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ABSTRACT10

Proteins play a central role in biological processes, and understanding their conformational variability is crucial for unraveling
their functional mechanisms. Recent advancements in high-throughput technologies have enhanced our knowledge of
protein structures, yet predicting their multiple conformational states and motions remains challenging. This study introduces
Dimensionality Analysis for protein Conformational Exploration (DANCE) for a systematic and comprehensive description of
protein families conformational variability. DANCE accommodates both experimental and predicted structures. It is suitable
for analysing anything from single proteins to superfamilies. Employing it, we clustered all experimentally resolved protein
structures available in the Protein Data Bank into conformational collections and characterized them as sets of linear motions.
The resource facilitates access and exploitation of the multiple states adopted by a protein and its homologs. Beyond descriptive
analysis, we assessed classical dimensionality reduction techniques for sampling unseen states on a representative benchmark.
This work improves our understanding of how proteins deform to perform their functions and opens ways to a standardised
evaluation of methods designed to sample and generate protein conformations.

11

Introduction12

Proteins orchestrate all biological processes, and their malfunctions often result in disease. In recent years, high-throughput13

technologies have greatly improved our knowledge of their amino acid sequences and 3D shapes1–4. While reaching the14

single-structure frontier5, these advances have also highlighted the complexities of how proteins move and deform to carry15

out their biological functions6, 7. They have stimulated a renewed interest in the modeling of protein and protein complex16

multiple conformational states8. In particular, the success of the protein structure prediction neural network AlphaFold29
17

has inspired innovative strategies for modifying or repurposing it toward exploring protein conformational space. These18

approaches involve forced sampling10, modulation of input multiple sequence alignment content and depth11, 12, or guidance19

with state-annotated templates13, 14. Although they have achieved promising results for specific protein families, systematic20

assessments have revealed limitations15, 16. In addition, studies sampling from low-dimensional representations or manifolds21

learned from observed or simulated conformations17–19 have underscored the difficulty in predicting new, completely unseen22

states and the importance of high-quality data for training or benchmarking.23

Experimental techniques like X-ray crystallography, cryogenic-electron microscopy (cryo-EM), and nuclear magnetic24

resonance spectroscopy (NMR) are essential for capturing protein functional states6, 20. The Protein Data Bank (PDB)4 offers25

access to multiple structural states for various proteins, solved independently in different conditions, oligomeric states, and with26

diverse cofactors and molecular partners. Researchers have actively engaged in efforts to collect, cluster, curate, represent,27

visualise, and functionally annotate these states20–23. These endeavours have provided valuable insights into the biologically28

meaningful conformational space for specific protein families such as protein kinases24, RAS isoforms25, ABC (ATP Binding29

Cassette) transporters26, and G-protein coupled receptors (GPCRs)27. However, producing or validating functional annotations30

for structural states involves a substantial amount of manual intervention. Despite the wealth of experimentally resolved protein31

conformational variability, its full exploitation remains an ongoing challenge.32

Ideally, one would like to comprehensively describe protein conformational variability with low-dimensional representations33

or manifolds amenable to visualisation and interpretation. Principal Component Analysis (PCA) serves as a convenient and34

robust means to reduce the dimensionality of a dataset, capturing maximum variability28, 29. The principal components35

extracted from a conformational ensemble define 3D directions for every atom, and motions along them allow navigating36

the conformational space30. PCA has proven useful for extracting structural transitions from sparse disconnected low-energy37



structural states31–36. Unlike more complex non-linear dimensionality reduction techniques, it offers the advantage of not38

depending on numerous adjustable parameters and provides a straightforward geometrical interpretation.39

Here, we describe a PDB-wide analysis of protein conformational variability across various levels of sequence homology.40

Our fully-automated computational pipeline, named Dimensionality Analysis for protein Conformational Exploration (DANCE),41

systematically compiles collections of aligned protein conformations and extracts their principal components. We interpret42

the representation space defined by the main principal components as the linear motion manifold underlying the observed43

conformations. We provide estimates of the intrinsic dimensionality of these motion manifolds. To assess generative methods,44

we introduce a benchmark set comprising ten conformational collections representing therapeutic targets with substantial45

functional transitions. Additionally, we provide baseline performances from classical linear and non-linear manifold learning46

techniques.47

DANCE is versatile, handling both experimental and predicted structures with varying amino acid sequences. It adopts48

an unbiased approach, avoiding predetermined protein or domain definitions when building the conformational collections.49

Considering the complete context of input protein chains enables a thorough examination of inter-domain motions. Furthermore,50

DANCE accommodates uncertainty from unresolved protein regions without assuming potential conformations. It introduces a51

weighting scheme to mitigate the imbalanced coverage of variables.52

We provide several databases of conformational collections representing the whole PDB as well as detailed informa-53

tion about the benchmark on Figshare. In addition, DANCE’s source code is available at: https://github.com/54

PhyloSofS-Team/DANCE.55

Methods56

Overview of DANCE57

DANCE takes as input a set of protein 3D structures (in Crystallographic Information File or CIF format) and outputs a58

set of protein- or protein family-specific conformational collections or ensembles (in CIF of PDB format). It first clusters59

and superimposes the input structures based on the similarities found in their corresponding amino acid sequences. It then60

determines the set of principal components sufficient to explain the variability observed within each conformational ensemble.61

The algorithm unfolds in six main steps depicted in Fig. 1.62

• a- Extraction of sequences. The first step extracts the one-letter amino acid sequences of all polypeptidic chains63

contained in the input CIF files. In case of multiple models, DANCE retains only the first one. The names of the residues64

with resolved 3D coordinates are taken from the _atom_site.label_comp_id column. Residues missing from the protein65

structure are included as lowercase letters in the sequence if they are defined in the _entity_poly_seq category. This66

information will help in clustering and aligning the sequences (see below). Otherwise, they are replaced by the "X"67

symbol. The "X" symbol is also used for unknown amino acid types and for modified amino acids without a close natural68

neighbour. Sequences comprising less than 5 non-"X" residues are then filtered out.69

• b- Clustering of the sequences. DANCE clusters sequences using MMseqs237. The users can choose the desired levels70

of sequence similarity and coverage, both set to 80% by default. The coverage is bidirectional by default. This step71

outputs a TSV file specifying the clusters.72

• c- Multiple sequence alignments. DANCE then aligns the sequences within each cluster using MAFFT38 with default73

parameters. It further removes all the columns containing only Xs or gaps, and reorders the sequences according to their74

PDB codes.75

• d- Extraction of structures. DANCE extracts 3D coordinates of the backbone atoms N, C, Cα , and the O atom, of76

all polypeptidic chains contained in the input CIF files. It reconstructs missing O atoms based on the other atom’s77

coordinates. It disregards residues with missing backbone atoms and chains shorter than 5 residues.78

• e- Generation of the conformational collections. DANCE then uses the sequence clusters defined in (b) to group79

conformations and the residue matching provided by (c) to superimpose them. The superimposition puts their centers of80

mass to zero and then aims at determining the optimal least-squares rotation matrix minimizing the Root Mean Square81

Deviation (RMSD) between any conformation and a reference conformation (see below). This is achieved through the82

ultrafast Quaternion Characteristic Polynomial method39, 40. The users can choose to account for all the atoms in the83

superimposition, or only the Cα atoms. Optionally, the users can filter out the conformations with too few (less than 5 by84

default) residues aligning to the reference. As a post-processing step, DANCE reduces structural redundancy. Namely,85

it removes any conformation A deviating by less than rmscut Å from another one B, provided that the sequence of A is86

identical to or included in that of B. The value of rmscut is 0.1 Å by default and is customizable by the users. Finally,87
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DANCE saves the conformational ensemble as a multi-model file in PDB or CIF format. Notice that the models can88

display different amino acid sequences. DANCE also outputs the corresponding multiple sequence alignments (MSA) in89

FASTA format, and the matrix of all-to-all pairwise RMSDs.90

• f- Extraction of linear motions. DANCE performs PCA on the 3D coordinates from each collection. This dimensionality91

reduction technique identifies orthogonal linear combinations of the variables, namely the Cartesian coordinates,92

maximally explaining their variance (see below). These linear combinations, which we refer to as principal components93

or PCA modes, represent directions in the 3D space for every atom. Deforming the protein structure using these94

components produce motions that connect the conformations observed in the collection. For the sake of simplicity, we95

directly refer to the principal components as to linear motions, although they may not represent actual physical motions96

undergone by the protein. Furthermore, we estimate the intrinsic dimensionality of the linear motion manifold underlying97

an ensemble’s conformational variability as the number of principal component explaining essentially all its positional98

variance. The higher the dimensionality – the more complex the linear motions.99

Choosing a reference100

We choose the reference conformation for the superimposition as the one with the amino acid sequence most representative101

of the MSA. For this, we first determine the consensus sequence s∗ by identifying the most frequent symbol at each position.102

We consider "X" symbols as equivalent to gaps. Hence, each position is described by a 21-dimensional vector giving the103

frequencies of occurrence of the 20 amino acid types and of the gaps. In case of ambiguity, we prefer an amino acid over a gap104

and a more frequent amino acid over a less frequent one. Then, we compute a score for each sequence s in the MSA reflecting105

its similarity to s∗ and expressed as,106

score(s) =
P

∑
i=1

σ(si,s∗i ), (1)

where P is the number of positions in the MSA and σ(si,s∗i ) is the substitution score between the amino acid si at position i in107

sequence s and the consensus symbol s∗i at position i. We use the substitution matrix BLOSUM62 and we set the gap score to108

mina,b(σ(a,b))−1 =−5. MAFFT also uses BLOSUM62 for generating the MSAs.109

Judging the quality of the MSA110

We compute the identity level of an MSA as the average percentage of sequence pairs sharing the same amino acid in a column,
and the coverage as the percentage of positions having less than 20% of gaps. In addition, we evaluate the global quality of the
MSA with a sum-of-pairs score, with σmatch = 1 and σmismatch = σgap =−0.5. We normalise the raw sum-of-pairs scores by
dividing them by the maximum expected values. The final score for an MSA is thus expressed as,

scorerel(MSA) =
score(MSA)(n

2

)
Le f f

, (2)

where is the raw MSA score, n is the number of chains or sequences, and Le f f is the effective length of the MSA, computed as,

Le f f = max
s∈S

L(s)

∑
i=1

I{si ∈A }, (3)

where S is the set of sequences comprised in the MSA, L(s) is the length of the aligned sequence s, and A is the 20-letter111

amino acid alphabet (e.g., excluding gap characters).112

Extracting linear motions113

The Cartesian coordinates of each conformational ensemble can be stored in a matrix R of dimension 3m×n, where m is the
number of positions in the associated MSA and n is the number of conformations. Each position is represented by a C-α atom.
We compute the covariance matrix as,

C =
1

n−1
Rc(Rc)T =

1
n−1

(R− R̄)(R− R̄)T , (4)

where R̄ is obtained by averaging the coordinates over the conformations. Alternatively, the users can choose to center the data114

on the reference conformation. The covariance matrix is a 3m×3m square matrix, symmetric and real.115

The PCA consists in decomposing C as C =V DV T where V is a 3m×3m matrix where each column defines an eigenvector116

or a PCA mode that we interpret as a linear motion. D is a diagonal matrix containing the eigenvalues. The sum of the117
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eigenvalues ∑
3m
k=1 λk amounts to the total positional variance of the ensemble. The portion of the total variance explained by the118

kth eigenvector or linear motion is estimated as λk
∑

3m
k=1 λk

.119

In addition, we estimate the collectivity41, 42 of the kth eigenvector as,

coll(vk) =
1
m

exp

(
−

3m

∑
i=1

v2
ki logv2

ki

)
. (5)

If coll(vk) = 1, then the corresponding motion is maximally collective and has all the atomic displacements identical. In case120

of an extremely localised motion, where only one single atom is affected, the collectivity is minimal and equals to 1/m.121

We also apply PCA to the correlation matrix computed by normalising the covariance matrix as,

Cori, j =
Ci, j√

Ci,i
√

C j, j
. (6)

In that case, the sum of the eigenvalues ∑
3m
k=1 λk amounts to 1.122

Handling missing data123

As stated above, the conformations in a collection may have different lengths reflected by the introduction of gaps in the
associated MSA. We fill these gaps with the coordinates of the conformation used to center the data (average conformation, by
default). In doing so, we avoid introducing biases through reconstruction of the missing coordinates. Moreover, this operation
results in low variance for highly gapped positions, thus limiting their contribution to the extracted motions. To go further
and explicitly account for data uncertainty, we implemented a weighting scheme. Specifically, DANCE assigns confidence
scores to the residues and include them in the structural alignment step and the PCA. The confidence score of a position i
reflects its coverage in the MSA, wi =

1
n ∑S1aS

i 6="X", where "X" is the symbol used for gaps. The structural alignment of the
jth conformation onto the reference conformation amounts to determining the optimal rotation that minimises the following
function43,

E =
1

∑i wi
∑

i
wi(rc

i j− rc
i0)

2, (7)

where rc
i j is the ith centred coordinate of the jth conformation and rc

i0 is the ith centred coordinate of the reference conformation.124

The resulting aligned coordinates are then multiplied by the confidence scores prior to the PCA.125

Implementation details126

We implemented DANCE in C/C++ and Python. It relies on the C++ GEMMI library44 to parse the CIF files and manipulate127

the structures. It runs MMseqs2 through the following command: cluster DB clusterDB tmp –cov-mode 0 -c $cov –min-seq-id128

$id. It launches MAFFT with the options auto, amino and preservecase. The multiple sequence alignment and structure129

superimposition steps are parallelized. For the PCA, we use the singular value decomposition (SVD) implemented in NumPy45
130

on the R matrix directly. SVD is computationally more advantageous when 3m� n, which is typically the case of our data,131

since we only compute the required number of n components.132

Application and extension of DANCE133

DANCE is applicable to experimental 3D structures as well as predicted 3D models, as long as they comply with the CIF134

standards.135

Describing conformational variability over the whole PDB136

We applied DANCE to all 748 297 protein chains with experimentally resolved 3D structures available in the PDB, as of June137

2023. We downloaded all the PDB entries in CIF format from the RCSB46. We replaced the raw CIF files with their updated138

and optimised versions from PDB-REDO whenever possible47. It took about 2.25 hours to run DANCE on the whole PDB139

on a desktop computer with Intel Xeon W-2245 @ 3.90GHz and 32Go of RAM (Table S1). The most time consuming steps140

are the extraction and superimposition of the 3D structures to create the conformational ensembles. We ran DANCE at eight141

different levels of sequence similarity, designated as lidcov, where id and cov are the sequence identity and coverage thresholds,142

correspondingly, and range from 50 to 80%. For investigating how the ensembles transformed across levels, we focused on the143

18 616 conformational ensembles detected in the most relaxed set up, namely at 30% identity and 50% coverage (l30
50). For each144

ensemble, we extracted its reference protein chain and we traced back the conformational ensembles to which it belonged upon145

progressively applying stricter thresholds.146
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Focusing on the ABC superfamily147

We extended DANCE usage beyond the single-chain and sequence-similarity paradigms to describe the conformational148

variability of ABC (ATP Binding Cassette) transporters. We retrieved a set of 354 ABC protein experimental 3D structures149

from https://abc3d.hegelab.org26. They correspond to functionally relevant states annotated as biological units in150

the PDB. In most of these structures, several polypeptidic chains, typically 2 or 4, encode the two nucleotide-binding domains151

(NBDs) and two transmembrane domains (TMDs) of the ABC architecture. In addition, some structures contain several ABC152

protein copies or some ABC protein cellular partners (small molecules, substrate peptides, interacting proteins). We chose153

the murine ABC transporter P-glycoprotein (5KOYA) as reference for the subsequent analysis. Its 1182-residue long single154

polypeptidic chain the full-length transporter architecture.155

To cope with the high sequence divergence of the ABC superfamily, we relied on structural similarity for grouping and156

matching the ABC conformations. Specifically, we used the method Foldseek48 to identity structures sharing significant157

similarity with the reference and align them. We performed a first screen by querying the reference against all individual chains158

(1 244 in total) and defined significant hits as those with an e-value lower than 10.0. Then, for each structure, we estimated159

an upper bound on its coverage of the reference by summing up the reference residue ranges appearing in the alignments160

associated with its significant hits. We filtered out the structures with coverage upper bounds lower than 90%. We performed161

a second screen by querying the reference against the 209 remaining structures defined as monomers by concatenating their162

chains. We identified two structures (5NIK, 5NIL) spanning less than 90% of the reference. Permuting their chains did not163

increase their coverage and thus we removed them. To further detect potentially suboptimal chain orderings, we computed164

reference to target residue span ratios. We identified one structure, namely 7AHD, with a highly imbalanced ratio of 1.6. Such165

a high value is indicative of large parts of the reference that could not be aligned to the target structure. Permuting the four166

chains (A,B,C,D) of 7AHD into (A,D,B,C) led to a more balanced ratio of 0.86. We did not observe discrepancies for other167

structures and thus we retained their original chain ordering. Finally, we removed the structures with low-quality alignments,168

i.e., with more than 200 gaps or with a continuous gapped region of more than 60 positions.169

Among the 195 structures finally selected, 4F4C, 7SHN and 7AHD contained unknown or unrecognized amino acids which170

we removed. We ran Foldseek one more time to generate a structure similarity-based multiple sequence alignment centred on171

the reference 5KOYA. We trimmed the alignment and the 3D structures by removing the residues inserted with respect to the172

reference. We gave the trimmed alignment and 3D coordinate files as input to DANCE, starting directly from step d (see the173

overview of DANCE algorithm above). For consistency and comparison purposes, we asked DANCE to center the data on174

the reference. To mitigate the impact of potential alignment errors, we applied weights reflecting position-specific confidence175

scores (see above, Handling missing data). DANCE structural redundancy reduction step removed 7 conformations, resulting176

in an ensemble of 188 conformations.177

We compared this ensemble with those generated by DANCE default sequence similarity-based end-to-end procedure
applied to the whole PDB. More specifically, we took the ensembles generated at l80

80 and l30
50 and containing 5KOYA and we

rebuilt them with DANCE, applying the 5KOYA centering and the uncertainty weighting scheme. We estimated the similarity
between the ensembles’ motion subspaces as the Root Mean Square Inner Product (RMSIP)49, 50. The latter measures the
overlap between all pairs of the l first PCA modes and is defined as,

RMSIP =

√√√√1
l

l

∑
i=1

l

∑
j=1

(vSA
i .vSB

j )2, (8)

where vSA
i and vSB

j are the ith and jth PCA modes extracted from the conformational ensembles SA and SB , and l is the178

number of modes considered for the comparison. Moreover, we monitored the distance between the geometric centres of the179

two NBDs defined by the C-α atoms of residues numbered 346-596 and 929-1182, respectively, in the reference 5KOYA.180

Benchmarking for the generation of unseen conformations181

Linear PCA182

We further investigated whether the extracted principal components could be useful to predict unseen conformations. Given a
set of l PCA modes computed from the coordinates R, we generate a new conformation r∗pred as,

r∗pred = p∗V T
l + r̄, (9)

where the matrix Vk ∈R3m×l contains the modes, r̄∈R3m is the average conformation, and p∗ ∈Rl is a point in the l-dimensional183

representation space defined by the modes. The coordinates of p∗ specify the amplitudes of the modes.184
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Nonlinear kernel PCA185

The manifold underlying our data is a priori non-linear. This motivated us to investigate whether non-linear methods could186

achieve better reconstructions than linear PCA. We focused on the widely used kernel Principal Component Analysis (kPCA)51.187

The intuition behind kPCA is to map the input data points to a higher dimensional space where they will be linearly separable by188

a classical PCA. The mapping function φ : R3m→RM is not known. Instead of explicitly calculating it, we use a kernel function189

k(ri,r j) = φ(ri)
T φ(r j), where ri and r j are two conformations. We chose the radial basis function (RBF) kernel, defined as190

k(ri,r j) = e−
d(ri ,r j)

2

2σ2 , where d(ri,r j) is the Euclidean distance between the two conformations ri and r j. We explored different191

values of the hyperparameter σ . For sufficiently small values, i.e., 1
2σ2 d(ri,r j)

2� 1, the RBF kernel becomes effectively linear,192

since, in this case, k(ri,r j)≈ 1− 1
2σ2 d(ri,r j)

2.193

Thus, given the input coordinates R representing n conformations, we computed the corresponding RBF kernel matrix K of
dimension n×n and decomposed it using the classical PCA. The resulting principal components {ν1,ν2, ...,νn} can then be
expressed as

ν j =
n

∑
i=1

a jiφ(ri). (10)

They allow extracting nonlinear features but they cannot be combined straightforwardly to generate new conformations. Instead,194

for generative purposes, we need to learn an inverse transform function that maps points in the l-dimensional representation195

space defined by the components back to the input space. This problem is known as the pre-image problem. To solve it, we used196

kernel ridge regression of the input coordinates R on their low-dimensional projections in the representation space as described197

in52, 53 and implemented in the scikit-learn Python library54. The contribution of the L2-norm regularisation is controlled198

through the hyperparameter α . More technically, α connects the squared L2-norm between a point in the representation space199

and its reconstruction with the squared L2-norm of the kernel weights used for the reconstruction.200

Leave-one-cluster-out cross-validation procedure201

We assessed the predictive performance of PCA and kPCA with a leave-one-out cross-validation procedure. Since the202

conformations are not evenly distributed within an ensemble, we grouped them into clusters prior to the evaluation. We203

performed the clustering in the l-dimensional PCA representation space, where l is the minimal number of linear components204

sufficient to explain 90% of the ensemble’s total positional variance. We used the k-means clustering55 with k = l +2.205

Given a clustered ensemble, we systematically tested the ability of the principal modes inferred from l+1 clusters to predict
the conformations belonging to the held-out cluster. We reconstructed each test conformation r∗ from its projection p∗ in the
l-dimensional representation space. For the classical PCA, we computed the projection as,

p∗ = (r∗− r̄)Vl . (11)

For the kPCA, the projection onto the principal component νj is expressed as,

φ(r∗)νj =
n

∑
i=1

a jiφ(R)T
φ(r∗) =

n

∑
i=1

a jiK(R,r∗). (12)

We evaluated the reconstruction error as the RMSD between the predicted conformation r∗pred and the original conformation r∗.206

Distance to the training set207

We estimated the difficulty of reconstructing a given conformation by computing its distance to the convex hull defined by the208

conformations used for training in the l-dimensional representation space. Setting the number of clusters in the training set to209

l +1 ensures that the convex hull will be a polytope of dimension at least l. For instance, in 1 dimension, we need at least 2210

affine-independent points to define a 1-polytope. The explicit computation of the convex hull of n points in l dimensions is211

an operation whose complexity is of the order of O(nl/2)56 and rapidly becomes computationally infeasible as the value of212

l increases. Nevertheless, the calculation of the distance of a given point to the hull does not require computing the convex213

hull explicitly and is a much simpler computational problem. It can be solved in quasilinear time with quadratic programming214

(QP). Here, we used the efficient and exact QP simplex solver proposed in57 and implemented in the Computational Geometry215

Algorithms Library (CGAL)58. It takes advantage of the low dimensionality of the representation space by observing that the216

closest features of two l-polytopes are always determined by at most l +2 points.217

In order to compare distances across systems of different sizes, we scale them by the number of positions m,

dnorm =
d√
m
. (13)
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Sequences

Structures

B. Clustering C. AlignmentA. Extraction of

E. Generation of conformational collections F. Assessment of 
classical manifold 

learning techniques

D. Extraction of

Protein Data Bank* 
>700K protein chains 

* REDO when available

Figure 1. Outline of the study. Our approach, DANCE, exploits both amino acid sequences and 3D coordinates. We applied
it to all experimentally determined protein-containing 3D structures from the PDB. Alternatively, users can provide a custom
set of experimental structures or predicted models. DANCE first concentrates on sequences. It extracts them from the input
structures (A) and clusters them with MMseqs2 based on user-defined similarity and coverage thresholds (B). For each cluster,
It generates a multiple sequence alignment using MAFFT (C). It then extracts all 3D coordinates (D), groups the conformations
according to the clusters identified in B and superimposes them to generate conformational ensembles (E). The superimposition
aims at minimizing the Root Mean Square Deviation to a chosen reference, using the alignments produced by C for mapping
the residues. The examples of the bacterial enzymes adenylate kinase (in grey, reference PDB code: 1AKEA) and MurD (in
blue, 1E0DA), and the murine ABC transporter P-glycoprotein (5KOYB) are depicted. The arrows indicate adenylate kinase’s
main motion. The horizontal lines behind the P-glycoprotein indicate the boundaries for the membrane bilayer. Finally,
DANCE summarises conformational diversity through Principal Component Analysis (F). We further assessed the ability of
classical manifold learning techniques to reconstruct and extrapolate conformations.

This normalisation also allows relating distances in the representation space with RMS deviations in the 3D Cartesian space.218

Indeed, let us consider an ensemble of conformations exhibiting a purely one-dimensional motion. Any two conformations219

distant by an RMSD of 1 Å in the original 3D space will be separated by a normalised distance of 1 Å in the one-dimensional220

representation space.221

Results222

We used DANCE to chart the experimentally resolved conformational diversity of protein families (Fig. 1). We explored eight223

levels of sequence similarity (sim) and coverage (cov), denoted as lsim
cov, to group the ∼750K chains included in the PDB as of224

June 2023 (Fig. S1A and Table S2). In the most conservative set up, namely l80
80, less than 3% of the conformations remain225
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isolated (Fig. S1A, singletons). Most of the conformational collections (or ensembles) are associated with multiple sequence226

alignments of high quality across all levels (Fig. S1B). Sequence identity and coverage are more widely distributed in more227

relaxed conditions, but the median values always remain very high, above 0.95 (Fig. S1C-D).228

Experimentally resolved conformations lie on low-dimensional manifolds229

Only one or two linear principal components suffice to explain almost half of the ensembles’ conformational diversity (Fig.230

2A). We interpret these components as directions of motion, and by simplification, we will denote them as linear motions in the231

following (see Methods). In the overwhelming majority of cases, less than eight linear motions explain more than 90% of the232

total positional variance. These observations hold true across all sequence identity and coverage levels. They indicate that the233

conformational states captured by experimental techniques for a protein or a protein family lie on a low-dimensional manifold.234

This low dimensionality is only partially determined by the cardinality of the ensembles (Fig. S2A-B). Almost 30% of the most235

highly populated ensembles (>50 conformations) detected at l80
80 can be comprehensively described with less than three linear236

motions (Fig. S2C). This proportion increases up to 46% in the most relaxed conditions, namely at l30
50 (Fig. S2D).237

The bacterial adenylate kinase gives an example of a one-dimensional motion underlying its 42 conformations (Fig. 1E,238

in grey). One can easily classify the conformations by visual inspection into two main states, open and closed, deviating by239

about 7 Å. The bacterial enzyme MurD (Fig. 1E, in blue) and the murine ABC transporter P-glycoprotein (Fig. 1E, in orange)240

also exhibit low-dimensional opening-closing motions. In particular, the P-glycoprotein’s collection reveals a rich spectrum of241

intermediate conformations between the open and closed forms (Fig. 1E, in orange). The main motion involves about 70%242

of the protein and modulates the volume of the transporter’s internal cavity within the lipid bilayer up to over 6,000 Å359. It243

explains about 80% of the total positional variance on its own. The remaining variability is mostly due to rotations of the244

nucleotide binding domains with respect to the transmembrane helical bundles and to loop deformations.245

A few protein families display huge conformational expansion upon relaxing the sequence selection crite-246

ria247

To investigate how the conformational ensembles transformed with sequence similarity, we systematically backtracked the248

18 616 representative protein chains identified at l30
50 across more stringent levels (see Methods). The fragment antigen-binding249

regions display the largest growth between the most stringent and most relaxed sequence selection criteria (Fig. 2). For250

instance, while the Fab6785 light chain’s ensemble at l80
80 comprises a bit less than 300 conformations, it expands up to over251

12 500 conformations at l30
50 (Fig. 2B, PDB id: 4QHUH). With the largest number of conformations at l80

80 , the HIV-1 capsid252

protein’s ensemble however displays a relatively limited expansion across the different levels, from 3 334 to 3 391 (Fig. 2B,253

3J345). Bovine trypsin and its close homologs give an example of an extensively characterized subfamily, with 470 different254

conformations detected at l80
80. This ensemble expands by more than 5 folds, aggregating different serine proteases, upon255

relaxing the criteria to l30
50 (Fig. 2B, PDB id: 1TAWA). Likewise, the Beta-2-microglobulin and its close homologs have a large256

body of 1 465 conformations at l80
80, growing further up to 2 025 conformations at l30

50 by including other immunoglobulins257

(Fig. 2B, 7MX4B). By contrast, the reconstructed ancestral tyrosine kinase AS, a common ancestor of Src and Abl, has only 2258

conformations available in the PDB and no close homologs. At l30
50, it serves as representative for a huge ensemble of over259

4 000 protein kinase conformations (Fig. 2B, 4UEUA). Apart from these over-represented protein families or superfamilies, the260

ensembles generally gain only a few conformations, with a median value of 4.261

Family expansion may lead to an apparent motion simplification262

As an ensemble grows, the gained conformations may lie on the same motion manifold, defined by the subset of principal263

components explaining the variance, or give rise to new motions represented by new components (Fig. 2C). The bacterial264

long-chain flavodoxin exemplifies the second scenario (Fig. 2D-F, in black). At l80
80 , it undergoes a one-dimensional motion265

describing the transition between a compact state and a partially unfolded conformation (Fig. S3). Upon relaxing sequence266

similarity to l30
50 , the ensemble roughly doubles in size (Fig. 2F) and the newly added conformations exhibit complex267

deformations of the FMN binding pocket. As a result, five more linear motions are required to explain the positional variance268

(Fig. 2D). Hence, in this case, the motions get more complex when considering more distant homologs.269

The emergence of new motions does not however systematically lead to an increased motion complexity. The murine MCL1270

gives an illustrative example of apparent motion simplification upon expansion (Fig. 2D-F, in red, and Fig. 2G). At l80
80 , almost271

30 components are needed to explain the variability observed over the couple of hundreds conformations in the ensemble. They272

represent local deformations of the inter-helical loops and the extremities (Fig. 2G and Fig. S3). Extending the ensemble to273

distant members of the Bcl-2 family brings in about 50 new conformations (Fig. 2F). They reveal a new extended state the274

protein BAX adopts upon assembling into domain-swapped dimers60. The large amplitude transition between the compact275

conformation and the extended one takes a big part in the variance, resulting in a drastically reduced motion complexity (Fig.276

2D). The benzaldehyde lyase BAL gives another example (Fig. 2D-F, in blue) where the transition to a new state, adopted277
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by the distant homolog actinobacterial 2-hydroxyacyl-CoA lyase61, dominates the variance (Fig. S3). The conformational278

variability transforms from small (<1Å) seemingly random fluctuations to a one-dimensional motion.279

Overall, about a third of the ensembles undergo an apparent motion simplification upon expansion (Fig. 2C and Fig. S4A).280

They likely represent protein families where distant homologs exhibit novel distinct states. The larger the deviations of these281

novel states with respect to the other ones, the higher the contribution of the corresponding motions to the variance. To mitigate282

this variance-dependent effect, we repeated the analysis on the correlation matrix. The latter estimates the extent to which the283

residues move in the same direction, regardless of the magnitude of their displacements. We found that the motion complexity284

still decreases in over 20% of the ensembles (Fig. S4B). This result indicates that motion simplification does not merely reflect285

larger transitions "hiding" smaller rearrangements. A substantial fraction of protein families show evidence of more concerted286

residue movements between more distant homologs.287

Beyond single chains and sequence similarity, the ABC superfamily as a case study288

We explored the possibility of using DANCE to chart the conformational variability of remote homologs with low sequence289

similarity and variable chain composition. We focused on the ABC (ATP Binding Cassette) transporter superfamily. The ABC290

architecture comprises two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs) encoded by one or291

several polypeptidic chains (Fig. 3A). The NBDs are highly conserved across species and families, whereas the TMDs exhibit292

various scaffolds associated with heterogeneous transport functions26. We considered a collection of a few hundreds ABC293

protein experimental 3D structures26, taking the single-chain murine P-glycoprotein as reference (Fig. 3A, 5KOYA).294

We bypassed DANCE sequence extraction, clustering and alignment steps and directly gave it a pre-computed alignment295

built from structural similarities as input (see Methods). Relying on structure rather than sequence similarity and considering296

various oligomeric states provided a more comprehensive description of ABC transporters’ functional motions and states (Fig.297

3 and Movies S1-2). The resulting ensemble comprises 188 conformations encompassing 295 protein chains, some of which298

have sequence identity below 30% or coverage lower than 50% (Fig. 3A). A set of 25 linear motions are required to explain299

the positional variance. By comparison, the sequence similarity-based 5KOYA-containing collection generated by DANCE at300

l30
50 contains only 71 conformations explained by only four linear motions. These motions are essentially identical to those301

extracted from the 61 conformations at l80
80 (Fig. 3B, RMSIP = 0.99).302

Despite having different motion complexities, the sequence- and structure-based conformational collections have largely303

overlapping motion subspaces (Fig. 3B, RMSIP ∼ 0.7). In particular, they all share the same most contributing motion304

describing the transition between the transporter inward-closed and inward-open forms (Fig. S5). This functional transition305

controls the substrate access to the transporter’s central binding pocket. It explains 45 to 70% of the variance on its own and306

involves over two-thirds of the residues. The structure similarity-based collection represents a quasi-continuum of increasingly307

open states (Fig. 3C, in blue, and Movie S1) between two extreme dimeric forms, one from the human lysosomal cobalamin308

exporter ABCD4 where the two NBDs are in contact and the other from Salmonella typhimurium’s lipid A transporter MsbA309

with a widely open cavity. The overwhelming majority of conformations are regularly spaced by inter-NBD distance increments310

smaller than 1 Å. By contrast, the sequence similarity-based collections populate sparse regions of this continuous transition,311

with a high concentration of semi-open and open states (Fig. 3C, in pink and red, and Movie S2).312

Classical manifold learning techniques can generate highly accurate conformations313

Beyond describing the observed conformational variability, we evaluated the ability of two classical manifold learning314

techniques, namely the linear PCA and the non-linear kernel PCA (kPCA), to generate unseen conformations. To do so, we315

identified a set of ten conformational ensembles with very different degrees of motion complexity (Fig. 4A and Table S3). They316

comprise between 20 and over 3 300 conformations and their reference chains contain 80 to 1 200 residues. They represent317

proteins or protein families displaying substantial (≥ 5 Å) and functionally relevant conformational changes, namely adenylate318

kinase (ADK)62, 63, MurD19, 64, the calcium pump ATPase65, 66, the ABC transporters26, 67, the small heat shock protein αB319

crystallin (Crys)68, 69, the heat shock protein HSP9070, 71, calmodulin (CALM)72, 73, kinases (KIN)74, 75, RAS25, 76, and the320

HIV capsid protein (CAP)77, 78. Most of them have been extensively characterized by experimental structure determination321

techniques or computational methods for simulating protein dynamics. Targeting their motions or their specific conformations322

bears a therapeutic interest.323

Within each ensemble, we first learned low-dimensional representations of a subset of conformations used as training324

samples. We then projected the test conformations, not seen during training, to the learned representation space, and mapped325

the projections back to the original 3D Cartesian space. The mapping is determined analytically in the case of linear PCA326

and learned in the case of kPCA (see Methods). We evaluated the quality of the 3D reconstructions by computing their RMS327

deviations from the original conformations. We found that both PCA and kPCA yield some high-accuracy reconstructions, with328

an RMSD error below 1.5 Å, for all proteins (Fig. 4B). The error distribution width varies from one protein to another and does329

not depend on motion complexity. For instance, all reconstructed conformations of HSP90 deviate by less than 2 Å from the330

original ones, while the reconstruction error can be as high as 8 Å for MurD. The nonlinear kPCA performs significantly better331
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than the linear PCA for all proteins from the benchmark. It allows increasing the percentage of high-quality reconstructions332

(RMSD error<1.5Å) from 68 to 82% for MurD and from 1 to 33% for CALM (Table S4). Nevertheless, the reconstruction333

accuracy of kPCA varies greatly depending on the values of the two hyperparameters controlling the kernel width and the334

amount of regularisation (Fig. S6). The optimal values vary from one system to another and determining them a priori is not335

trivial (Table S5). The applicability of non-linear techniques is thus limited by the choice of the adjustable parameters.336

Reconstruction accuracy strongly depends on the distance to the training set337

The quality of the predictions strongly correlates with the distance between the test conformation and the training set’s convex338

hull in the low-dimensional representation space (Fig. 4C). The linear PCA produces highly accurate reconstructions, with339

an RMSD error smaller than 1.5 Å, only for conformations distant by less than 3 Å from the training set. We observed a340

similar tendency for kPCA (Fig. S6). This dependence can be appreciated by visualising how the conformations cluster in the341

representation space (Fig. 4D). For instance, the most poorly reconstructed MurD conformation forms a singleton located far342

away from all other conformations, particularly along the first most important principal component (Fig. 4D, dark dot). For this343

protein, the kPCA performs substantially better than the PCA thanks to a better reconstruction of the most populated cluster Fig.344

4D, light squares). In addition, the overwhelming majority of conformations lie outside of the training set’s convex hull. This345

observation agrees with a recent study showing that interpolation almost surely never happens with high dimensional datasets79.346

The 14 conformations located inside come from ADK, CALM, KIN, RAS and CAP and are all very well reconstructed, with347

RMSD errors ranging from 0.1 to 1.7 Å.348

Influence of data uncertainty handling and conformation-specific centring349

We assessed the influence of accounting for uncertainty in the data with position-wise weights and centring the data to a350

reference conformation (Fig. S8-11). In principle, both operations may impact the conformations’ superimposition and, as a351

consequence, their final coordinates, as well as the extracted motions (see Methods). In practice, 95% of the∼35 000 ensembles352

at l80
80 – excluding singletons and pairs, are not substantially altered by introducing position-wise uncertainty weights (Fig. S8).353

They display the same displacement amplitude (± 1 Å) and motion complexity (± 1 mode). When the weights are impactful,354

they effectively lower the importance of large deviations in uncertain regions, i.e., poorly covered by the conformations, and355

prevent the associated motions, typically highly localised, from dominating the variance (Fig. S8, red dots). Hence, the356

uncertainty weights tend to induce smaller deviations (Fig. S8A), increased motion complexities (Fig. S8B), and less dominant357

and more collective main motions (Fig. S8C-D).358

The choice of the reference conformation used for superimposing and centring the 3D coordinates has a much stronger359

influence (Fig. S9). Only 43% of the l80
80 ensembles remain unaffected upon changing the reference. In this experiment, the360

first reference is the multiple sequence alignment consensus (see Methods), while the second reference maximises the RMS361

deviation from the first one. We expect this setup to yield the most contrasted resFig. S7ults. It almost never happened that362

an ensemble consistently displayed a high motion complexity or a weakly contributing main motion for both references (Fig.363

S9B-C). This result suggests that the ensembles exhibiting complex conformational rearrangements (e.g., loop deformations)364

among a bulk of conformations also include a few conformations comparatively far from all the others. The motions simplify365

when performing the PCA from the perspective of this minority. Normalising out the variance to focus on inter-residue366

correlations attenuates this effect (Fig. S10).367

Discussion368

This work proposes a new perspective on the variability of protein 3D conformations. It provides the community with369

conformational collections representing the multiple protein states available in the PDB and a fully automated versatile370

computational pipeline to build custom collections. In doing so, it contributes to the representation and managing of multiple371

conformational models of proteins. It enhances access and understanding of protein functional states and motions and facilitates372

predictive methods benchmarking. Both DANCE pipeline and the produced PDB-wide data are readily usable in other studies.373

We chose to rely on classical principal component analysis because of its intuitive geometrical interpretation. It allows374

describing protein conformational variability with a limited set of orthogonal vectors interpretable as linear motions. We375

provided estimates of motion complexity as the number of PCA components necessary to explain most of the observed376

conformational variability. We found that a few linear motions suffice to explain most conformational collections. The high377

complexity exhibited by a few protein families may reflect nonlinear structural deformations or seemingly random fluctuations.378

For instance, protein kinases exhibit highly complex loop conformational rearrangements despite a well-conserved overall fold379

and only two metastable functional states. Our analysis helps to identify such cases to prioritise their in-depth characterisation380

with more sophisticated nonlinear dimensionality reduction techniques.381

We designed DANCE for dealing primarily with single polypeptidic chains grouped based on sequence similarity. To382

go further, we have provided a proof-of-concept application study of DANCE’s usefulness for comprehensively describing383
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continuous motions shared across very distant homologs comprising different numbers of chains. We showed that ABC proteins384

with a wide diversity of substrates and transport mechanisms share a highly collective high amplitude opening/closing motion385

underlying their functioning. In addition, our work goes beyond a descriptive analysis by showing that classical manifold386

learning techniques can generate plausible conformations in the vicinity of the training set. Our results can serve as baselines387

for evaluating more sophisticated approaches.388

DANCE superimposes the conformations onto representative references and describes conformational variability as a set389

of linear motions of these references. This approach offers a multi-view perspective on a given collection of conformations,390

easing interpretability and allowing for augmenting data in a learning context. Nevertheless, radical differences between391

conformations, such as fold changes, might confound the superimposition. Another limitation comes from the dependency of392

the superimposition on the multiple sequence alignment heuristic. Ambiguities arising from sequence similarities might result393

in suboptimal 3D coordinates matching and, thus, in large deviations. Future improvements will explore multi-reference or394

reference-free probabilistic frameworks and more refined accounts of data uncertainty80–84.395

Data availability396

We provide public access to the conformational collections compiled by DANCE from the PDB at two levels of sequence397

similarity, namely l80
80 and l30

50 on Figshare.This repository also contains the structural similarity-based ABC transporter398

conformational collection along with the supplementary Movies S1 and S2. In addition, we provide detailed information about399

the benchmark set and the assessment of PCA and kPCA.400

Code availability401

DANCE source codes are written in C/C++ and Python and are publicly available on GitHub at https://github.com/402

PhyloSofS-Team/DANCE. This repository also contains a Python wrapper allowing users to seamlessly run DANCE full403

pipeline. In addition, we provide example input 3D structures.404
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