 rep-

resents the L2-norm. xT represents the transpose of x.
X−1 represents the inverse of X, matrix X > 0 represents
that X is symmetric positive-definite, X = ker(X) repre-
sents that X is a base of the null space of X, the notation
He(X)= X + XT and ⋆ in an LMI represents a symmet-
ric element transposed. In LMI given during theorems
or propositions, bold letters X are used to identify the
matrix X as an optimization variables in the LMI prob-
lem.

The following notation is used in the description of
DT-LPV systems. For simplification, the time depen-
dency on the varying parameter vector ρ(k) will be
dropped, e.g. ρ := ρ(k), unless it is required for clar-
ification. Subscript i indicates that it is being referred to
an individual element ρi of a varying parameter vector
ρ. Superscript + indicates that a time dependent vec-
tor x(k) or parameter dependent matrix X(ρ(k)) is being
evaluated at time instance k + 1, e.g. x+ := x(k + 1)
and X+ := X(ρ(k + 1)). Subscript p will represent that a
parameter dependent vector x(ρ) or matrix X(ρ) is eval-
uated at a frozen grid-point gp, e.g. xp := x(gp). When
considering a polytope around a frozen grid-point gp,
the superscript v indicates that a parameter vector x(ρ)

or a parameter dependent matrix X(ρ) is evaluated at
a vertex gv

p of such polytope, e.g. xv
p := x(gv

p) and
Xv

p := X(gv
p).

1.4. Control Problem Definition
This paper is concerned with DT-LPV systems of the

form:

Ξ(ρ) :=
x+ = A(ρ)x + Bu(ρ)u + Bw(ρ)w

z = Cz(ρ)x + Du(ρ)u + Dw(ρ)w
(1)

where x ∈ Rnx is the state vector, u ∈ Rnu are the control
inputs, w ∈ Rnw are the exogenous inputs with bounded
energy such that w ∈ L2 and z ∈ Rnz are the exogenous
outputs.
ρ := (ρ1, . . . , ρm)T is a vector with m varying param-

eters, ρi ∈ R. The range of values of each individual
varying parameter ρi and its rate of variation νi are sat-
isfying the following assumptions:

• Each varying parameter ρi is measured online, e.g.
at a time instant k the value of ρ(k) is known, and
bounded by extremal values ρ

i
and ρi such that

ρ
i
≤ ρi(k) ≤ ρi. These bounds on ρ then form

the varying parameter admissible space Ω ∈ Rm,
such that ∀k then ρ(k) ∈ Ω.

• The rate of variation νi of each varying parame-
ter ρi between two consecutive sampling times k
and k + 1 is not necessarily available online, how-
ever, the maximum variation rates are known and
bounded by νi and νi such that ∀k then νi ≤ νi(k) ≤
νi.

The parameter dependency for each of the state space
matrix of Ξ(ρ) is assumed to be given by an affine re-
lation with a scheduling signal θ(ρ) as (Apkarian and
Adams, 1998; Cox et al., 2018):

A(ρ) = A0 +

N∑
n=1

θn(ρ)An, (2)

where
θ(ρ) := (1, θ1(ρ), . . . , θN(ρ)), (3)

forms the so-called basis functions, and θn(ρ) ∈ R is a
linear or nonlinear function.

The control problem introduced in this paper is given
in the framework ofH∞/LPV control making use of the
Induced L2-norm, which is defined as follows:

Definition 1 (Induced L2-norm (Boyd et al., 1994)).
The induced L2-norm of a system is the quantity

sup
∥w∥2,0

∥z∥2
∥w∥2

, (4)

3



where the L2-norm of u is ∥u∥22=
∫ ∞

0 uT udt.

Within the H∞/LPV framework, our objective is
to find a Parameter-Dependent State-Feedback (PDSF)
controller with a fixed structure, which is defined as fol-
lows:

Definition 2 (Parameter-Dependent State-Feedback
Controller). The structure of the PDSF Controller is de-
fined as follows:

K(ρ) = K0 +

N∑
n=1

θn(ρ)Kn , (5)

where the controller gains K0, . . . ,KN are constant ma-
trices, θ(ρ) is the scheduling function defined in (3).

The PDSF synthesis problem is then posed as the
minimization of the induced L2-norm of a closed-loop
LPV system. Such control problem is given in the fol-
lowing definition.

Definition 3 (PDSF Induced L2-norm Control Prob-
lem). Given an LPV system Ξ(ρ) and considering an
State-Feedback control law u = K(ρ)x, the resulting
LPV closed-loop system is:

ΞCL(ρ) :=
x+ = (A(ρ) + Bu(ρ)K(ρ))x + Bw(ρ)w

z = (Cz(ρ) + Du(ρ)K(ρ))x + Dw(ρ)w
(6)

Considering the induced L2-norm of a system, given in
Definition 1, the control problem is then to find a PDSF
controller K(ρ) according to Definition 2 that renders
the LPV closed-loop system ΞCL robustly stable and
minimizes its L2-norm as:

min
K(ρ),γ∞

γ∞ s.t.
∥z∥2
∥w∥2

≤ γ∞ (7)

1.5. Paper Objectives and Contributions
Keeping in mind the implementability issues of LPV

controllers, this paper introduces a new approach to de-
sign Linear Parameter Varying (LPV) State-Feedback
(SF) controllers. The novelty of this new approach lies
on the fact that the controller structure results directly
from a chosen parametric dependency, similar as in the
case of the basis function for PDLM (Wu et al., 1996;
Apkarian and Adams, 1998). The fact that the controller
gain matrices are constant for the whole LPV parameter
space, makes this type of LPV controllers an extension
of the robust control approach (de Oliveira et al., 1999;
Rodrigues et al., 2018). Nonetheless, despite having
fixed controller gains, the overall controller K(ρ) is pa-
rameter dependent and can adapt online to the measured

varying parameter values, which drastically reduces the
conservatism associated with this solution.

To find an LPV controller whose structure is inde-
pendent of the number parameter space grid points, the
solution of the control synthesis problem is performed
by solving two sequential LMI optimization problems.
Similar as proposed for LFT LPV synthesis in (Apkar-
ian and Gahinet, 1995), a first LMI problem is proposed
as a feasibility LMI problem for the existence of general
H∞ controllers for a given control design, considering
state-feedback controllers in this work. A second LMI
problem then enables to reconstruct the controller gains.
The key of this second step is that the controller gains
K0, . . . ,Kn from K(ρ) in Eq. (5) are the only decision
variables.

As a result, the controller dimensions (in terms of
the number of controller gains to be found and imple-
mented) only depends on the size N of the scheduling
basis function θ(ρ) and not on the number of frozen grid
points values for the parameter space. This translates
to an LPV state-feedback controller design which is
straightforward to implement thanks to a reduced num-
ber of controller gains and as it does not requires any
online interpolation.

Finally, in order to test the performance of the PDSF
control method, it has been implemented into an Scaled
Autonomous Vehicle (SAV) platform for the lateral con-
trol problem. Note that LPV approaches have been suc-
cessfully applied for vehicle lateral dynamics control
applications in the literature: in (Kapsalis et al., 2022)
the authors implemented a Polytopic LPV controller in
a test autonomous vehicle for steering control, the same
vehicle platform was used in (Atoui et al., 2022) for a
comparison of the LPV Polytopic, Griddding and Lin-
ear Fraction Transformation approaches, in (Li et al.,
2022) the issue of actuator saturation in autonomous
steering control is dealt using parameter dependent Lya-
punov approaches, and, finally, (Alcalá et al., 2020) uses
optimal control approaches in the LPV-MPC frame-
work for the control problem in autonomous driving. In
our application, the objective is to achieve robust path-
tracking of a desired trajectory. In order to achieve this
goal, the PDSF controller will act on the front servo
motor of the SAV to autonomously steer the vehicle
through a given track.

The contributions of this work can then be summa-
rized as follows:

• Extension of the DT G-shaping paradigm condi-
tions from the Polytopic approach (Oliveira et al.,
2002) to a DT Grid based approach.

• Introduction of the PDSF controller synthesis con-
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ditions for DT LPV systems.

• The PDSF synthesis leads to a simple to implement
controller thanks to a reduced number of controller
gains and does not requires online interpolation.

• Experimental validation of the PDSF controller
for a path tracking application on an Scaled Au-
tonomous Vehicle.

1.6. Paper Structure

The structure of the rest of the paper is the follow-
ing. In Section 2, some preliminaries on the analysis of
DT-LPV systems through LMI is given. In Section 3,
new LMI conditions are introduced and used to prove
the existence of the controller for a given system and
numerical proposition for the computation of the PDSF
controller gains. Section 4 describes the Scaled Au-
tonomous Vehicle platform utilized for validation of the
PDSF controller controller. Section 5 describes the syn-
thesis approach for the path tracking application on the
SAV while Section 6 presents the results. Finally, in
Section 7, conclusions are drawn.

2. Preliminaries on the Analysis of Grid Based DT-
LPV Systems

In this section, we introduce the framework employed
to analyze through LMI the Grid based DT-LPV sys-
tems with the aid of Parameter Dependent Lyapunov
Functions (PDLF). This framework and LPV related
notation introduced in this section is employed for the
derivation of results presented in following sections.

To discuss the stability concepts, it is considered here
the autonomous DT-LPV system (obtained from (1))
and given by:

x+ = A(ρ)x, (8)

The parameter dependent state matrix A(ρ) is repre-
sented by an affine relation on the scheduling function
θ(ρ) (Apkarian and Adams, 1998; Cox et al., 2018):

A(ρ) = A0 +

N∑
n=1

θn(ρ)An, (9)

where θ(ρ) := (1, θ1(ρ), . . . , θN(ρ)) forms the so-called
basis functions, θn(ρ) ∈ R is a linear or nonlinear func-
tion.

In this work we consider quadratic PDLF of the type:

V(x, ρ) = xT X(ρ)x, (10)

where the Parameter-Dependent Lyapunov Matrix
(PDLM) has the following structure:

X(ρ) = X0 +

N∑
n=1

θn(ρ)Xn (11)

Considering a PDLF V(x, ρ), it follows that the stability
of the DT-LPV system (8) can be proved if the following
condition is satisfied (Daafouz and Bernussou, 2001a):

V(x+, ρ+) − V(x, ρ) ≤ 0, (12)

Note that the structure of the PDLM copies that of the
system matrix (2). Although this is not strictly required,
this simple strategy has been proved effective (Wu et al.,
1996; Apkarian and Adams, 1998).

Using a quadratic PDLF of the form (10) in condition
(12) leads to the inequality

AT (ρ)X(ρ+)A(ρ) − X(ρ) ≤ 0. (13)

However, there exist two important issues with this con-
dition. Firstly, condition (13) is an infinitely constrained
LMI due to the infinite possible values ρ can take within
its bound. Moreover, it involves both ρ(k) and ρ(k + 1)
and only ρ(k) is known, with ρ(k + 1) generally un-
known.

A common solution to the first issue is to consider
a dense grid G ∈ Ω at fixed ρ values and evaluate the
stability condition at each grid-point gp ∈ G (Wu et al.,
1996). Despite considering a frozen grid of values for
the varying vector ρ, it still remains an issue the fact that
ρ+ appearing in the stability condition (13) is unknown.
However, knowing the information on the bounded vari-
ation rates νi, the parameter values at the new sample ρ+i
is limited within the range

ρ+i ∈
[
ρi − νi, ρi + νi

]
(14)

This allows us to build, for each grid point gp ∈ G, a
polytope which bounds the parameter variations at the
next sample. This is specified for each varying parame-
ter ρi (gp,i being the frozen value of ρi at the grid point
gp), with the min/max values :[

gp,i − νi, gp,i + νi

]
, ∀i = 1, . . . ,m. (15)

Overall this defines the bounding polytope Vp ∈ Ω at
each grid point gp ∈ G, where all the 2m min/max com-
binations form the vertices of Vp. The vertices of this
polytope Vp are denoted gv

p ∈ Vp, with v = 1, . . . , 2m,
in the remaining parts of the paper.
To better visualize this approach Fig. 1 is introduced. In
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this figure it is represented a 2D gridded varying param-
eter space G ∈ R2, and we will focus on a single grid
point gp ∈ G. Knowing the parameter variation limits
on ρ1 and ρ2, namely (ν1, ν1) and (ν2, ν2) respectively,
then it is possible to build a local bounding polytyope
Vp of 4 vertices such that g+p ∈ Vp. Notice that the
order of the vertices gv

p, v = 1, . . . , 4, of Vp is not rep-
resentative of any strict ordering requirement.

Figure 1: Vertices of the polytopeVp bounding g+p .

Applying this parameter grid and local variation
bounds framework, it is then possible to recast condition
(13) as a finite number of LMI independent of X(ρ+),
but which bounds it locally at each gp ∈ G. Each LMI
of the finite set of conditions is given ∀(gp, gv

p) as:

AT
p Xv

pAp − Xp ≤ 0, ∀v = 1, . . . , 2m. (16)

Remark 1. As X(ρ+) enters linearly on LMI (13), there
is only need to check the vertices of Vp ∈ Ω to bound
X(ρ+) around a fixed grid gp (Apkarian and Adams,
1998). Thus, it suffice to replace X(ρ+) in LMI (16) by
Xv

p for all (gp, gv
p) pairs.

3. Synthesis Conditions for Parameter-Dependent
State-Feedback Controllers with Fixed Structure

In this section the steps and conditions for the synthe-
sis of PDSF controllers are given. In order to achieve
the synthesis for this type of controllers, it is required a
two-steps sequential LMI optimization problem proce-
dure. The inspiration for this approach comes from the
work of Apkarian and Gahinet (1995), in which a simi-
lar two-steps process was proposed for the computation
of LFT LPVH∞ controllers.

In a first step, we make use of the Projection Lemma
over the Extended DT Bounded Real Lemma (BRL),
see Lemma 2 in Appendix A.2, in order to obtain an

LMI independent of the controller K(ρ). At this first
step, a feasible PDLM X(ρ) and slack variable G(ρ) are
found as the decision variables on the LMI optimization
Problem. In Sect. 3.1 and Sect. 3.2, general conditions
and numerical propositions are given, respectively, to
solve this first step LMI problem.

Using the numerical values for the PDLM X(ρ) and
G(ρ), then the Extended DT BRL gives an LMI opti-
mization problem where the only decision variable are
the gains of K(ρ), which has the structure considered in
Eq. (5). In Sect. 3.3, we give numerical conditions to
solve this problem and compute the gains for K(ρ).

3.1. H∞ State-Feedback Existence Conditions for DT-
LPV Systems

It is considered here the DT-LPV system given previ-
ously in (1). The objective is to prove the existence of a
SF LPV controller K(ρ), such that the closed loop form
of Ξ(ρ) with feedback law u = K(ρ)x is exponentially
stable and with induced L2-norm bounded by a scalar
γ∞ such that

sup
w(k),0

∥z(k)∥2
∥w(k)∥2

≤ γ∞ (17)

The existence of such a controller, independent of its de-
pendency on ρ, can be proved if the following theorem
holds true.

Theorem 1. Consider a DT-LPV system Ξ(ρ) and
scalar γ∞ > 0. If, ∀ρ ∈ Ω, there exist a symmet-
ric positive-definite PDLM X(ρ) ∈ Rnx×nx , with fixed
structure as in Eq. (11), and a general slack matrix
G(ρ) ∈ Rnx×nx such that the following condition holds:

NT
M(ρ)


GT (ρ) +G(ρ) − X(ρ+) ⋆ ⋆ ⋆

A(ρ)G(ρ) X(ρ) ⋆ ⋆
Cz(ρ)G(ρ) 0 γ∞I ⋆

0 BT
w(ρ) DT

w(ρ) γ∞I

NM(ρ) > 0

(18)
with

X(ρ) = X0 +

N∑
n=1

θ(ρ)Xn, (19)

X(ρ+) = X0 +

N∑
n=1

θ(ρ+)Xn, (20)

NM(ρ) = ker(
[

0 BT
u (ρ) DT

u (ρ) 0
]
), (21)

then, there exists a SF control gain K(ρ) such that the
closed-loop form of Ξ(ρ) is exponentially stable and γ∞
is an upper bound on its induced L2-norm, with control
law given by u = K(ρ)x.
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Proof : Consider a given positive scalar γ∞ and given
SF control law u = K(ρ)x, the closed-loop dynamics of
Ξ(ρ) are as follows:

ΞCL(ρ) =

x+ = (A(ρ) + Bu(ρ)K(ρ))x + Bw(ρ)w
z = (Cz(ρ) + Du(ρ)K(ρ))x + Dw(ρ)w

=

x+ = A(ρ)x + B(ρ)w
z = C(ρ)x +D(ρ)w

(22)
where the following relations are used:

A(ρ) = A(ρ) + Bu(ρ)K(ρ) B(ρ) = Bw(ρ)
C(ρ) = Cz(ρ) + Du(ρ)K(ρ) D(ρ) = Dw(ρ) (23)

ΞCL(ρ) is exponentially stable with induced L2-norm
less than γ∞, if, according to Lemma 2 from Appendix
A.2 the following sufficient condition is true:

Ψ(ρ, ρ+)+He




0
Bu(ρ)
Du(ρ)

0

 K(ρ)
[

G(ρ) 0 0 0
] > 0

(24)
where

Ψ(ρ, ρ+) =
GT (ρ) +G(ρ) − X(ρ+) ⋆ ⋆ ⋆

A(ρ)G(ρ) X(ρ) ⋆ ⋆
Cz(ρ)G(ρ) 0 γ∞I ⋆

0 BT
w(ρ) DT

w(ρ) γ∞I


(25)

Note that this condition is the same condition as
Eq. (A.5), from Lemma 2, when A, B, C and D are
given as in Eq. (22). Applying the Projection Lemma
over condition (24) to eliminate the matrix block K(ρ),
Eq. (18) is then recovered as an equivalent condition to
Eq. (24). This proves that Eq. (18) is a sufficient con-
dition to demonstrate the existence of a State-Feedback
control gain K(ρ) such that ΞCL(ρ) is exponentially sta-
ble with induced L2-norm less than γ∞. ■

Notice that when applying the projection lemma on
(24), it imposes condition (18) and additionally

NT
N (ρ)Ψ(ρ)NN(ρ) > 0, (26)

with

NN(ρ) = ker(
[

G(ρ) 0 0 0
]
). (27)

Now equation (27) can be rewritten as (Gahinet and Ap-

karian, 1994)

NN(ρ) =


G(ρ)−1 ⋆ ⋆ ⋆

0 I ⋆ ⋆
0 0 I ⋆
0 0 0 I

 ker(
[

I 0 0 0
]
)

:=Ĝ(ρ)−1N̂N(ρ)
(28)

Replacing (28) in condition (26) leads to:

N̂T
N (ρ)




G(ρ)−T ⋆ ⋆ ⋆
0 I ⋆ ⋆
0 0 I ⋆
0 0 0 I

Ψ(ρ)

×


G(ρ)−1 ⋆ ⋆ ⋆

0 I ⋆ ⋆
0 0 I ⋆
0 0 0 I


 N̂N(ρ) > 0 (29)

Using Eq. (25), this condition leads to the already
known constraint X(ρ) > 0. As a result, condition (26)
can then be discarded to prove the equivalency between
conditions in Eq. (18) and Eq. (24) due to the Projection
Lemma, for the case of the SF control problem. This
fact is similar to the one seen in Corollary 1 of (Lu and
Wu, 2004), when applying the Projection Lemma over
the BRL for the SF case, only the condition involving
the null space of [BT

u ,D
T
u ] is considered.

3.2. Reduction to a Finite-Dimensional LMI Problem

Theorem 1 provides general conditions to prove the
existence of some controller K(ρ) for the control of the
DT LPV system Ξ(ρ). However, it is numerically very
hard to implement, since it is infinitely constrained as
it must hold true ∀ρ ∈ Ω. Moreover, Eq. (18) requires
the knowledge of ρ+, which again, can take on infinite
possible values and imposes an infinite number of con-
straints. Nonetheless, Theorem 1 can be recasted to a
finite number of LMI using the parameter grid and local
variation bounds approach explored in Sect. 2.

Note that it is also possible to recast the conditions
from Theorem 1 into a numerical solvable LMI prob-
lem by using the well known Polyquadratic Polytopic
approach (Daafouz and Bernussou, 2001a) for discrete-
time systems. However, this approach would imply
that the input matrices Bu,Du of the DT-LPV system
in Eq. (1) should be constant or pre-filtered to comply
with the parameter space convexity requirement of the
Polytopic approach (Apkarian et al., 1995). Moreover,
a Polytopic solution is known to be more conservative
due the over-bounding issues that come from requiring
a convex hull that encloses the parameter space and the
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assumption of an infinite rate of variation of the varying
parameters, as detailed in Sect. 1.1 and Sect. 1.2 or as
illustrated in (Li et al., 2021; Kapsalis et al., 2022). For
these reasons and in the spirit of reducing conservatism,
it has been decided to use the Gridding approach in this
paper.

The following proposition gives a numerically
tractable implementation of Theorem 1 that can be effi-
ciently solved with available SDP solvers.

Proposition 1. Consider a DT-LPV system Ξ(ρ), with
parameter spaceΩ ∈ Rm gridded by a grid spaceG ∈ Ω
and assuming bounded parameter rate of variation ν ∈
Rm such that ∀gp ∈ G there exists a bounding polytope
Vp for g+p with 2m vertices gv

p ∈ Vp, and scalar γ∞ >
0. If there exists a symmetric positive-definite PDLM
X(ρ) ∈ Rnx×nx , with fixed structure as in Eq. (11), and a
set of matrices Gp ∈ Rnx×nx such that ∀(gp, gv

p) pairs the
following condition holds

NT
M(θp)


Gp

T +Gp − X(θv
p) ⋆

A(θp)G(θp) X(θp)
Cz(θp)G(θp) 0

0 BT
w(θp)

⋆ ⋆
⋆ ⋆
γ∞I ⋆

DT
w(θp) γ∞I

NM(θp) > 0 (30)

with

X(θp) = X0 +

N∑
n=1

θpXn, (31)

X(θv
p) = X0 +

N∑
n=1

θv
pXn, (32)

NM(θp) = ker(
[

0 BT
u (θp) DT

u (θp) 0
]
), (33)

then, there exists a SF control gain K(ρ) such that the
closed-loop form of Ξ(ρ) is exponentially stable and γ∞
is an upper bound on its induced L2-norm.

Proof: Proposition 1 is a direct application of The-
orem 1 using the parameter grid and local variation
bounds approach detailed in Sect. 2. The varying pa-
rameter vector ρ is gridded at fixed points gp along-
side the varying parameter space Ω. At each fix grid
point gp the LPV system Ξ(ρ), with affine dependency
on some scheduling signal θ(ρ), is then frozen as an LTI
representation Ξ(θp). Meanwhile, using the maximum
rates of parameter variation ν, ρ+ is bounded at each
fixed grid point gp by a polytopeVp, each vertex of this
polytope around gp defined as gv

p. This concludes the
proof. ■

Remark 2. According to Definition 3, the control prob-
lem objective is the minimization of the induced L2-
norm upper bound γ∞ of the closed-loop form of Ξ(ρ).
However, Theorem 1 and Proposition 1 are given with
an arbitrary upper bound γ∞ for the purpose of gen-
eralization. Nonetheless, once Proposition 1 has been
implemented, the LMI optimization problem can be
solved as the minimization of the induced L2-norm up-
per bound γ∗∞ as follows:

γ∗∞ = min
X0,...,XN,Gp,γ∞

γ∞ s.t. (30) ∀(gp, gv
p) (34)

Due to numerical issues, once an optimal upper bound
γ∗∞ is found according to Eq. (34), it is convenient to re-
compute the values of X0, . . . , XN ,Gp employing Propo-
sition 1 with fixed γ∞ = γ∗∞(1+ h), where h is a percent-
age (Poussot-Vassal, 2008).

Remark 3. It is hard to determine exactly how dense
needs to be the grid space G ∈ Ω. An ad-hoc solution
is to solve the design LMI problem from Proposition 1,
then check if stability and performances holds in a much
denser grid (Becker, 1996).

Remark 4. Note that in Theorem 1 the slack matrix
G(ρ) is assumed to be parameter dependent but its
structure is not given. One option is to assume an affine
dependency on the scheduling function

G(ρ) = G0 +

N∑
n=1

θn(ρ)Gn, (35)

as the PDLM X(ρ) in Eq. (11). However, given that G(ρ)
does not play an important role on the proof of system
stability as X(ρ) does, forcing a parametric dependency
could lead to a conservative solution. To avoid this con-
servatism, the slack matrix G(ρ) in Proposition 1 is ex-
pressed a set of matrices. This solution assumes a pa-
rameter dependency such that

G(ρ) =
P∑

p=1

ζp(ρ)Gp (36)

with

ζp(ρ) =

1, if ρ = gp

0, otherwise
(37)

where P is the total number of grid-points in G. This
parameter dependency means that for each grid point
gp there exists a unique constant slack matrix Gp.
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3.3. Computation of the PDSF Controller K(ρ)

If a valid solution to the LMI problem from Proposi-
tion 1 exists, then we obtain numerical candidate values
for the PDLM X(ρ) and the slack variable G(ρ). Note
that with an existing candidate solution for X(ρ) and
G(ρ), applying the Extended DT BRL from Lemma 2
in Appendix A.2 over ΞCL(ρ) in (22), the BRL now re-
sults in an LMI with K(ρ) as the only decision variable.

Let us assume a PDSF controller K(ρ), according to
Definition 2, with affine dependency on the scheduling
functions θn and such that

K(ρ) = K0 +

N∑
n=1

θn(ρ)Kn (38)

The following proposition provides an LMI optimiza-
tion problem that allows to compute the constant gains
K0, . . . ,KN for the PDSF controller K(ρ).

Proposition 2. Consider a DT-LPV system Ξ(ρ), with
parameter spaceΩ ∈ Rm gridded by a grid spaceG ∈ Ω
and assuming bounded parameter rate of variation ν ∈
Rm such that ∀gp ∈ G there exists a bounding polytope
Vp for g+p with 2m vertices gv

p ∈ Vp, and scalar γ∞.
Moreover, consider a given symmetric positive-definite
PDLM X(ρ) ∈ Rnx×nx , with fixed structure as in Eq. (11),
and a set of matrices Gp ∈ Rnx×nx , both computed as
the solutions to Proposition 1. If there exists a PDSF
controller K(ρ) ∈ Rnu×nx given by Eq. (38) such that
∀(gp, gv

p) pairs the following condition holds

Ψ(θp, θ
v
p) + He




0
Bu(θp)
Du(θp)

0

 K(θp)
[

G(θp) 0 0 0
] > 0

(39)
where

K(θp) = K0 +

N∑
n=1

θpKn, (40)

Ψ(θp, θ
v
p) =

GT (θp) +G(θp) − X(θv
p) ⋆ ⋆ ⋆

A(θp)G(θp) X(θp) ⋆ ⋆
Cz(θp)G(θp) 0 γ∞I ⋆

0 BT
w(θp) DT

w(θp) γ∞I


(41)

then the closed-loop form of Ξ(ρ) is exponentially stable
and γ∞ is an upper bound on its induced L2-norm, with
control law given by u = K(ρ)x.

Proof: Proposition 2 is a direct application of
Lemma 2, with gridding relaxations as seen in Sect. 2
and with the SF control gains of K(ρ) as the only un-
known variables on the LMI problem.

Consider the closed-loop dynamics ΞCL(ρ) as in (22).
Applying the Extended DT BRL over ΞCL(ρ) condition
(24) is recovered. With a given symmetric positive-
definite matrix X(ρ) and given slack variable G(ρ), as-
sume that there exists a SF control gain K(ρ) such that
(24) holds true according to Lemma 2. Applying the
parameter grid and local variation bounds approach for
relaxations on ρ and ρ+ in (24), results ∀(gp, gv

p) pairs in
condition (39). This concludes the proof. ■

Remark 5. It should be noted that there is no strict re-
quirement for X(ρ) and K(ρ) to share the same param-
eter dependent structure, although this represents the
most straightforward solution. One possible structure
for the SF controller could simply be K = K0. This rep-
resents computing a constant robust SF controller gain
K0 for the whole parameter space Ω which is obviously
very conservative. Nonetheless, this highlights that the
PDSF controller (38) is in fact a parameter dependent
robust controller as the controller gains K0, . . . ,KN are
fixed ∀ρ ∈ Ω. For this reason, the choice of the paramet-
ric dependent basis function θ(ρ) in Eq. (38) is a very
important degree of freedom in the synthesis process to
achieve non conservative solutions.

4. Description and Modelling of the Scaled Au-
tonomous Vehicle Test Platform

4.1. Platform Architecture

The Scaled Autonomous Vehicle (SAV) Test Plat-
form at GIPSA-Lab is a 1:20 scaled vehicle running in a
Motion Capture room, see Fig. 2, designed to test con-
trol and planning algorithms for autonomous vehicles.
The main components of the platform are the Motion
Capture System, a remote desktop PC and the SAV RC
Car. The Motion Capture system is an infrared Vicon
Tracker system, capturing at a 100Hz frequency the po-
sition and orientation of the SAV on the track. The SAV
is a modified RC Car, equipped with two brushless DC
motors for longitudinal traction and a Servo Motor as
the steering front wheels actuator. Finally, the remote
desktop PC runs the ROS2 software (Macenski et al.,
2022) to capture and process all the information from
the Vicon Tracker system and car sensors. It also exe-
cutes the control algorithms that are sent to the car via
WiFi.
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Figure 2: Scaled Autonomous Vehicle Test Platform.

More details on the platform architecture and com-
munications can be seen on Fig. 3. The SAV is con-
trolled by an Arduino RP2040 microcontroller board.
The RP2040 board runs microROS, which is used to
both receive and send information with the remote PC.
The information sent to the remote PC are the IMU
measurements, angular speed readings from a dedicated
hall-effect encoder for each BLDC motors and the volt-
age and current measurements from the battery. On the
other hand, it receives the set-points commands for the
BLDC motors angular speed and Servo Motor steer-
ing angle. It should be noted that the RP2040 board
acts only as communication transmitter between the on-
board sensors/actuators and the remote PC. Specifically,
within the scope of this work, the lateral control law is
processed remotely and only the communication with
the Servo Motor is handled onboard the SAV.

It is the task of the remote PC to handle and process
all the data and information coming from the multiple
sensors on the platform. The communication layer with
the other platform components is handled by the ROS2
software tool by means of subscriptions to the multi-
ple nodes and topics on the software. Importantly, there
exist ROS2 libraries that allow to directly access the
information from the Vicon mocap system. Whereas
the WiFi communication protocol with the SAV is han-
dled automatically by ROS2, the engineering task in this
case reduces to subscribing and publishing the informa-
tion on the ROS2 topics environment. The planning and
control algorithm for the SAV are also programmed on
the ROS2 environment at the remote PC using Python
as the programming language. This is important as it
means that the complexity of the algorithms will not be
affected by the limited onboard memory and computing

power on the SAV.

Motion Capture System

Remote PC

SAV
Microcontroller: 
- Arduino RP2040 
- Runs microROS 
- Local BLDC Control 

Sensors: 
- 6 DOF IMU 
- Right/Left Rear Wheel Encoder 
- Battery Voltage and Current 

Actuators: 
- Servo Motor for Steering 
- Right/Left Rear Wheel BLDC 

Motor with ESC

- ROS2 using Python 
- Handles communication 
- Implementation of Planning and 

Control algorithms

Figure 3: SAV Platform Architecture and Communications.

The Vicon Tracker connects to an interface PC,
shown in Fig. 2 as Vicon Interface, which is itself con-
nected with the remote ROS2 PC. The Vicon mocap sys-
tem works by emitting infrared light, which is reflected
by small balls made of infrared reflecting material and
which are attached to the SAV. By using multiple in-
frared cameras, the Vicon system can then detect the po-
sition and orientation within the track of the SAV. The
position detection by the Vicon system is done with a
sub-millimeter accuracy at a frequency of 100Hz. The
precision and low noise from the position and orienta-
tion measurement obtained from the mocap system en-
ables smooth and accurate derivation of these signals.
As a result, the main signals used for vehicle control,
e.g. yaw rate and longitudinal and lateral velocities, are
obtained from the derivative of the orientation and posi-
tion signals from the Vicon system. Note that the signal
processing is done remotely on the ROS2 PC.

4.2. Scaled Autonomous Vehicle Dynamical Modelling

In order to design model based control laws to be
tested on the SAV, a dynamical model is required.
Within the scope of this work, the main interest relies
only on the SAV’s lateral behaviour. A well-known
model to describe the vehicle lateral dynamics is the
Bicycle Model (Rajamani, 2011), denoted here BM(vx)
and given by the state-space representation:

[
v̇y

ψ̈

]
=

 −
Cα f+Cαr

mvx
−vx −

Cα f l f−Cαr lr
mvx

−
Cα f l f−Cαr lr

Izvx
−

Cα f l2f+Cαr l2r
Izvx

 [ vy

ψ̇

]
+

 Cα f

m
Cα f l f

Iz

 δ
(42)

The states of the model are the vehicle lateral velocity
vy and vehicle yaw rate ψ̇, both of which are measured
on the SAV Platform. The control input of the system
is the steering angle at the front wheels δ, which on the
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SAV is actuated by the front Servo Motor. However,
in practice the control input δ is affected by an input
delay due to the WiFi communication delays between
the SAV and the Remote PC as well as the processing
time to interpret the command signal by the Arduino on
board the SAV. For this reason, a better representation
for the steering input in Eq. (42) would be δ(t − τ), with
τ representing a pure input time delay. In the design of
the PDSF controller, this input delay will be ignored, in
order to evaluate its performance in face of some impor-
tant unmodeled dynamics.

Note that the model state-space matrices depend on
the longitudinal velocity vx of the vehicle. If the lon-
gitudinal velocity is not assumed to be constant, then
the Bicycle Model becomes a pure LPV system with vx

as its varying parameter, see Atoui et al. (2022). As in
the case of the BM(vx) states, the longitudinal veloc-
ity measurement is also available on the SAV platform.
The rest of the model parameters are either measured or
identified, with values and description given in Table 1.

Table 1: SAV Bicycle Model Parameters

Parameter Value Units Description
m 1.1937 kg Vehicle mass
l f 0.0691 m COG to front wheels distance
lr 0.1049 m COG to rear wheels distance

Cα f 8.8302 N/rad Front wheel cornering stiffness
Cαr 9.7367 N/rad Rear wheel cornering stiffness
Iz 0.0094 kg/m2 z Axis Inertia
τ 0.1784 s Pure input time delay

To identify the non measurable parameters given
in Table 1, a non-linear identification was carried.
The identification method consits on a Prediction-Error
Identification one solving the following non-linear opti-
mization problem (Tóth et al., 2012)

min
ω
∥y − ŷ(δ, vx)∥2, (43)

where y is the stored vector of measurements, in this
case both states of the Bicycle Model. ŷ(δ, vx) is the
computed open-loop output of the LPV model (42) with
stored input δ and varying parameter vx. The vector
ω = [Cα f ,Cαr, Iz, τ] ∈ R4 consist of the parameters to
identify, which represent the optimization decision vari-
ables.

The non-linear identification of the LPV model (42)
for the SAV is outside the scope and objectives of this
work. However, in order to illustrate the accuracy of the
model which will later be used for LPV control design,
data from two validations datasets are shown in the fol-
lowing. Figure 4 and Fig. 5 show identification results

from a first validation dataset. On the other hand, Fig. 6
and Fig. 7 show identification results from the second
validation dataset.

0 20 40 60 80 100 120

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 20 40 60 80 100 120

-6

-4

-2

0

2

4

6

Figure 4: State Measurements and Identified Model Outputs (v̂y, ˆ̇ψ) for
the First Validation Dataset.

The first dataset consists of data taken while the
SAV was performing smooth maneuvers at high speeds
vx ∈ (1, 1.8)m/s, as can be seen from the information
on the steering angle input and longitudinal velocity in
Fig. 5. On the other hand, the second dataset was taken
while the SAV doing aggressive maneuvers at slow and
moderate velocity vx ∈ (0.4, 1.4)m/s, with information
on the abrupt changes on steering angle and the longi-
tudinal velocity in Fig. 7. Both of these datasets are
intended to push the limits of the SAV in terms of re-
maining within the linear range of tire forces, where the
assumptions to obtain the LPV model (42) hold (Raja-
mani, 2011). This can be caused by either aggressive
lateral maneuvers or by high longitudinal speed during
cornering.

Nonetheless, as can be seen in Fig. 4 and Fig. 6, the
output predictions of the identified model captures very
well the measured behaviour from the vehicle states.
The identified model is specially accurate in predicting
the response of the SAV yaw rate measurement, which,
as will be seen in the next section, is the signal em-
ployed to achieve path tracking of a desired reference
trajectory.
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Figure 5: Model input (Up) and Varying Parameter (Bottom) for the
First Validation Dataset.

5. Lateral Control of the Scaled Autonomous Vehi-
cle Using a PDSF Controller

5.1. Reference Generation for Path Tracking
The objective of the control task is to achieve robust

path tracking performance of a given trajectory. The
trajectory that has been considered for this work is the
circuit shown in Fig. 8. The X and Y coordinates that
make the circuit have been sampled at 0.01m intervals
and all the coordinates data points stored as vectors on
the Remote PC.

In order to generate the yaw rate reference signal ψ̇re f

that will drive the low-level PDSF controller to track
the given trajectory, the Pure Pursuit Algorithm is used.
This reference generation algorithm has been selected
for its simplicity of implementation, good performance
and simple tuning with only one parameter to modify
(Coulter, 1992; Paden et al., 2016). A brief description
of the algorithm is given in the following.

Consider a given configuration of the vehicle
(x, y, ψ)T , where x and y are the coordinates of the vehi-
cle on the track and ψ is the heading angle in the inertial
frame. Note that all of these variables are available on
the SAV platform provided by the Vicon Tracker sys-
tem. Given a look-ahead distance

L = tpvx, (44)
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Figure 6: State Measurements and Identified Model Outputs for the
Second Validation Dataset.

where tp is the look-ahead time and vx the vehicle longi-
tudinal velocity, find a point (xre f , yre f ) on the reference
trajectory such that ∥(xre f , yre f ) − (x, y)∥ = L. Compute
the angle α according to

α = arctan
(

yre f − y
xre f − x

)
− ψ (45)

Then, the reference yaw rate signal to achieve path
tracking is given by

ψ̇re f =
2vx sinα

L
(46)

Note that the only tuning parameter on the algorithm
is the look-ahead time tp as seen in (44). For this work it
has been considered a look-ahead time value of tp = 1s.

5.2. PDSF Control Problem Formulation for Path
Tracking on the SAV

In the PDSF controller design process, the first step
is to grid the varying parameter, in this case the lon-
gitudinal velocity vx. For control design purpose, it is
assumed the following bounds vx ∈ [0.5, 2]m/s for the
parameter range and |ν| ≤ 0.02 = amaxTs for the max-
imum rate of parameter variation between consecutive
sampling instances, where amax = 1m/s2 is the assumed
maximum vehicle acceleration and Ts = 0.02s is the
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Figure 7: Model input (Up) and Varying Parameter (Bottom) for the
Second Validation Dataset.

sampling time at which the controller will be imple-
mented. For the gridding space G, the varying parame-
ter vx has been uniformly gridded at a constant interval
of 0.01m/s. This represents 151 grid-points on the pa-
rameter range from 0.5m/s to 2m/s.

From the chosen grid G of fixed grid-points, at
each vx,p we define the reference tracking control prob-
lem on the H∞ framework by building a generalized
plant P(vx,p) that includes the weighted performances
for tracking and actuator behaviour (Zhou and Doyle,
1998). The chosen scheme for the generalized plant at
each grid-point vx,p is given in Fig. 9.

The exogenous inputs of the generalized plant P(vx)
are w = (ψ̇re f , d, n)T . ψ̇re f is the yaw rate reference sig-
nal to be followed, d represents an input disturbance and
n represents sensor noises in the measurements from the
signal ψ̇. Note that the input disturbance d at each grid-
point is multiplied by the squared value of vx, e.g. v2

x,p.
This term is introduced to account for observed distur-
bance effects on the SAV due to interactions between
the lateral dynamics with the longitudinal behaviour, to
which the vehicle is more sensitive at higher speeds.

The vector of control performances is z = (ze, zu)T ,
with ze being the tracking error performance and zu

the actuator performance signal respectively. The used
weight We to set the tracking specification is the follow-
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Figure 8: Reference Trajectory.

Figure 9: Generalized Plant Scheme at grid-point vx,p.

ing:

We = Z

(
s/Ms + fb

s + fbϵ

)
(47)

Considering Ms = 2, fb = 2π0.3 rad/s and ϵ = 0.01.
Meanwhile, the weight Wu used to specify the con-
straints on the control signal δ is:

Wu = Z

(
s + fbc/Mu

ϵus + fbc

)
(48)

Considering Mu = 0.4, fbc = 2π10 rad/s and ϵu =

0.001. For both weights We (47) and Wu (48) the
discretization operator Z has been executed using the
Tustin transform.

It is worth noticing the discretized Bicycle Model
BMd(vx,p), as seen in Fig. 9, is computed at each of the
grid-point vx,p as BMd(vx,p) = Z(BM(vx,p)), where in
this case the Z operator is executed using a zero-order
hold discretization.

Putting all these elements together the generalized
plant can be computed for a for a fixed speed grid point
vx,p according to the scheme in Fig. 9 with the represen-
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tation frozen LTI representation of P(vx,p) given by

P(vx,p) :=
x+ = A(vx,p)x + Bu(vx,p)u + Bw(vx,p)w

z = Cz(vx,p)x + Du(vx,p)u + Dw(vx,p)w
(49)

5.3. PDSF Controller Synthesis

With the generalized plant defined at each the grid-
point vx,p by Eq. (49), then, the control problem is to
find a PDSF controller K(vx) such that the control law
δ = K(vx)x minimizes the induced L2-norm γ∞ over the
generalized plant P(vx) and controller K(vx) intercon-
nection, as shown in Fig. 10, such that ∀vx,p ∈ G

∥z∥2
∥w∥2

≤ γ∞ (50)

where x = (vy, ψ̇, xe, xu)T are the states of the general-
ized plant P(vx), with vy and ψ̇ the states of the Bicycle
Model (42) and xe and xu are the states of the weights
We and Wu, respectively.

Figure 10: Generalized Plant and controller interconnection.

The existence of such a PDSF controller K(vx) can
then be tested by solving the LMI problem presented in
Proposition 1 as a minimization over the scalar γ∞. The
parameter dependent structure that has been assigned
for the PDLM X(ρ) for this LMI problem is as follows:

X(vx) = X0 +
1
vx

X1 + vxX2 + v2
xX3 (51)

This structure is chosen as it mimics all the ways in
which the varying parameter vx appear in both the gen-
eralized plant P(vx) and correspondingly the Bicycle
Model BM(vx). On the other hand, the parameter de-
pendent slack variable G(vx) has been chosen such that
for each grid-point vx,p there exists a unique slack vari-
able Gp value, as explained in Remark 4.

Using the parser Yalmip (Löfberg, 2004) and the
SDPT3 solver (Toh et al., 2004), Proposition 1 can be
efficiently solved. It is proved to be feasible with an
optimal induced L2-norm found to be γ∞ = 10.0184.

From the solution to Proposition 1, we now have nu-
merical values for the PDLM X(vx) and the slack matrix
G(vx). Using these values, we can solve Proposition 2
in order to compute the gains of a PDSF controller as
seen in Definition 2. With this aim, we select a PDSF
controller with the following fixed structure

K(vx) = K0 +
1
vx

K1 + vxK2 + v2
xK3. (52)

Employing this choice of structure for the PDSF
controller K(vx), Proposition 2 can be solved with
K0, . . . ,K3 as the only decision variables to be found.

Note that despite having a grid space G consisting of
151 grid-points, the controller gains in (52) reduces to
the four vectors K0, . . . ,K3, with each Kn ∈ R4. In com-
parison, the usual grid-based LPV approach would re-
quire an individual controller gain for each grid-point.
Thus, the PDSF controller solution allows to greatly
save the memory space that will be required for real-
time controller implementation. Moreover, the fact that
the number of controller gains is chosen by the con-
trol designer through the basis function that forms K(ρ)
and not by the number of grid-points, allows one to grid
the varying parameter space with a density that simply
would not be feasible otherwise for controller synthe-
sis. At the same time, the real-time implementation of
the controller K(vx) is carried by directly implementing
Eq. (52) in the software, without requiring any interpo-
lation of point-wise controllers.

5.4. Frequency Analysis of the PDSF Control Design

A first validation of the controller design is car-
ried out on the frequency domain. With this pur-
pose, we consider the closed-loop interconnection be-
tween the generalized plant P(vx) and the PDSF con-
troller K(vx), as illustrated in Fig. 10, evaluated at
some frozen values of the varying parameter vx,p =

(0.5, 0.75, 1, 1.25, 1.5, 1.75, 2)m/s. Note that this is just
small sample of the 151 grid-points used for the syn-
thesis of the PDSF controller. However, it is enough to
illustrate the frequency domain response of the closed-
loop alongside the whole range of the varying parame-
ter.

In order to validate the yaw rate tracking error ψ̇e =

ψ̇re f − ψ̇ response to changes in the yaw rate refer-
ence ψ̇re f , we compare the sensitivity transfer function
S = ψ̇e

ψ̇re f
with respect the employed tracking error tem-

plate 1/We, with weight We given in Eq. (47). Mean-
while, the validation of the constraints of control sig-
nal δ response to changes in the yaw rate reference sig-
nal ψ̇re f is done by comparing the controller sensitiv-
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ity transfer function KS = δ
ψ̇re f

with respect the con-
trol action template 1/Wu, with weight Wu given by
Eq. (48). From the frequency response results shown
in Fig. 11, it can be seen that both design requirements
for the controller K(vx) are satisfactorily fulfilled for the
whole range of values that was consider of the varying
parameter vx in the PDSF design.
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Figure 11: Sensitivity Transfer Function S = ψ̇e
ψ̇re f

versus tracking

performance template W−1
e (left) and Controller Sensitivity Trans-

fer Function KS = δ
ψ̇re f

versus actuator performance template W−1
u

(right) at frozen values of the varying parameter vx.

6. Experimental Results

The real-time implementation of the PDSF controller
is realized in the remote PC from the SAV test platform.
As mentioned previously in Sect. 4, the system states,
e.g. vy and ψ̇, as well as the value of the varying pa-
rameter vx are available online from the data measured
by the Vicon Tracker. Then, with the gains of the PDSF
controller K(vx) designed and computed as described in
Sect. 5.2 and in Sect. 5.3, the control law δ = K(vx)x
for the SAV steering can be easily implemented on the
ROS2 environment of the SAV platform, with K(vx)
given by (52).

The test scenario to demonstrate the path tracking
performance of the SAV with PDSF steering controller
consists in driving the SAV autonomously on the circuit
from Fig. 8 at varying speeds. The speed profile used
during the test can be seen in Fig. 12. Recall that the vx

speed profile, shown in Fig. 12, also acts as the varying
parameter for the controller K(vx). Fig. 13 and Fig. 14
present the tracking performance for the reference yaw
rate and the control signal, respectively.

Fig. 13 shows in black the yaw rate reference ψ̇re f

generated by the Pure Pursuit algorithm, see Sect. 5.1,
as the SAV moves through the track, in blue it is given
the measured yaw rate by the Vicon Tracker system for
the SAV during the test. In Fig. 14, the commanded
steering angle δ computed by the PDSF controller K(vx)
is presented.

In order to better visualize the path tracking perfor-
mance of SAV when using the PDSF controller, Fig. 15
presents information regarding the followed trajectory
by the SAV during the test on the X and Y coordi-
nates of the track. On the left of this figure, the ref-
erence circuit in black and the trajectory followed by
the SAV during the complete test is represented. Note
that in order to better identify the multiple laps the SAV
has done around the circuit, the followed trajectory is
color mapped with the instantaneous longitudinal veloc-
ity, corresponding with the information given in Fig. 12.
On the right side of this figure, it is given in black the
reference trajectory and with blue triangles the orienta-
tion and position of the SAV, with the orientation and
position taken from a time window of the test from
t ∈ [40, 50]sec. Note from Fig. 12 that this time window
coincides with a lap made by the SAV at high speeds.
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Figure 12: Longitudinal Velocity of the SAV during the test.
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Figure 13: Yaw rate reference (black) and SAV yaw rate (blue) during
the test.

0 10 20 30 40 50 60

-20

-15

-10

-5

0

5

10

15

20

25

30

Figure 14: Steering command computed by the PDSF controller.

From the results of the test, we can conclude that with
the PDSF controller K(vx) (52) the SAV achieves very
satisfactory path tracking performances. From Fig. 13,
it can be seen that the controller is able to track the given
reference signal while providing a control signal that is
smooth for all the range of speeds seen during the test,
as demonstrated by the steering command in Fig. 14. In
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Figure 15: Reference trajectory and actual vehicle trajectory color
coded with the instantaneous longitudinal velocity (left). Reference
Trajectory and position and orientation of the SAV during a lap done
at high speed at t ∈ [40, 50]sec(right).

can be noticed in Fig. 13 the effect of the pure input de-
lay that was ignored during synthesis of the controller.
It is well known that unaccounted system delays can
lead the closed loop to produce unstable behaviours, de-
spite that, the PDSF controller K(vx) is able to maintain
the vehicle stable and with acceptable reference track-
ing performance, proving the controller stability in face
of critical unmodeled dynamics.

However, it should be noted that at higher speeds, for
t ∈ [40, 55]sec, it can be seen in Fig. 13 that some
oscillations appear in the yaw rate signal ψ̇ after fast
changes on the reference. This is a known issue on the
platform, caused by the interaction with the longitudinal
dynamics of the vehicle due to the behaviour of the dual
BLDC motors, which can cause a disturbance torque on
the lateral dynamics if their speeds diverge from each
other. To attenuate this disturbance effect, higher at
larger speeds, it was introduced during the controller de-
sign the term v2

x,p on the input disturbance, see Fig. 9.
The tracking performance can specially be verified

in Fig. 15 (left). It can be seen how the trajectory of
the SAV during multiple laps overlap with each other
almost perfectly, even though there exist an impor-
tant variation in speed during the complete test. This
demonstrates that while being very simple to imple-
ment, the PDSF controller allows for a consistent per-
formance throughout the considered parameter space
for vx. Moreover on Fig. 15 (right), during the evolution
of the SAV position and orientation there is no notice-
able evidence of sliding during trajectory even at high
speed, meaning that the PDSF controller can cope with
demanding situations while keeping the stability of the
system.

7. Conclusions

This paper has proposed LMI conditions for the com-
putation of PDSF controllers. Although imposing a pa-
rameter dependent structure with fixed gains on the con-

troller could lead to a conservative solution, it has been
seen throughout the paper the advantages of the PDSF
control approach. First of all, the resulting controller
is straightforward to implement as it is self-scheduled
based on the imposed parametric basis function (no on-
line interpolation is required) and lightweight on the re-
quired memory space. On the other hand, the Paramet-
ric LPV synthesis approach allows to use very dense
grids on the parameter space without increasing the
number of controller gains to be implemented, some-
thing which is desirable when using grid-based LPV
approaches in order to obtain better stability and per-
formances guarantees.

The performance of this control strategy has been
tested on an Scaled Autonomous Vehicle for the task
of trajectory tracking showing good path following per-
formances. This has been achieved with a PDSF con-
troller that only required four controller gains to be im-
plemented, despite using 151 grid points for the synthe-
sis step. The found controller provided a satisfactory
tracking of the desired reference signal for the whole
range of the parameter space of varying parameter. This
was achieved in spite of unaccounted model uncertain-
ties as the presence of actuator input delays. Future
works could be carried with an emphasis on the SAV
application example. These studies can further improve
the results for the path following problem use case for
which the PDSF controller has been shown here. More-
over, these studies could be used to provide a deep com-
parison of the PDSF framework introduced in this work
with other LPV and control approaches.
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Appendix A. Useful Literature Results

In this section we collect some existing results and
lemmas on the literature which are used for the devel-
opment of the results presented on this work.
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Appendix A.1. Projection Lemma

The following lemma, known as the Projection
Lemma or Elimination Lemma in the literature, is the
key lemma that allows the computation of Parametric
LPV controllers.

Lemma 1 (Projection Lemma). Given a symmetric ma-
trixΨ ∈ Rm×m and two matrices N, M of column dimen-
sion m, consider the problem of finding some matrix Θ
of compatible dimensions such that

Ψ + NTΘT M + MTΘN > 0. (A.1)

Denote NM , NN any matrices whose columns form
bases of the null spaces of M and N respectively. Then
(A.1) is solvable for Θ if and only ifNT

MΨNM > 0

NT
NΨNN > 0

(A.2)

Appendix A.2. Induced L2-norm performance

Consider a LPV system:

Ξ(ρ) =
x+ = A(ρ)x + B(ρ)w

z = C(ρ)x +D(ρ)w
(A.3)

where x ∈ Rnx is the state vector, u ∈ Rnu are the control
inputs, w ∈ Rnw are the exogenous inputs with bounded
energy such that w ∈ L2 and z ∈ Rnz are the exogenous
outputs. The induced L2-norm for Ξ(ρ) is defined as

sup
w(k),0

∥z(k)∥2
∥w(k)∥2

(A.4)

An upper bound γ∞ on the induced L2-norm of Ξ(ρ)
can be computed according to the following Extended
Discrete-Time Bounded Real Lemma (DT BRL). Note
that extended versions of the DT BRL for time vary-
ing systems have been well studied in the literature, see
(Daafouz and Bernussou, 2001b; De Caigny et al., 2010;
Pandey and de Oliveira, 2019) and references therein.

Lemma 2 (Extended DT Bounded Real Lemma). If
there exists bounded matrices G(ρ) ∈ Rnx×nx and X(ρ) =
XT (ρ) > 0 such that

GT (ρ) +G(ρ) − X(ρ+) ⋆ ⋆ ⋆
A(ρ)G(ρ) X(ρ) ⋆ ⋆
C(ρ)G(ρ) 0 γ∞I ⋆

0 BT (ρ) DT (ρ) γ∞I

 > 0

(A.5)
then Ξ(ρ) is exponentially stable and ∥z(k)∥2

∥w(k)∥2
≤ γ∞.
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