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Convergence rates for the moment-SoS hierarchy

Corbinian Schlosser!, Matteo Tacchi?, Alexey Lazarev?

January 31, 2024

Abstract

We introduce a comprehensive framework for analyzing convergence rates for infinite dimensional
linear programming problems (LPs) within the context of the moment-sum-of-squares hierarchy. Our
primary focus is on extending the existing convergence rate analysis, initially developed for static poly-
nomial optimization, to the more general and challenging domain of the generalized moment problem.
We establish an easy-to-follow procedure for obtaining convergence rates. Our methodology is based on,
firstly, a state-of-the-art degree bound for Putinar’s Positivstellensatz, secondly, quantitative polynomial
approximation bounds, and, thirdly, a geometric Slater condition on the infinite dimensional LP. We
address a broad problem formulation that encompasses various applications, such as optimal control,
volume computation, and exit location of stochastic processes. We illustrate the procedure at these
three problems and, using a recent improvement on effective versions of Putinar’s Positivstellensatz, we
improve existing convergence rates.
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1 Introduction

Context. In recent years various kinds of (nonlinear) problems have been formulated via a specific instance
of infinite dimensional linear programming (LP), known as the generalized moment problem (GMP). GMPs
appear in various problems coming from diverse fields wuch as geometry, where it has been used in volume
computation, for semialgebraic sets [16, 31, 50] as well as sets defined with quantifiers [30], approximation
of projections and polynomial images of semialgebraic sets [34], as well as set separation a la Urysohn
[24].  Other examples arise from dynamical systems and include optimal control [32], stability analysis
[20, 18, 40, 21, 17], localisation of global attractors [13, 44], and more generally calculus of variations [15],
as well as partial differential equations [35]. Due to the natural role of Borel measures in the GMP, it is also
widely used to study stochastic systems, with applications to exit location [14], infinite time averaging [11],
computing invariant measures [23], peak value-at-risk [37] and probability of unsafety [30].

In the framework of the GMP approach the problems mentioned above can be represented by dual pairs
of linear programming problems: the primal problem (measure LP) is defined on the infinite dimensional
space of Borel measures and features (possibly infinitely many) linear equality constraints; the dual problem
(function LP) is defined on a (possibly infinite dimensional) vector space of polynomials and features infinite
dimensional (functional) linear inequality constraints. The moment-sum-of-squares (moment-SoS) hierarchy
is a two steps procedure that provides a powerful tool for tackling such linear programming problems and



Rephrasing

Difficult problem :
- nonconvex optimization

- set approximation
- nonlinear PDE

Figure 1: The standard application of the moment-SoS hierarchy.

has been applied widely. In the first step, the primal decision variables, i.e. Borel measures, are represented
by their moments, that are characterized via linear matrix inequality (LMI) constraints on the so-called
moment matrices. In the second step, the moment matrices are truncated, i.e. only moments up to a
finite degree £ € N are considered and paired with the constraints in the LP; resulting in a hierarchy of
semidefinite programs. This operation is referred to as moment relazation. By duality, this procedure leads
to a tightening in the function LP. There, the inequality constraints of the function LP are first strengthened
to SoS constraints (by the aid of Putinar’s Positivstellensatz [11]). In the second step, the degree of the
SoS polynomials is truncated, thus obtaining a hierarchy of so-called SoS strengthening. The scheme of the
moment-SoS hierarchy approach is summarized in Figure 1.

The moment-SoS hierarchy provides guaranteed convergence [28, 38, 29, 48] but, apart from the case of
polynomial optimization, the speed of the convergence for the infinite dimensional problems has been rarely
investigated. Two examples where explicit convergence rates were derived can be found in [22] and [19]
where a slow convergence rate was presented based on [39]. Since then, the problem of providing bounds on
the minimal truncation required to fully represent positive polynomials as sums of squares has been deeply
studied, both in the generic case [2, 3] and in specific settings [46, 4].

Contribution. The speed of convergence can be derived from such bounds, and is determined by two
main factors:

1. The regularity of optimal solutions to the function LP and, if they are not polynomial, their approxi-
mation with polynomials;

2. The degree ¢ € N needed for an SoS representation of the approximating polynomials.

We treat those two principal concepts in Section 3.2 and aim at describing an interplay between results
on degree bounds in Putinar’s Positivstellensatz, structural approximation properties for polynomials and
compatibility conditions of the LPs concerning polynomials.

The main objective of this article is to provide a method for deriving convergence rates of the moment-SoS
hierarchy when applied to a specific instance of the GMP, using the degree bounds provided in [2]. We
provide examples of computing and improving the convergence rates of the hierarchy with the state-of-art
versions of Putinar’s Positivstellensatz. Namely, we use [2] to improve the convergence rates for the optimal
control problem stated in [22] and for the standard volume problem [19]. Additionally, we derive an original
convergence rate for the problem of exit location of stochastic processes [14]. Last but not least, we use
our methodology to answer a long-standing question related to volume computation, namely: how much
does the use of Stokes’ theorem improve the moment-SoS hierarchy for volume computation? Indeed, the
first application of the moment-SoS hierarchy to this problem in [16] exhibited a very slow convergence in
practice, and was soon complemented with [31], yielding a sharp improvement in the numerical accuracy of
the relaxations. To further understand this improvement, a qualitative study [49] showed that it was related
to the Gibbs phenomenon and regularity of solutions in the function LP. In this work we complement the
qualitative study with a first quantitative analysis of the two formulations, by computing and comparing the
convergence rates in both cases.



As a consequence, in most examples covered in this work we get a convergence rate of O£~ °) for some
constant ¢ > 0 (the only exception being generic optimal control, for which the rate is O (}/log¢), see
Corollary 4.6, although mild assumptions allowed us to bring back a polynomial convergence rate in
Theorem 4.10), which is a significant improvement compared to the double log bounds obtained in [22, 19].

Outline. The paper is structured as follows: In Section 2, we fix the notation and focus on the central
underlying concept of moment-SoS hierarchy for the generalized moment problem (GMP). Section 3 recalls
the current state of an effective version of Putinar’s Positivstellensatz and we introduce and motivate our
general procedure for obtaining effective degree bounds for SoS tightening of the infinite dimensional function
LPs. In Sections 4 and 5 we apply the procedure to establish convergence rates for old and new instances of
the moment-SoS hierarchy and where strong improvements compared to the existing rates are demonstrated.
Section 4 treats dynamic settings, where optimal control for deterministic systems and the exit location
problem of stochastic processes are considered. Section 5 is concerned with volume computation with and
without the aid of reinforcing Stokes constraints.

2 Preliminaries: the moment-SoS hierarchy

2.1 Basic notations

We work with the standard notations for usual sets R (real numbers), Z (integers), N (natural integers),
for which the superscript * indicates that we remove the element 0. Real intervals are denoted [a, b] when
closed, (a,b) when open; integer intervals are denoted [a,b] (with particular case [n] = [1,n] for n € N*).
For x € R, |z := max([x — 1,2] N Z) denotes the floor and [z] := min([x, 2z + 1] N Z) denotes the ceiling.

For a topological space X, C(X) denotes the space of continuous functions from X to R equipped with the
topology of uniform convergence. For two real vector spaces V, W, the set L(V, W) denotes the space of
linear maps from V to W. For a real Banach space V, define the dual space V' := L(V,R) N C(V), with
duality (v,v") € R, v € V,v' € V. In particular, for a compact Hausdorfl space X, the space of signed
Radon measures M(X) is identified with C(&X)'.

For o = (a1,...,05) € N*, || := aq + ...+ «, is the range of v and (z1,...,2,) = x> xX* 1= 2] - - z0n
is the corresponding monomial. For n,d € N, N} := {a € N" ;|a| < d} is the set of bounded multi-
indices, Ry[x] := {x = 3 4 |<4CaX¥ ; (Ca)a € RNi} is the space of degree at most d polynomial functions,

R[x] := UgenRa[x] is the space of polynomials. For @ C R”, P4(Q) := C(Q)NRy[x] and P(N2) := C(2)NR[x].

If V is equipped with a set of “entry” forms {d;}icz C V' (e.g. dual basis {x = x;},c[,] in R", or evaluation
functionals {f — f(x)}xecq in function spaces over a set ), then the nonnegative (resp. positive) cone of
VisVy:={veV;VieI (v,§) >0} (resp. Vg :={v e V;ViecZ (v,d) >0}),asinRg, R}, C(X)g. In
particular, the dual cone of K C V is K’ := (V') for entry forms {(x,®)}.cx (e.g. M(X); =C(X)).

S* = {M € R™" ;MT = M} is the vector space of symmetric real matrices of size n with entry forms
{M — x"Mx}xepn, so that ST is the usual p.s.d. cone. For h = (hy,...,h,) € R[x]", define the basic
semialgebraic set S(h) := h™}(R",).

We make the convention that the Assumptions 1, 2 and 3 hold throughout the whole paper. Conditions
hold only when explicitly stated.
2.2 Generalized Moment Problem

Let M,N € N~ r = (r1,...,7) € (N m = (my,...,my) €N n=(ng,....,ny) € NV.
For i € [M], let X; := S(h;) € R™ be a compact basic semialgebraic set with h; € R[x;]™.



For j € [N], let Y; € R™ be a compact subset. Let:

Xoi= M(X)) % oo x M(Xag), Y =P(Y1) % ... x P(Yn),
X' = C(Xl) X ... X C(XM), yl = P(Yl)/ X ... X P(YN)/

We equip X, X’ with the product topology. For } we use a well-chosen norm || - ||y (see the discussion
around equation (16) in Section 3.2) and )’ is its topological dual. For v = (vq,...,vy) € X’ and p =
(11, ..., pnm) € X, we define the vector integral as

M
/V'dHIZZ/Uiszv
i=1

Let A: X — )’ be a continuous linear map, T € )’ be a vector of continuous linear forms (i.e. moment
sequences), g € R[x;] x ... x R[xas] C X’ be a vector of polynomials. We define the Generalized Moment
Problem (GMP) as

PGMm = Sup /g~du
pneX

st Vie[M], e MX), 1)
Ap="T

Remark 2.1 (On the generality of (1)).

Note that the generic framework X = S(h) allows for a finite (discrete) set X, for which measures can be
represented as vectors. In particular, binary optimization has a GMP formulation which is proved to be
equivalent to semidefinite programming [26]. From this simple remark, one can observe that problem (1)
can feature finite size PSD constraints on moments, as proposed in [37]. Hence, the tools displayed in this
work can be used on GMPs featuring finite size LP, convex QP, SOCP, and SDP constraints on moments.

Throughout this text, we always make the following assumption:

Assumption 1 (Existence of feasible solutions).

The feasible set of (1) is not empty.

Now that the problem has been introduced in full generality, we quickly drop some notational burden by
setting M = N = 1, without loss of generality: now X = M(X) with X = S(h), X' = C(X), Y = P(Y),
V' =P(Y) so that the problem rewrites as a “simple” moment problem®:

Py =  sup / g dp
REM(X)
(2)
s.t 12 S M(X)+
Ap="T

Remark 2.2 (Existing GMPs).
The framework of GMPs covers a large class of problems, notably static polynomial optimization [27], but
also the LPs from [49, 32, 40, 21, 44, 23, 8, 17, 15], to name only a few, can all be represented in the form

(1)

1The case where g =0, X =Y and Ap = (f x® dp)qenm is called the X-moment problem.




The GMP is an infinite dimensional instance of conically constrained linear programs (CCLP), and as such
it is subject to Lagrange duality. To write the dual problem, we introduce the Lagrange operator

A::M(X)X’P(Y)B(u,w)n—>/gdu+<T—Au,w), 3)

Ty
and it is straightforward (using the fact that inf,,cp(y) (T, w) = —oo iff T), # 0) that
Py = sup { inf {A(u,w) Jw E P(Y)} NS M(X)+} .
Finally, the dual problem to (2) is obtained by swapping the sup and inf operators:
M = inf { sup {A(u,w) RS M(X)+} Jw E P(Y)}
i.e., defining the adjoint operator A’ : P(Y) — C(X) such that for p € M(X) and w € P(Y),

/A’w dp = (Ap,w)

so that A(p, w) = /(g—A/ w) dpA(T, w) (and again sup e p(x), [ (9—A w) dp = +ooiff A w—g ¢ C(X)):

dy, = inf T, w
M weP(Y) (T,w) (2
st.  Aw—gel(X);.

From this, one can deduce the fully general dual problem by taking generic M and N:

ta= inf (T
tu=Jof (T, w) )

st. Vie [[M]L (.A/ W)l —g; € C(Xi)+.

This duality between (1) and (1’) comes with two interesting properties [5, 48], which we state next.
Proposition 2.3 (Weak duality).

In all generality, with the above notations, one has P&y < A -

Proposition 2.4 (Strong duality).

One has p&y = dgy if one of the following two Conditions is satisfied.

Condition 1 (Slater [15]). 3w € Y s.t. Vi € [M], (A’ w); — g; € C(Xi)g-
Condition 2 (Primal compactness [17]). 3B > 0 s.t. Vu feasible for (1), one has Vi € [M], /1 dp; < B.

Remark 2.5 (On the links between Conditions 1 and 2).

Condition 1 is instrumental in numerically constructing approximate solutions of (1’), while Condition
2 is used in [48] to prove a strong convergence result on the numerical approximation of (1). Ideally, one
would like to deduce both conditions from one, stronger condition.

If for ¢ € [M], we have g; € P(X;)+, then Condition 1 implies Condition 2. Indeed, assuming Condition
1, one gets a Slater point w such that Vi € [M], (A'w); > g; > 0 on X;. But then, denoting ~} :=
minx, (A/vi,)i > 0 and v* := minj<;<p ;7 > 0, and taking a feasible p for (1), one gets

M M
Soo [ram <y [ = [ as-au
i=1 =1

= (Ap,w) = (T, w) < oo



and, a sum of nonnegative terms being bigger than any of its terms, one deduces that for all ¢ € [M], it
holds 5 .
T T
/1duz—§ Tw) W) _ pe (o0

v 7
which is exactly Condition 2. Thus, up to a shift on g, Condition 1 implies Condition 2.

In this text, we follow an established line of reasoning for solving the GMP (1) and its dual (1) via moment
relaxations and semidefinite programming. This technique is often called the moment-SoS hierarchy, which
we recall in the following sections.

2.3 A motivating example

Consider the problem of computing the Lebesgue volume denoted A(X) of a bounded basic semi-algebraic

set
X:=8Sh)={xeR™;hi(x)>0,...,h.(x) >0}

with m,r > 1 integers and hq, ..., h, € R[x]. For this, we suppose that X satisfies

XCB:={xecR";x'x<1}.

The standard moment-SoS approach to numerically solve the volume problem is discussed in detail in [16].
The method consists of formulating a GMP whose optimal solution is A(X), after which one numerically
approximates this optimal solution using the moment-SoS hierarchy that we are now going to introduce. We
first notice that denoting Ag the Lebesgue measure on B, it holds A(X) = Ag(X) (because X C B), and
there exists a closed formula (in terms of Euler’s I' function) for the Lebesgue moments on the unit ball B

Tx) = [ x* Dax)

Hence, one can write the following GMPs

o [ 1 @ g, [ oo w
HE +
vEM(B)4 s.towlx —1€C(X)4
st.u+v=2>B w e C(B)4

and it is straightforward to find that py% = A(X) with optimal solution y* = 1x Ag the Lebesgue measure
restricted to X, v* = (1 — 1x) A, where 1x stands for the indicator function of X, which takes value 1 on
X and 0 elsewhere. We are going to illustrate the moment-SoS hierarchy using (4’) as a motivating example.
First, notice that the infimum in (4’) is not attained; a preliminary recasting can be done to tackle this issue:

= AMX) = i d\
AX) = e, / wdds (X) = Zn / wdAs
s.t. ulgy\x =0 (5) st.owlx — 1€ LYX), (5")
u+v=1 we L'(B)y

where L°°(B) is the Banach space of Lebesgue essentially bounded functions on B and, its pre-dual, L!(B)
is the space of Lebesgue integrable functions on B (both factored by the equivalence u = v <= u = v M-a.e.)
and for s € {1, oo},

L*B)r ={ve L*(B);v >0 lae.}.

2Up to a rescaling, the inclusion condition is equivalent to X being compact.



Now, both primal and dual have optimal solutions, u* = w* = 1x and v* = 1 — 1x. Our preliminary step
is formulated as follows:

Step 0: By density of P(B) in L'(B) with respect to the norm ||ul|11(g) := [ |u| dAg, it holds dk = A(X)
and minimizing sequences for (4') approximate Ix from above w.r.t. || - ||z1(B):

Ve > 0, Jw. € P(B) feasible for (4") and such that \(X) < /w8 dA\g < A(X) +e.

In the following steps we recall how to recast (4’) as a hierarchy of finite dimensional convex problems that
approximate A(X).

Step 1: Noticing that for w € R[x], w|x —1 € P(X), it is possible to replace C(X)+ and C(B)4 with P(X)+
and P(B)4 in (4'), without changing its optimal value, yielding

AX) = inf / wdAg = (T, w) (6a)
weR[x]

Step 2: Second, we notice that Slater’s Condition 1 holds with W= 2, so that we can look for a minimizing
sequence of strictly feasible polynomials w:

AX) = inf (T, w) (6b)
wER[x]
st wlx —1€P(X)g

w e PB)g.

Step 3: Next, we use a real algebraic geometry theorem that we will introduce in the next section, to recast
positivity constraints using sums of squares of polynomials:

AMX) = inf (T, w) (6¢)
w,50,51 €R[x]
o=(01,..,0r41) T ER[x]"T!
s.t. wzl—i—(hT 1)0
w=75g+ (1 —x'x)77

79,01,01,-..,0.4+1 are sums of squares.

Step 4: Eventually, we impose a bound £ € N on the degree of the involved polynomials to get a convex, SDP-

representable optimization problem (see [28, Proposition 2.1] for SDP-representability of sum-of-squares
constraints):
d% = inf (T, w) (6d)
w,50,01 ER[X]
oCR[x]" !
st. w=14+(h" 1)o=50+(1-x"x)77
00,01,01,...,0p41 are sums of squares

max {deg(w), deg(dy), deg(o7) + 2} < 2¢
max {deg(hy 01), .. deg(hn 0,), deg(o41)} < 20.

Note that (6d) is a tigthening of (6¢) in the sense that we replaced the feasible set with a strictly smaller
one (even finite dimensional): in this instance, it holds

d% > \X).



Moreover, increasing the degree bound ¢ increases the size of the feasible set for (6d), so that the following
monotone convergence theorem holds for free:

d% N\ AMX).

{— 00

Step 5: It is possible to write a Lagrangian dual to problem (6d), which can be proved to be a finite
dimensional relazation of problem (4).

The moment-SoS hierarchy systematizes this process for generic instances of (1) and (1').

2.4 The moment-SoS hierarchy

The moment-SoS hierarchy builds on real algebraic geometry results to formulate a sequence of finite dimen-
sional convex optimization problems that approximate (1) and (1'):

Theorem 2.6 (Putinar’s Positivstellensatz [11, Theorem 1.3 & Lemma 3.2]).
Let r,m € N* be positive integers, h € R[x]|" a family of r polynomials in m variables.

Introduce the closed semialgebraic set S := {x € R™ ;h(x) € R} as well as the convex cones

P(S)+ = {p e Rx];p(S) Ry} Z[x]:= {Zle pi i K €N pi, ... pK € R[x}}
P(S)e :={p e R[x];p(S) CRg} Qh):={(h" 1)o;0cIx]""} CP(S);.

If there exists R > 0 s.t. R? —x"x € Q(h) (Archimedean property), then P(S)g C Q(h).

Under the same Archimedean condition, the dual cones Q(h)" and M(S)+ are isomorphic.

Remark 2.7 (On the Archimedean condition).

As Q(h) C P(S)4, the Archimedean property automatically yields that
SCBp:={xeR";x'x < R*},

i.e. S is bounded (and thus compact as it is closed). Conversely, if S C By for some R > 0, then adding a
polynomial h,,; := R? —x"x to h does not change the geometry of S, while it results in adding h,,1 to
Q(h). Thus, in practice, the Archimedean condition is considered equivalent to compactuness of S.

Eventually, to properly formulate the moment-SoS hierarchy, we make a last assumption on A.

Assumption 2 (Moment operator).
A is a moment operator, which writes as follows in the setting M = N =1 of (2):

There exists a sequence of polynomials (pg)g € P(X)N" such that, for all 4 € M(X), Ap is the linear
operator defined on the monomial basis by

(Ap,y?) = /wa dp. (7)

Remark 2.8 (Generic moment operator).

The generic case M # 1, N # 1 is identical to the above statement, where the sequence of polynomials lies
in (P(X1) x ... x P(Xp))V" >N instead of P(X)N".

Lemma 2.9. Assumption 2, is equivalent to supposing that A’ maps polynomials onto polynomials:

Im(A') € P(Xy) % ... x P(Xar). (8)



Proof. To avoid unnecessary technicalities and index notations, we restrict to the case M = N = 1 of (2).
The generalization to (1) is straightforward. We first prove (7) = (8). By linearity of A’, it is sufficient to
prove that for all 3 € N*, A'[yP] € P(X). Let 8 € N*, x € X and consider the Dirac measure y = dx. By
Assumption 2 and by construction of the adjoint operator, one has

0= [ A
= (Au,y?)
= pp(x).

As this holds for all x € X, we deduce that A'[y?] = pg € P(X).
We then prove (8) = (7). Let u € M(X), 8 € N*. Then, one has

(Ap,yP /A’

which concludes the proof as by (8), g = A'[y?] € P(X) holds. O

Remark 2.10 (On the validity of Assumption 2).

To our best knowledge, all existing formulations of the GMP (including those in [27, 49, 32, 40, 21, 44,

, 8]) satisfy Assumption 2. Indeed, using Lemma 2.9, it is clear that all operations whose adjoint
preserves the space of polynomials (such as summation, polynomial multiplication/pushforward /composition,
differentiation) satisfy Assumption 2.

Corollary 2.11 (Action on bounded degree polynomials).

Under Assumption 2, for all ¢ € N, there exists dg € N such that any p € Im(A")NRoy[x] has an antecedent
of degree at most dy:
JweRyly] ; p=Aw

Proof. Let ¢ € N and define By := {8 € N" ; deg(pg) < 2¢}. By Assumption 2 and Lemma 2.9,
m(A") =span{pg ;3 € N} and thus Im(A’) NRy[x] = span{pg ;B € Be}.
Let p € Im(A") N Ryp[x]: there exists (cg)s € RP* such that
p(x) = > cppp(x).
BeB,
If B, is finite, then d; := max{deg(pg) ; B € B;} concludes the proof.

If By, is infinite, then because dim (Im(A") N Roy[x]) < dim(Ros[x]) = (m;;%) < 00, one can extract a finite
subset B, C B, such that A
Im(A") N Roe[x] = span{yps ; 8 € B},

and one is back to the case where By is finite. O

Then, it is possible to generalize steps 1 to 5 of the previous section to write a hierarchy of finite dimensional
convex problems that approximate (1) and (1’). For simplicity of exposition, here we rather approximate
(2) and (2/).

Step 1: First, by Lemma 2.9, under Assumption 2 it is possible to replace C(X), with P(X), without
changing the optimal value d};:

dy; = inf T, w
M7 wep(y) (Tow) (9a)
st.  Aw-—geP(X);.
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Step 2: Second, assuming that Condition 1 holds, we look for a minimizing sequence of strictly feasible
polynomials w:

dy = inf (T,w)
wER[y] (9b)
st. Aw-—geP(X)g.

Step 3: Using Theorem 2.6, we recast the positivity constraint of (9b) as a quadratic module constraint:

dM = inf <T, w>
wER[y] (90)
st.  A'w—ge9(h).

Step 4: Eventually, we project our infinite dimensional quadratic module onto the bounded degree quadratic
module defined for £ € N by

Qu(h) :={(h" 1)o € Q(h);Vi€ [r], max(deg(c; h;),deg(or41)) < 20}

which happens to be a finite dimensional convex cone, obtaining the following SoS programming problem:

d¢, .= inf T, w
M Ry, Iy] o) (9d)
st. A w—ge Quh),

where we used Corollary 2.11 to bound the degree of w. Note that (9d) is a tigthening of (9¢) in the sense
that we replaced the feasible set with a strictly smaller one (even finite dimensional): in general,
d§; > diy.

Moreover, as Q(h) = UpenQe(h) and Qp(h) = U< Q,(h) are clear, one also has the following monotone
convergence theorem for free:

df;, N\ di.

{—00

Step 5: Using Lagrange duality, from the SoS tightening (9d) we deduce the following moment relazation:

pyi=  sup  (Z,9)
ZeQ(h) (9e)

s.t. .AZ/ Z =T Ra, [y]

the “double adjoint” Ay := (A'[g,, [y])" : Rae[x]" = Rq,[y]" coinciding with A on M(X) C Ra[x]":

VB e NZ@’ <y,67~’4” Z> = <<pg,Z>

under Assumption 2 and with deg(yg) < 2¢ by Corollary 2.11 and its proof.

Several results, ranging from practical to theoretical, come with these tightenings and relaxations. First, as
Step 3 assumes Slater’s Condition 1, strong duality holds between (9¢) and (9d): p§; = df; (for all £ such

that dy > deg(w)).
Second, [28, Proposition 2.1] gives a representation of Qy(h) with p.s.d. matrices (and hence by duality
Q¢(h)’ is represented by linear matrix inequalities), so that the moment relaxations and SoS strengthenings

are equivalent to semidefinite programming (SDP) problems. Eventually, the following theorem ensures
strong convergence guarantees of the corresponding numerical scheme:

11



Theorem 2.12 (Convergence of the moment-SoS hierarchy [48, Theorem 4 & Corollary 8]).

Suppose that AB > 0, Ly € N s.t. V0 > b, any Z feasible for (9e) satisfies (1,Z) < B, and that
1—x"x € Q(h) (up to rescaling, this second condition can be enforced if X is compact). Then, for £ > L,

Moreover, if (2) has a unique solution p*, then for £ > £y (9¢) has a unique solution Zp and

Voo € N™, (x*, Zy) P /xo‘ dp* (x).
asde el

3 Method for convergence rates computation

The aim of this section (and more generally of this article) is to design methods for computing the rate of the
optimal values convergence given in Theorem 2.12. From particular examples, we derive a generic method
for computing such convergence rate, depending on the solutions of the infinite dimensional problem (9a).

Our strategy consists of the following steps:

1. Construction of a suitable minimizing sequence of polynomials. In this step it is important
to control simultaneously the degree of those polynomials and the convergence of their cost towards
the optimal value.

2. Application of effective version of Positivstellensitze. In this step, explicit convergence rates are
derived. They are based on the convergence rates for Positivstellensétze and the minimizing sequence
from the previous step.

There is an interplay between the two steps inherent to the choice of the minimizing sequence. We will see
an adversarial behavior between, on the one hand, a good approximation of the optimal cost value via high
degree polynomials and, on the other hand, degree bounds in the SDP relaxations.

Remark 3.1 (Focusing on the function LP).

We will focus on the dual LP (2’) and not on the primal (2) simply because we will use the effective version
of Putinar’s Positivstellensatz Theorem 3.7, which is more adapted to the dual problem (2’) than to the
primal (2). However, under Slater’s Condition 1, strong duality holds in each level of the moment-SoS
hierachy.

Remark 3.2 (Sparse and symmetric problems).

The number of variables in the SDP for the ¢-th level of the moment-SoS hierarchy grows combinatorial
with ¢ € N. Thus exploiting sparsity or symmetry, when present, is important in practice. Symmetry can
be exploited without loss of accuracy, see [42], and therefore the convergence rates translate immediately
from the full moment-SoS hierarchy to the symmetry-reduced one. By [25], correlation-sparsity allows to
transfer convergence rates. For (correlation-)sparse dynamical systems the convergence rates can even be
improved as long as the bounds in the effective version of Putinar’s Positivstellensatz grow with increasing
state dimension, see [43].

3.1 Example: Static optimization

The Polynomial Optimization Problem (POP) is at the root of the development of the moment-SoS hierarchy,
and will serve as a fundamental example for our convergence rates computation. It consists in globally
minimizing a polynomial f € R[x] on a nonempty, compact basic semi-algebraic set @ # X := S(h) C R™,
where h € R[x]":

= i (10)



By definition of the minimum, it is straightforward that f¥ = max{w € R: f —w > 0 on X}, which can in
turn be approximated by the moment-SoS hierarchy of SoS strengthenings:

0.
x=max w (11)
st. f—we Qu(h).

Here there are two possible cases: (i) f — fx € Q(h) or (ii) f — fx € P(X)4+ \ Q(h).

In case (i), as Q(h) = UpenQe(h) and ¢ < ¢/ = Qy(h) C Qp(h), there exists an ¢* € N such that
f— fx € Qu(h) <= ¢ > ¢* and one has finite convergence:

fx>fx  with  fi=fx =020 (12)
A sufficient condition for such finite convergence was given in [38], in the following setting:

Definition 3.3 (Constraint sets and Lagrange function).

Jy={ie[r];Vje[r],t <0,h; #th;}is the set of inequality constraints,

Jo = ('I\I4)/ o where i ¢ j iff —1= € Ry, is the set of equality constraints,
J

J.(x) :={i € [r] ; hi(x) = 0} is the set of active constraints in x € X,

A(x,y) := f(x) —y"h(x), x € R™, y € R", is the Lagrange function.
Condition 3.

Q(h) has the Archimedean property and, for each local minimum X € X of f:

3.1 {grad h;(X) ;i € J.(X)} are linearly independent (constraint qualification),

&z{gmuA@J>=o

= Vi e Ji,y; + hi(X) >0 (strict complementarity),
Viedy, g, >0and g, hi(X) =0 Y ®) ( b v

grad, A(X,y)=0, v#0
33<¢Vied,, 7, >0and 7, hi(X) =0 = v Hessx A(X,¥)V >0 (second order condition).
Vi € J,(X), grad h;(X)'v =0

Theorem 3.4 (Finite convergence of the moment-SoS hierarchy).

Under Condition 3, f — fx € O(h). However, no bound on { s.t. f— fx € Qu(h) can be computed in
general (see discussion in [58, Section 5]).

Case (i7) is tackled in [2, Section 4] and [3]. We reproduce here the main results, which are based on the
following Theorem 3.5 and Assumption 3.

Theorem 3.5 (Lojasiewicz exponent [2, Theorem 2.3, Definition 2.4]|).

Forx € [-1,1]™, let
H(x) = |min(h1 (%), ..., he(x),0)  D(x) := min{lx — x| ;x' € S(h)},
where |x| ;= VxTx is the Buclidean norm of x. Then there exists F, ¢ € R% s.t. forx € [-1,1]™
D(x)* < ¢ H(x). (13)

For the effective version of Putinar’s Positivstellensatz we make the following assumption.

Assumption 3.
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1. 1 —x"x € Q(h) (normalized Archimedean property),

2. ¥ie[rl, |lhll= max hix) <}

e[-1,1]m
Remark 3.6 (On the validity of Assumption 3).

The normalized Archimedean property can be seen as a restatement of compactness of X. For compact
X = S(h), up to rescaling, S(h) is included in the unit ball so that it is possible to add the redundant
inequality constraint 1 —x'x > 0 to the description of S(h). This is the practical approach for guaranteeing
Assumption 3.1. The second condition in Assumption 3 is only of technical nature and can be obtained
by scaling h.

In this text, we will use the below effective version of Putinar’s Positivstellensatz. For the statement of this
theorem we recall the notations

% = inf = a .
px = nf p(x), ] xer[glﬁ]mp(X)

Theorem 3.7 (Effective Putinar Positivstellensatz [2, Theorem 1.7]).

Form > 2, p € P(X)g, under Assumption 3, one has
¢ > ~y(m,h) deg(p)>5™L (Ipl/p3 ) "™ = pe Qy(h) (14)

where 1 < y(m,h) < T'm? 25571 4m 2™ deg(h)™ and T > 0 does not depend on m,p,h. In the rest of this
paper, we will consider fired m and h, so that we simplify the notation v(m,h) into .

Remark 3.8 (Farkas Lemma).

Regardless of m, if deg(p) = deg(h) =1 (affine forms), then p € P(X)+ <= p € Q;(h). In such case, both
(10) and its order 0 SoS strengthening (11) are equivalent to the same linear program (LP).

Corollary 3.9 (Convergence rate for POP [2, Theorems 2.11, 4.2 & 4.3)).

For m > 2, under Assumption 3, one has

0<e<|fl and €>~deg(f)> ™ @IM))>"™  — 0< fx—fk<e (15a)
0< fx — fi < (/)77 3] fl| deg(f)F € O (¢71/2omE) (15b)
If constraint qualification Condition 3.1 holds for any X € X, then £=1.

Proof. (15a) is (14) with p = f — f% +¢, so that px =€ and, as ¢ < || f|| and |fx| < [IfIl, lpll < 3||f||. Thus,
by Theorem 3.7, p € Q;(h), which means that w = f% — ¢ is feasible for (11), so that fi > f% — &, which
is the announced inequality. O

Notice that the key idea here consists in perturbating the optimal f — f% (which is nonnegative by design but
in case (7i) does not belong to Q(h)) with some ¢ to obtain a positive polynomial p (which is then guaranteed
to be in Q(h), using Putinar’s Theorem 2.6) to which we apply Theorem 3.7 to get an effective order ¢
quadratic module representation. This in turn allows us to derive a bound on the rate of the convergence
fx — fx
£— 00

In the next section, we will derive generic methods for constructing the right polynomial p, depending on
the solutions of (9a).

3.2 General method and function approximation

In this section, we specify the procedure that we have indicated at the beginning of Section 3. Let ¢ > 0.
Supposing that (9a) has an optimal solution w* and noting d := deg(w*), we want to perturbate it with some
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W € Ry[y] such that @ := w* 4+ is still feasible for (9a) but also (T, ) < dj;+¢ and p := A w—g € P(X)q,
i.e. w is feasible for (9b) and thus for (9c¢) by Theorem 2.6. Then, Theorem 3.7 will give us a lower
bound on ¢ such that 1 is feasible for our SoS strenghtening (9d), which will prove that dj; < d§; < df; +e.

This is what we did in the previous section:

St (cw)— (—f) € P(X)..
——

A’ w g

—f% =min —w=(T,w)
(

with n =0 (so that Y = P({0}) = R), w* = f} and © = —e¢.

If (9a) has no optimal solution, then we look for minimizing sequences. One way of doing so is to relax (2')
into

dy = inf (T,w)

wey - _ (16)

st. Aw-—geX]
where ) D ) is the closure of Y for its “well-chosen” topology, T' (resp. A’) is the unique continuous linear
extension of 7' (resp. A') to Y and X{ = Im(A’) N R¥ is a cone of nonnegative functions. To our best
knowledge, in relevant applications, a good choice for the topology on ) often results in (16) having an
optimal solution w* € Y with (T, w*) = df = d};. Then, by continuity of T and density of J in ) one can
find w. € Y feasible for (9a) such that (T, w.) < dy; + §, after which one only needs to repeat the process
of previous paragraph, looking for w € Ry[y] (where d = deg(w,)) such that & = w, + w is feasible for (9b)
and (9c) and (T',w) < (T,w.) + § < dj; + ¢, and using Theorem 3.7 to find a lower bound on £ s.t. w is
feasible for (9d), proving again that dj; < d§; < df; +e.

Hence, the general process for computing the degree ¢ needed for a given € > 0 accuracy and the corresponding
convergence rate is summarized as follows:

Take a minimizer w* of the LP (9a) (or of the extended LP (16) for which a minimizer exists).
If w* is not a polynomial, then approximate it with a feasible polynomial w. with (T, w.) < d}; + ¢/2.

1.

2.

3. Perturb the polynomial w* (resp. w,) into a strictly feasible polynomial @ with (T, w) < dj; + €.

4. Apply effective Positivstellenstétze to show that w is feasible for the SDP hierarchy at some level £ € N.
5.

Relate the approximation error € and the hierarchy level ¢ to derive a convergence rate.

In conclusion, in the case where only (16) has an optimal solution, only one additional step is needed, and
the convergence rate is obtained by combining Theorem 3.7 with an approximation theorem that gives a
lower bound on the degree d required for w. € Ry[y] to be as defined above. Thus, the rest of this section
will be devoted to proving general results on the degree needed to find proper w. and w polynomials.

3.3 Polynomial approximation (finding w.)

This section introduces polynomial approximation results that depend on the regularity of the function to
be approximated. For Y C R"™ open or compact with nonempty interior, we need to define the vector spaces
CF(Y),k € N by induction: CY(Y) := Cy(Y) := {f € C(Y) ; f is bounded on Y} and

ORI (Y) = {f cay) ekl 2L e c!f(Y)}.

J

These vector spaces are equipped with the norms || f|[cocyy = || f |1¥ = supy |f| and, again by induction,
n
of
||f||c’“+1 Y) T ||fHY + a. .
b ( ) o0 ; 8yj C{f(Y)
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When Y is compact, the subscript b is omitted as continuous functions are bounded on compact sets.

An important object is the modulus of continuity wy y(p) of a function f € CF(Y) of order k at a point
y € Y C R" for the radius p > 0, defined as

wyk(y,p) == sup ( sup Iaaf(y)—aaf()”ﬂ) (17a)
aeNp \[ly—y’lI<p
8C¥1 aan
where Oaf = a7 5a fs
f y; Oyn™ f

as well as the global modulus of continuity

Wik (Y. p) = lwpn( )% = Sup wik(y, p) < (17b)
y

and, for € M(Y)+ and s > 1, the L®(u)-averaged modulus of continuity

= (/w.f,k(vp)s du) " (17c)

Notice that Y C Y/ = wﬁ: (Y,) < wf;: (Y',-) and pg — o € M(Y)y = wﬁ(uh ) > w]{‘;(u% -). With
the notion of modulus of continuity we can state the following theorem from [1] concerning convergence
speed for polynomial approximation of regular functions.

wf k(1 p) = llwr k(- p)

Theorem 3.10 (An extended Jackson inequality [1]).

Let Y C R"™ be open and bounded, f € C{f(Y). For d € N there is a polynomial pg € Ryly] such that for
each a € N with |a| < min(k,d) we have

10a(f = pOII% < S whi (Y. 1/a). (18a)

where ¢ is a positive constant depending only on n,k and Y.

Corollary 3.11 (Approximating smooth functions).
Let Y C R™ be open and bounded, f € C*(Y). For d > k there is a polynomial pg € Ryly] such that

k
1 S — o~
IIf— pd||ck(7) <c <1 -+ d> wfk (Y’ 1/d) < ¢ wﬁk (Y7 1/d) (18b)
where ¢, co = e - ¢ are positive constants depending only on n,k and Y.

Proof. Consider the polynomial p, given by Theorem 3.10. Then, one has

1f = Pallorm) = Ciajc 10alf = pa)lX
(18a) . .
< Yla<k gerar wfy (Y, 1/a)

ﬁwﬁ: (Y, ) 32 o<k dl!

ar wfk (Y,Ya) (1+d)F

—c(1+2 )’“ L2 (Y, V)

<c(1+4)fw wiy (Y, 1/4)
O

where the first equality at * follows from continuity of O (f — pg). We conclude by noticing (1 + 1/a)F <
(14 Yr)k <e. O
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With a view toward the problem of computing the volume of a semialgebraic set from Section 2.3, the
following one-sided approximation result is useful.

Theorem 3.12 (One-sided polynomial approximation [0]).
LetY C [-1,1]", Ay be the Lebesgue measure on'Y and f: Y — R be bounded and measurable.
For all s € [1,00) and d € N there is a polynomial pg € Ryly] such that pg > f on'Y and

j/(pd——f)s Ay <Twhy (A, d) (18¢)

for some constant ¢ depending only on n and s.

Moreover, for all d € N there is a polynomial pg € Ryly] such that pg > f on'Y and

M{y e Y naly) > £v) +ewfs (Y. Y }) =0 (184)

for some constant ¢ depending only on n.

3.4 Inward pointing condition (finding )

In this section, we complement polynomial approximations from the previous section with conditions that
assure feasibility for those approximations. We will see in Lemma 3.13 that the following condition is
sufficient for guaranteeing the existence of a minimizing sequence of strictly feasible polynomials.

Condition 4 (Inward-pointing condition).

We say the LP (16) satisfies the inward-pointing condition if for each feasible point w for (16) there exists
¢ € Y such that

A'(w+6p)—g>0 onX (19)
for all € [0, 1].

Lemma 3.13. Under Condition 4, there exists a minimizing sequence of strictly feasible polynomials.

Proof. Let € > 0 and w, € Y with

€
g.
Let ¢. be as in the inward-pointing Condition 4, such that w. + 6¢. is strictly feasible for all § € [0, 1]. By
continuity of T let 6§ = 6. be small enough such that

(T, we) < d + (20)

3

|<Tvee¢€>‘ =0 |<T, ¢6>| < 3

(21)
From compactness of X it follows that there exists p > 0 with A'(we + 0-6.) —g > p on X. By density
of Y in Y, and continuity of A and T, there exists a polynomial p. € Y (close enough to w. + 0.¢.) with
Ap: —g > § on X, i.e. p. is strictly feasible, and

(T, pe) — (T, we + 0-9.)| < % (22)
Putting together (20), (21) and (22) we get for p.
(T.pe) < [(T,pe) = (T we + 0:02)| + [T, 0cc)| + (T we) < dp +e.
Letting € go to zero shows the statement. O

A simpler version of Condition 4 is that there exists ¢ € Y with A¢ > 0.

Lemma 3.14. Assume there exists ¢ € Y with A¢ > 0. Then Condition 4 is satisfied.
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Proof. Let w € Y be feasible. Then for all # > 0 it holds A(w + 0¢) — g = A(w) — g+ 0A(¢) > 0on X. O

The inward-pointing Condition 4 is closely related to the Slater Condition 1. We address this shortly in
the following proposition.

Proposition 3.15 (Inward-pointing and Slater conditions).

The inward-pointing Condition 4 and the Slater Condition 1 are equivalent.

Proof. If Condition 4 is satisfied, then Condition 1 is satisfied. This follows immediately because for
feasible w € A and ¢ and ¢ as in Condition 4 the point w + £¢ is strictly feasible, i.e. (by continuity
of A) lies in the interior of the feasible set. On the other hand, if Condition 1 is satisfied with strictly
feasible point wey then, by convexity of the feasible set, Condition 4 is satisfied. Indeed, for w feasible
let ¢ := w — w; then for all # € [0,1] it holds

A(w+00¢) —g=A((1—0)w+0w) —g=(1-0) (Aw—g)+0 (Aw— g) > 0.
>0 >0

Remark 3.16 (On the relevance of Condition 4).

Upon reading Proposition 3.15, one could wonder why the inward-pointing condition is important, as it is
equivalent to the better-known Slater condition. The reason is that this condition is a quantitative version of
Slater’s condition, in the sense that checking it gives effective values for ¢, which will be instrumental in the
computation of the convergence rates. Hence, the inward-pointing Condition 4 is to Slater’s Condition 1
what the effective Putinar Theorem 3.7 is to the original Putinar Theorem 2.6. In practice, most of the
time the inner pointing condition and corresponding ¢ are deduced from Lemma 3.14.

3.5 Obtaining the convergence rates

Here, we put together the steps we discussed in this section. We consider the GMP (2’) and formulate the
following (quantitative) conditions.

Condition 5.

5.1 Effective version of Putinar’s P-satz: There is an effective degree bound ¢,(m, h, p%, ||p||X, deg(p)) for
Putinar’s Positivstellensatz. That is, for X = S(h) C R™ and p € P(X), it holds

px =min{p(x) ; x € X} >0 and £ > ly(m, h,pk, [plI%, deg(p)) = pe€ Qi(h).  (23)

5.2 Existence and regularity of minimizer: There exists a minimizer w* of the GMP (2"). To be precise,
we generalize the GMP (2) to allow for a larger class of functions than only polynomials, such that a
(smooth) minimizer with desired optimal cost exists.

5.2 Quantitative inward-pointing condition: We have access to quantitative estimates of “how much the
inward-pointing direction is pointing inward”. That is, we can bound from below the function (6)
given by

9(0) 1= inf A(w +69)(x) ~ 9(x) > 0.

Remark 3.17 (A need for embeddings and smooth extensions).

The effective degree bounds for Putinar’s Positivstellensatz Theorem 3.7 works with ||p||¥ for the ambient
set K = [—1,1]™ D X. This comes with the disadvantage that we need to bound the polynomials of interest
on a larger set K for which we have less or even no a-priori knowledge of the behavior of those polynomials.
This may lead to additional terms in the degree bound that depend exponentially on the degree d, see
Lemma 4.5. Thus, we propose to (smoothly) extend the minimizer to the larger set K and approximate
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the minimizer on this set; for this reason, we recall an extension theorem for smooth functions in appendix.
In Theorem 4.10 and Theorem 5.6 we demonstrate that an extension argument, indeed, avoids the
appearance of exponential degree bounds.

Conditions 5.2 and 5.3 are specifically formulated to keep simultaneous control of deg(p), p% and |p||X
(ideally; in the present case, we rather have to control |p||¥), allowing for a simple use of the effective
Positivstellensatz. Hence, the “only” remaining difficulty lies in effectively verifying those two conditions.
Examples on how the above three concepts work together for obtaining convergence rates are demonstrated
in the following sections, in which we focus on optimal control problems and volume computation of semi-
algebraic sets.

4 Application: dynamical systems

We are now going to demonstrate the methodology on instances of the moment-SoS hierarchy related to the
study of dynamical systems, such as optimal control [32] or stochastic differential equations [14].

4.1 Optimal control

In this section, we consider the infinite horizon optimal control problem as presented in [22]:

Vi) =t [ e gty u) ar

st. y(t) =yo+ / £(y(s), u(s)) ds (24)

yt)eY, u)eU

with discount factor 5 > 0, f € Ry, u]”, ¢ € Ry, u] and compact basic semi-algebraic sets Y := S(hy) C
R"™, U := S(hy) C R™, hy € Rly]"¥, hy € R[u]™.

If the function yo — V*(yo) is continuously differentiable, then it satisfies the Hamilton-Jacobi-Bellman
inequality
g—pV —f.gradV>0onX:=Y xU (25)

and for any V satisfying (25) it holds V' < V* on Y, see for instance [22]. Hence, for any probability measure
po € M(Y)4 (i-e. s.t. po(Y) = 1) defining a random initial condition Yp?*:

E,o[V*(Yo)] > sup / V(v0) duo(yo) = By [V/(Y0)]
Veci(y)

s.t. g—pV —f.gradV>00onX:=Y xU

(26a)

which can in turn be approximated, defining r := ry +ry, h := (hy,hy) € R[y, u]”, by the hierarchy of SoS
strengthenings:

Vi(po) :==  sup /V(}’o) dpo(yo)
]

VERy, [y
s.t. g— BV —f.gradV € Qy(h).

(26b)

The approximation scheme and its convergence rely on the following Condition (see [22, Assumption 1]):

Condition 6. The following conditions hold:

1. X=YxUcCB={xeR";x"x <1} where m = n+m,

3This includes the deterministic setting under the form po = dy,, where yo € Y and dy, is the Dirac measure in yq s.t.
for all Borel measurable A C Y, dy,(A) =1if yo € A, 0 else. Then, P(Yy = yo) = po({yo}) = 1: Yo is deterministic, and
Epuo [V*(Y0)] := [ V* dpo = V*(y0).

19



2. h(0) € R}, (i.e. the interior of X contains 0).

3. V* € CH1(X), that is V* is differentiable and grad V* is Lipschitz continuous on X (thus the sup in
(26a) is attained).

4. For all y € Y, the set f(y, U) and the map v — inf{g(y,u) ;u € U and f(x,u) = v} are convex.
Using Condition 6.1 one can complement the description of X = S(h) with the polynomial
hryr(x) :=1-x"x,
so that Assumption 3 always holds.
Theorem 4.1 ([22, Theorem 1]).
Let o € M(Y)y be a probability measure. Then, under Condition 6,

1. There is by € N s.t. VU > Lo, Vy(uo) > —o0, i.e. (26b) is feasible.

2. Any V feasible for (26b) satisfies V < V* (lower bounds on the value function).

3. V0 > Ly, (26b) has an optimal solution V;* € Ry, [x] s.t. Vi(uo) = E, o[V

4o B [V*(Xo)] = Velpo) = E,o [V*(Xo) — VF(Xo)] o 0 i.e. V}* converges to V* in L' (o).

In [22], the authors give an upper bound on the convergence rate for item 4. in Theorem 4.1, which we
will now improve using our function approximation results and [2].

Lemma 4.2. For d € N let Vg € Ryly] with ||Vg — V*||c1(yy < 5, where the constant ¢y is deduced from
Corollary 3.11. For anyn >0 let Vg, := Vg — < (1 + m) —n € Ryly]. Then Vg, satisfies

* f X
Van = V*cry) < <2+ ” g > pi +n (27a)
and
g—pVyy+£f-gradVy, > pn on X =Y x U. (27b)
Proof. The arguments can be found in [19, Lemma 3] and [19, Lemma 2|. Since the arguments are short,

we will state the proof here as well. First, we compute ¢; using Corollary 3.11: There exists V; € Ry[y]
such that

Vi = V*lereyy < cowln 1 (Y, 1/a)

with, using the Llpschltz condition on grad V* given in Condition 6, wv* (Y,r) « r, yielding the constant
¢1 such that wv*, (Y,r) < cir. Then, we have

f X
Wan = Vllercry < Vs = Velercn + Wiy = Villen < G + 5 (14 102 ) 4y

This is (27a). For (27b) we compute
g—PViy+f-gradVy, =9g—-pV*+f -gradV* +3(V* - Vy,) +f-grad(Vy, — V*)

>0

20+6<V*—Vd+3(1+

€112

B

I£11%

>5(—||v* X+ (14 102 ) 1)  Jaraa(ve - v o

) + 17) +f-grad(Vy;— V™)

5 (1 =) ) v = Vallonco 1S

¢ €112 C1yenX
B <_d +E <1+ﬂ> +77> - EHfHoo
B

n.

x
(—”V — Valler v + 2 <1+ £l

Y
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Remark 4.3 (Inward pointing condition for smooth control).

Notice that Lemma 4.2 is essentially a statement of satisfaction of the inward pointing Condition 4
while keeping control on the objective, in the special case of the optimal control problem with continuously
differentiable value function.

Now we are already in the position to apply an effective version of Putinar’s Positivstellensatz.

Theorem 4.4 (Effective Putinar for optimal control).

Letd € N andn > 0. Under Condition 6, if d is large enough and d¢ := deg(f)+d, there exist A, B,C € Rg
so0 that Vg, is feasible for (26b) for any

asmz (A B zomb J 2 \2.5mE
0> ydeo™ (77 + nd + 1> (1+ %t . di/y) . (28a)

- ( L E IIX) % (28b)
X

77§6< ”B')d (280)

Eyo[Van(Yo)] 2 By [V (Yo)] — ¢, (28d)
hence proving that 0 < E,, [V*(Yo)] — Vi(uo) < e.

Moreover, if

and

then it holds

Proof. Notice that (28b) is only to ensure (28¢) has at least one solution 1. We use Theorem 3.7: Denoting
p=g—BVy,—f-gradVy, > n >0, we know that p € Q,(h) (i.e. Vg, is feasible for (26b)) for

£ > ydeg(p)® o (Ipl/ps)* 7" (292)
Hence we only need to estimate bounds on ||p||, deg(p) and p%.
® px > 37 is a direct consequence of how we constructed Vg, in Lemma 4.2.
o deg(p) < max(deg(g),deg(Vay,y),deg(f - grad Vg ,)) < d¢ := deg(f) + d.

e Estimating ||p|| is the difficult part. First, we have, denoting ¢ := g — SV* —f - grad V* > 0:

IpIX = lalZ < lp—alX
= |B(V* = Vay) + £ - grad(V* — Vy,)|IX

X X.
HB <V* Va+ = <1+|> +77> +f-grad(V* — V)
d Jé] o
LIV =VallZ d g )t ) Il llgrad(VE = Va)lls
N c
< B+ IE1%) (IV* = Vallorow) + 5 ) +n8
<2(5+ HfHX) +np
which gives the upper bound
Ipl% < lall% +2(8 + ”fo) +npB. (29b)
However, what we are looking for is an upper bound on ||p|| > ||p\|§0 (since X C K := [—1,1]™ by Condition

6.1). By equivalence of norms in finite dimensional spaces there is a constant ¢ such that ||p|| < ¢||p[|X. We
will now compute such a bound using results in [4].

21



Lemma 4.5. For any nonnegative polynomial p € P(X),, it holds

deg(p)2 de 1
Il < (1 SEL e ) . (30)
where b € (0,1) is such that [—b,b]™ C X (whose existence is guaranteed by Condition 6.2).
Proof. See Appendix A. L

We finally get our bound by reinjecting the bounds on p%, deg(p) and equations (29b) and (30) in (29a):

X X 2.5mkbL 2 2.5mbL
+ |If]|% a1 d de+1
0> d3.5mL<|q||oc _|_2ﬂ o] +1 14+ 2f (o b)%f
> ydg B By d 1 G/t)

> 121X /py >lel/ip1%

which is exactly (28a). Eventually, we compute
0 < By [V*(Y0)] = Ve(ho)
< By V7 (Y0) = Vay (Yo)]
<V = VaullX
< WV* = Vanlleron

(27a) £l1X
g <2+ [ ||oo> a,

< 3 d
(28¢)
< e
O
Corollary 4.6 (Convergence rate for optimal control).
Under Condition 6, for ¢ € N large enough it holds
By [V* (Yo)] = Viluo)| € O(1/1os6) as € — . (31)

Proof. We are going to use Theorem 4.4. Let d € N and take

X X
€4 = é (<2+ Wg*) ¢ +1> > <2+ ”fgw) %

so that (28b) holds and we can saturate (28c) with

IFIEY e 1
—eg— (24 W)t _ 2
= ed ( s ) dTd

Then, Theorem 4.4 ensures that 0 < E,, [V*(Yy)] — Vi(uo) < €4 for
0> yd3P™ (Ad + B4 1) (1 4 0%t a2 )y)25mE = gy
Now, an asymptotic equivalent is given by

A
by ~ ,y7d11mLC(d+deg(f)+1)2.5mLe O (dllmLCQ.5de)

and taking the log yields
log(4y) € O(d) = O(Yfey) as d— oco.

Finally, remembering that 0 < E, [V*(Yy)] — Vi, (o) < €q and inverting the above asymptotic expression
gives the announced result. O
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Remark 4.7 (Comparison with [22]).

In [22], using a previous effective version of Putinar’s Positivstellensatz, the authors came up with a much
worse convergence rate of 1/logloge. Using the new effective Putinar Positivstellensatz from [2], we could
remove an exponential dependence in the degree and hence sharply improve the convergence rate. Moreover,
at the price of some additional assumptions on the state set Y, it is even possible to derive a polynomial
convergence rate, as we will show now. Indeed, the remaining exponential dependence is an artifact coming
from Lemma 4.5, but the effective Positivstellensatz actually gives polynomial dependence.

4.2 A polynomial convergence rate

In this paragraph, we derive a convergence rate for the GMP (26b) in which the level ¢ of the hierarchy is
polynomial in 1 for the relaxation gap E,,[V*(Yy)] — Vi(po) < . The idea is to side-step the exponential
growth of the degree bound in Lemma 4.5 that arises from bounding the supremum of a polynomial on
the hypercube by its supremum on a smaller cube. Here, we will extend the optimal cost function V* to the
whole hypercube [—1,1]" and, only then, approximate it on the full hypercube [—1,1]" by a polynomial V.
This allows us to bound ||Vy|| simply by ||[V*|| +1 (for d large enough) instead of | V4| < C4||Vy4||¥. For this
to work we need to guarantee that there exists an extension of V* to [—1,1]™ with sufficient regularity.

To extend V* we need to introduce the Holder spaces and norms: We say a function w belongs to the Holder
space C¥4(Y) for k € N and a € (0,1] if w € C¥(Y) and its k-th derivative is a-Holder-continuous, i.e. its
a-Holder coefficient is finite:

< 00.

0, -9, /
ng{a(w) ‘= max sup |Oaw(y) /aw(y )|
’ =k y2y'ey ly =yl

For bounded Y, we equip the space C*%(Y) with the norm

[wlloracyy = lwllery) + (ralw)-

The notion of Holder regularity is used to state the following condition, which is instrumental in ensuring a
polynomial convergence rate instead of the logarithmic one given in Corollary 4.6.

Condition 7. The set Y has C'*! boundary, that is the boundary dY is locally the graph of a C1'! function
in the above sense of having a finite Holder coeflicient.

Next, we provide an extension result for Holder functions from [12].

Lemma 4.8 (Extension Lemma; [12, Lemma 6.37]).

Let k > 1 be an integer and a € (0,1]. Let Y C R™ be compact with C*® boundary. Let Q be an open and
bounded set containing Y. Then for every function w € C*%(Y) there exists an extension w € C**(Q) with
w(y) =w(y) for ally €Y and

0 ey < 2 Il (33)

for some constant ca = ca(n, k,a,Y,Q) independent of w.

Under Conditions 7 and 6.3, Lemma 4.8 ensures that there exists an extension V € C!([—1,1]") of V*
such that grad V is Lipschitz continuous and there exists a constant ca = c2(n,Y) such that

||V||Cl‘1([71)1]n) S CQ”V*HCl,l(Y). (34&)

For the rest of this paragraph, we follow the same path as previously in this section. That is, by Corollary
3.11, let V € Ry[y] be a polynomial and ¢; be a constant (independent of V') with

C1

. (34b)

IV = Valler =1, <

23



As in Lemma 4.2, for n > 0, we define

c f
Vi =Vg— El (1 + 5|) —n € Ryly], (34c)

where we recall that [|f]|| = max{|f(y,u)|; (y,u) € [-1,1]™} with m = n + my. In the following lemma, we
show that Vj,, is strictly feasible.

Lemma 4.9. Let Condition 7 hold and ¢; = ¢1(n, Y, V*), ca = ca(n,Y) be the constants from (34a) and
(34b). For d € N, n > 0 the function Vy, satisfies

B
Further, for the polynomial function p := g — BVa, +f - grad Vy,, € P(X) it holds

fl[\ ¢
Wa~VVlerery < (24 1) 5 (350)

p>Bn onX=YxU (35b)

and, recalling that ||p|| = max{|p(x)| ; x € [-1,1]™},
. c
Il < llgll + c2 [V llerr vy (8 + £ + 231 (B +[I£]) + 8. (35¢)

Proof. The statements (35a) and (35b) follow similarly to (27a) and (27b) in Lemma 4.2. To show (35¢),
we simply apply the triangle inequality

ol = llg—BVay,+f-grad Vg,
< gl + BlVanyll + [If - grad Va,|| (36a)

and separately bound 3V, and f - grad V;,. We begin with 3V,

1BVanll < 5 (|V|| + Ve — VI + % <1 + Ily> ﬂ)
SﬂGﬂku +d+d@+u0 0
<

8 (calvlonon + 5 (24 ) 40)

where in the last inequality we used (34a) and (34b). For bounding f - grad Vg ,, we use grad Vg ,, = grad Vy
and we have

If -gradVa,| = [f -grad V4|
< NEFAVIE+IVa = VI
1
< 18l (e2 1V llors vy + )
Putting together in (36a) gives (35¢). O

As in the previous section, Lemma 4.9 ensures that Vg, is an inward pointing perturbation of V*. Now,
all that remains is to apply an effective version of Putinar’s Positivstellensatz from Theorem 3.7.

Theorem 4.10 (Polynomial rate for optimal control).

Under Conditions 6 and 7, for ¢ € N large enough it holds

0 < B, [V*(Yo)] - Valo) € O (z—emﬁ) as € — oo. (37)
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Proof. We use the notation and constants from Lemma 4.9. Let Vg, be as in (34c). For d € N we choose
n="nq:= é. Let dy € N such that

fll\ ¢ C
@+')1+W0,21w+wwﬁ%SL (38a)
ﬁ do dO

By monotony in d, both terms on the left-hand side in (38a) are bounded by 1 for all d > dy. From Lemma
4.9, we have

1
Vi = V*cryy € O (d) as d — 00 (38b)
and for p:= g — V4, +f - grad Vg, it holds
p
ng onY x U (38¢)
and
Il < llgll + el VFllcraeyy B+ IF]) +1 = c5. (38d)

Note that the constant c3 is independent of d and the choice of extension V. Inserting (38¢c) and (38d) into
Corollary 3.9, we get that Vj ., is feasible for (26b) for any ¢ € N with

ng 2.5mkL
— . 38e
2 -
To finalize the proof, recall that deg(p) < d + deg(f) € O(d). Thus, for given ¢ € N (large enough), we
choose the largest d = dy € N (with d > dp) such that (38¢) is satisfied. By (38¢), such dy is of order (wme
and we get

észumd%@f“m<

oV (00)] = Vi)l < [ 1V (30) = Vi, 30)] o)
< NVagma, = V*IX
. 1 1
= WVan, = V'lerny €0 7 ) €0 (E M) as { — oo.
This shows the statement. O

Remark 4.11 (Relaxing the regularity assumption on V*).

The same arguments in the proof of Theorem 4.10 work still for V* with slightly less regularity, namely,
for V* € C%(Y) and Y with C1% boundary for some a € (0,1). The convergence rate then takes the form

Euo[V* (Yo)] ~ Vi(o) € O (£ 555572 ) as € = o0

4.3 Exit location of stochastic processes

In this example, we apply our framework to [14], in which the exit location of stochastic processes is computed
by a GMP. We recall the setting from [141]. Consider a stochastic differential equation

dXt = fo(Xt) dt + F(Xt) dBt, XO = X (39)

for fo = (foi)i : R™ = R™, F = (fi;)i; : R™ — R™*”, a deterministic initial condition x¢ and (By);>0 a
n-dimensional Brownian motion. The SDE (39) is equipped with an open, bounded constraint set X and
for a given function g : X — R, the expected exit value for x € X is given by

v*(x0) == E(g(X7)) (40)
where 7 = inf{t > 0 ; X; € 90X} is the first time at which the process (X;); starting at Xy = x¢ hits 0X.

In [14], the following assumptions were made
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Condition 8.

8.1 It holds X = S(h) ¢ K = [~1,1]™ for some h € R[x]".

8.2 The boundary 0X is smooth and is represented by X = S(hy) for some hy € R[x]"®
8.3 We assume g, fo;, fij € R[x] fori=1,...,mand j=1,...,n.

8.4 The matrix F(x)F(x)" is positive definite for all x € X.

Remark 4.12. The case when the boundary X decomposes into several disjoint components 0X = X9 U
U Xl"9 is treated similarly in [14]. By Condition 8.2, we restrict to the notationally simpler case of
0X = S(hyp).

Under the above conditions there exists a unique solution X; of (39) for ¢ < 7, see [14, 9].
In [14], from Dynkin’s formula, the following GMP for the value v*(xg) of the exit value (40) is derived
v*(x0) = maxv(xp) st. Lv<0on X, v<gon 90X (41)

where L is the second-order partial differential operator

m

Lo(x) := — Z a;;(x )8)( 8x )+ me axl (42)

ij=1

for (a;;(x))ij=1,...m = F(x)F(x)". The moment-SoS hierarchy for the LP (41) reads

vy (%) = S%}[)] v(Xo)
veER|x
S.t. —Lv € Qy(h) (43)
g—ve Qe(ha).

The function v* is the solution of the following boundary value problem

Ly = 0 on X

v = g on O0X. (44)

Thus, the question about existence and regularity of minimizers of (41) is transferred to the question about
existence and regularity of solutions of (44). Fortunately, the answer here is positive, see [12, 51, 14]. Namely,
under Condition 8, there exists a unique solution v € C*(X) of (44). Next, we investigate an inward-
pointing direction. Therefore, we recall that for ¢ € C*°(X) there exists a unique solution u, € C™ (X)
of

Luy, = ¢ in X
up = 0 on 0X. (45)
To construct an inward-pointing direction let ¢(x) := —1 for all x € X and ug be a corresponding solution
to (45). Let 0 < n,0 € R, we define the function
vi=v"+0(uy —n). (46)

In the following lemma we show that v is indeed strictly feasible for all 6 > 0; in other words ug — 7 is an
inward-pointing direction for v*.

Lemma 4.13. For all 0 > 0, the function v from (46) is strictly feasible for (41).

Proof. On X it holds
Ly = LW +0(up—n)) =L +0L(ug —n) =L +0Luy =0+6(—1)=—-0 <0.
For x € 0X we have
v(x) = v (x) + 0(ug(x) —n) = g(x) + 0(0 —n) = g(x) — On < g(x).
This shows that v is strictly feasible for (41). 0
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The cost of v for the infinite dimensional LP (41) is given by v(xo) = v*(x0) + 6(ue(x0) — 7).

Following our procedure from Section 3.2, we obtain the following convergence rate for the moment-SoS
hierarchy for (41) from [14].

Theorem 4.14 (Convergence rate for exit location of stochastic systems).

Let Assumption 3 hold for X and 0X, and let L (resp. Lo) be the Lojaciewicz exponent of h (resp. hy).
Then, defining £ := max(Z, Ly), under Condition 8, it holds for £ € N large enough that

v*(x0) — v (x0) € O (@7 <2»5+1S>m2) for any s > 0. (47)

Proof. Let s > 0, k := [3:5/s], v,u € C*+2(K) be extensions of v* and u,4 according to Lemma 4.8 with
[ollcrrak) < eallvllerrex)  and  [lullorrz@) < collugllorzx) (48a)

for some constant c; € R. For d € N, by Theorem 3.10, let py, g4 € Rq[x] with

c

lv = pallcrsz k), v — qallerrzky < d% (48b)

for some constant ¢; € R. Further, we set
A= Sup Z lai;(x |+Z | foi(x)
i,j=1 i=1
We define 64,14 > 0 for large enough d € N as
L 262A —k o C2 1
Motivated by (46), we define vy by
vq = pq + 0a(qa — na) (48d)

and verify that vy is feasible for (43) for £ € N to be determined. We first bound vg on K. On K we have
for large enough d € N

lval < [vl + v = pal + Oa(lul + |u — qal + 1a)
< WIS v = palls + Ga(llullSS + llu — gall S +1a)
< vlle2y + v —Pd||c2(K) +Oa([ullc2x) + lu — qallc2x) + 77d)
< eofpp” ||Ck+2(x)+ 7 + Oaca|lugllcrrzx) + Oacallv™ || orzx +9d =+ G
< clvtlerrzx) + 1+ bacalugl|orrzx)y +3 =: C1.

Similarly, we can bound Lvg on K. Note first that for all x € K we have for all w € C?(K)

m

Lo = |3 ai(09:0;u(x +Zfol

,j=1

IN

D a4 Y 1o | lwlexk) < Alwlleex)-
=1

7,j=1

For large enough d € N we get on K

[Lvg] < |Lo|+ |L(v —pa)| + 0(Lu] + |L(uw— q4q)])
< Alvllexk) + Allv *pd||c2(K) + 0A|ullc2 k) + Al — qallo2 k)
C1
< ACQ||U*HCIC+2 X) + Adk + 9A||U¢I|Ck+2(x) + GAd—k
< A02||U*Hck+2(x) + 3 =:Cs.
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Next, we verify strict feasibility of vg for (43). It holds on X

Ly = Lu* +£(pd — U*) + ed(ﬁ'lhb +£(Qd - u¢) + nd)
0 )
= =1
< A|v* = pallerrexy — 0 + 0A|lug — qall orr2(x)
< A||U-pd”ck+2(x) —9+9A||u—qd||ck+2(x)
C1 ACl
< Ou(—1+ A%) + gk
(48c¢) Acy
and on 0X it holds
vg = W Aps— v+ 04( up +qa—uy —na)
=g -0
< g+ " = pal L0+ Ollug — qall SO — Bana
c
< g+9d(1+d—;—nd)
(48¢) Co
Applying Theorem 3.7, we get that vy is feasible for £ € N with
N O dk 2.5mkL C dk 2.5mLa N
0> 5 max {7(77% h) ( 2 ) v(m, hy) ( 1 ) cO (d(3.5+2.5k)mb) ' (48g)
ACl C2
For such ¢ the optimal value v} is at least vg(xg); hence we get
v*(x0) —vi(%0) < (0" =" = (pa — ") = Oa(uy + g4 — uy — na)) (o)
c c L
< o HballuglX + 25 ) € O (d7F) (48h)

Defining ¢4 := d=%, (48g) yields that vy is feasible for £ > ¢, € O <5d (3'5/“2'5)"&) so that (48h) ensures

[ S I T
that [v*(x0) — v7, (x0)| < €4 € O (fb (S'O/HZS)?”L) co (Eb (S+2'5>mh), which is the announced result. O

5 Application: Volume computation

In this section, we analyze the moment-SoS hierarchy for computing the volume A(X) of a bounded basic
semi-algebraic set
X:=8h)={xeR";h(x)>0,...,h(x) >0} CB

with r > 1 integer and hq,...,h, € R[x].

A standard moment-SoS hierarchy method was proposed in [16], but with a bad convergence behavior both
in practice and in theory (see [19] for convergence rates), due to a Gibbs phenomenon occurring in the SoS
approximations. An alternative formulation was proposed in [31], with much better numerical behavior,
which was recently supported by a qualitative analysis in [19], showing that no Gibbs phenomenon occurs

in this improved formulation. In this section we complement the existing qualitative analysis with a first
quantitative analysis of how much better the convergence rate is in the improved formulation.

5.1 The standard approach

The standard moment-SoS approach to numerically solve the volume problem is discussed in detail in [16].
The method consists in formulating a GMP whose optimal solution is A(X), after what one numerically
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approximates this optimal solution using the moment-SoS hierarchy. We have discussed this example in
Section 2.3 and recall its moment-SoS hierarchy:

A(X) = max /1 dp AX) = inf w dAy
HEM(X) weP(Y)
st pe M(X)y (4) st.wlx —1€C(X)+ (4"

where Y contains X and is an Archimedean basic-semialgebraic set, Ay denotes the Lebesgue measure on Y
and these are such that the numbers [ y? dM\y(y), B € N™, are known. Here it is straightforward to show
that the dual problem (4') neither has a polynomial nor even continuous optimal solution w.

In this subsection, the convergence rate for the hierarchy of SoS programs obtained in [22] for the volume
problem considered in [16] is improved with the help of Theorem 3.7, with convention

Y=K=[-1,1]"=S(f) with f=(1-2%,...,1-22) (50)

m

(which is the best choice for computing the convergence rate; notice that Y can be chosen arbitrarily here
without changing the optimal value A(X)). Let us consider a hierarchy of problems from [22] (which can be
regarded as SoS strengthenings of Problem (4):

d% = inf /w dX
X weRly) Y o
st. w—1¢€ Quh), (51)

w € Qu(f).

To compute the rate of convergence of (51) we need to estimate the dependence of the degree £ on € > 0 for
which it holds |d§ — A(X)| < e.

We shall use the standard condition from [22]:
Condition 9 (Finite one-sided Gibbs phenomenon).

There exists a constant ¢g > 0 depending only on X such that problem (4’) admits a minimizing sequence
{wa}den with for all d € N, deg(wq) < d and max{wy(x) ; x € K} < cg.

Remark 5.1 (On finite Gibbs phenomena).

It is well known in Fourier analysis that the Gibbs phenomenon that occurs when approximating a dis-
continuous periodic function ¢ with trigonometric polynomials induces an overshoot of approximately 9%,
and thus the polynomial approximation is uniformly bounded by some constant c, that only depends on ¢.
This is also the case for generic L' approximation of discontinuous functions with algebraic polynomials |7].
However, to our best knowledge, these results have not been extended to one-sided polynomial approxima-
tions, as it is the case here. Following [19], we conjecture (which is supported by the numerical experiments
displayed in [16, 31, 50, 49]) that Condition 9 also holds generically.

Theorem 5.2 (Effective Putinar for volume computation).

Define v(m, £,h) := max (y(m, £),v(m,h)) and L := max(£,1) where L is the Lojaciewicz exponent of h.
Then, under Condition 9, there exists C > 0 such that, for all ¢ € (0,1) it holds d§ — A\(X) < & for any

= 2.5mk 1
> o/ 3.5mFE m+1CG _
0> ~(m,£,h) () (1 +om ) €043 (52)

Proof. We first notice that for any d,¢ € N and any w € Ry[x] feasible for (51) at order ¢, it holds

ogdg—A(X)zdg—/ndiKg/(w—nx) dAKg/(wd—nx) d)\K+/|w—wd| d\k, (53a)
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where wy comes from Condition 9. Let € > 0. From Theorem 3.12, we know that

[ 130) dhac < e, o0nc, ), (53)
with
1
o0 ) = [ sup {10 ~ x| x € Ko x = 3] < a} ey
From [19, Lemma 1], there exists a ¢4 > 0 depending only on X such that

1 Cyq
wllllx,o()‘Kv 1/d) < Ea

which we reinject into (53b) to get (introducing C := 2¢c¢y)

/ (wa — 1x) dA < 2%. (53¢)

It remains to specify w so that we get a good bound on the second term in (53a). Defining w := wq+C/2dA\(K),

we automatically get
C
_ e = —
/ w = wq DAk = o,

which we can reinject into (53a) to get
C
ogdg—A(X)gE,

for any ¢ such that w is feasible in (51) at order £. The last remaining piece is a value for such ¢, which
we compute using again Theorem 3.7 on both K and X. We first work on X: we want a lower bound on
¢ € N such that p := w — 1 € Qy(h); denoting L the Lojaciewicz exponent of h, it is given by the effective
Putinar P-satz as
¢ > ~(m,h) deg(p)>>™ (IIpll/p3)**™  with:
o deg(p) = deg(w — 1) = deg(wg + C/2m+'a) — 1) < d (as A(K) = A\[-1,1]™ =2™)
e |p|| = max{p(x) ; x € [-1,1]™} < ¢cg + C/2™t*a) — 1 (because K = [-1,1]™)

o px = min{p(x) ; x € X} > C/2m+1q)

so that we get

+ C/(Zerld) 1 2.5mkbL co — 1 2.5mkbL
0> 5(m,h)d>>m (€ = y(m, ) d>>m (1421 g . (53d
> 5(m, b) Sy +(m, h) ot fE (534)
Next, we work on K = [—1,1]™ = S(f), for which the Lojaciewicz exponent is 1, and we want a lower bound

on £ such that w € Qy(f), which is again given by the effective Putinar P-satz as
0> ~y(m, ) deg(w)>™ (Ilwl/wg)*™™  with:

o deg(w) = deg(wg + C/2m+1a)) < d
o ||w|| = max{w(x) ;,x € K} < cg + C/2mt1q)
o wi = min{w(x) ; x € K} > C/@2m+1q)
so that we get
2.5m
> 3.5m m+1C£
02 y(m, ) d* (142741 ) (530

Eventually, taking ¢ larger than the maximum between the right hand sides of (53d) and (53e) with d := [C/¢]
yields the announced bound.

O
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Corollary 5.3. Using the notations in Proposition 5.2 and under Condition 9, it holds

a4 —A\X) e O (fﬁ) as £ — oo.

Proof. Simply inverting the expression in (52). O

5.2 Stokes constraints

In this subsection, we investigate the effect of smoothness of optimal solutions of the infinite dimensional
LP. We consider the case of only one defining polynomial inequality, i.e. 7 = 1. This means we compute the
volume of the open set

X :={xeR™;h(x)>0}
and, as in (50), let K be given by K = [—1,1]™ = S(f). Moreover, we add the following condition
Condition 10. It holds grad h(z) # 0 for all x € X, in particular the boundary 90X is smooth.
Remark 5.4 (No more Gibbs phenomenon).

Note that now, we do not assume the finite Gibbs phenomenon from Condition 9. As we will show, this
is because in the following formulations, optimal solutions cease to be discontinuous and thus the Gibbs
phenomenon does not occur anymore, see [49] for a more in-depth discussion on that topic.

In [49], a new formulation is designed to cope with the slow convergence of the moment-SoS hierarchy
corresponding to (4) and (4') using the divergence theorem:

AX) = max_ /1 du AMX) = inf /w dAk
peEM(X) weC” (K)
veM(9X) uec*(X)"
st pe M(X) 4 st.wjg—divu—1€C(X)4
ve M(0X)4 (54a) — (u-grad h)|px € C(0X)+ (54b)
AK — RS M(K)+ w e C(K)+

grad p = (grad h) v

It has been proved in [49] that the existence of an optimal solution to (54b) can be deduced from the existence
of a solution to a Poisson PDE with Neumann boundary condition:

—Au = ¢ in X
Ogu = 0 on O0X
o < 1 in X (55)
o = 1 on 0X
Namely, for a pair (u, ¢) satisfying (55), set
1-— X
u:=gradu and w(x):= 9(x), x € (56)
0, else,
then (w,u) is optimal for (54Db).
In [49], ¢ is proposed under the form
N
A(X)
x)=1-h(x Ax
600 =1-h( D T (9



where the X; are the connected components of X. As a result, ¢ was proved to be only Lipschitz continuous,
so that the optimal function w = 1 — ¢ was also only Lipschitz continuous. However, another, smooth
optimal function can be designed.

Theorem 5.5 (Existence of smooth solutions).
There exist smooth functions u,¢ € C*°(X) solutions to (55). Further, u,¢ € C*(X) can be chosen such
that u,w given by (56) are smooth and optimal for (54b), i.e. it holds /w dAk = A(X).

Proof. See Appendix C. O

The regularity result in Theorem 5.5 allows us to incorporate higher order approximation rates via the
Jackson-inequality Theorem 3.10. Its effect on the convergence rate of the moment-SoS hierarchy for the
GMP (54b) is stated in the following theorem. For ¢ € N, let us denote by Vol, the optimal value in the ¢-th
level of the moment-SoS hierarchy for (54b).

Theorem 5.6 (Rate for Stokes-augmented volume computation).

Under Condition 10 it holds, for £ € N large enough and with L= max{1l, L}, that

0< Vol = A\X) e O (67 <2~5+15>mz) as £ — oo for any s > 0. (57)

Proof. Recall that we assume K = [—1,1]™. By Theorem 5.5, let u, ¢ be smooth solutions of (55) such
that u = grad v and w = (1 — ¢)|X from (56) are smooth and optimal for (54b). Let k € N and @ and @ be
CH+1 respectively C*+3 extensions of w respectively u from Theorem 4.8, i.e. w € C**1(K),u € C*¥+3(K)
with

|0]|crky < cllwlleriixy,  lallorsk) < cllullorsx)

for some constant ¢ = ¢(k, X). We denote by W, U € R the following constants

W= |[oll5S < clwllerixy, U= llalloza) < ellullerss ). (i)
In the rest of the proof, we will also use the following constants:

ar:=[ARX, ey = inf lgrad h(x)[*, = hlesry (i)
Note that as > 0 by Condition 10. We define an inward-pointing direction, namely, for 8 > 0 it holds

(wg,ug) := (w+ 2a10,u — 6 grad h) is strictly feasible.
To verify this, note first that by feasibility of w it holds w > 0 on K and thus
0<2a10 <w—+2a10 =wg <W +2a10 on K. (iii)

In particular, this shows feasibility for the last constraint in (54b). For the second constraint in (54b) let
x € 0X; we have

—(up - grad h)(x) = —(u- grad h)(x) + 0||grad h(x)|* = 0||grad h(x)||* = faz > 0 (iv)
with the constant as from (ii); i.e. feasibility for the second constraint in (54b). We further have, for x € K

[(ug - grad h)(x)| = |(u— 0 grad h) - grad h)(x)| < (U + Oas) - as. (v)

Now, let us verify strict feasibility in the first constraint in (54b). On X we have
wg—divug—1 = w—divu—1+420a; +0Ah=20a, +60Ah > 20a; — 0a; = Oaq (vi)

with ay from (ii).
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Further, on K we have
|wg — div ug — 1| = |w + 2a10 — div (u — Ograd h) — 1| < W +20a; + U + Oaz + 1 (vii)

for the constants W, U from (i) and a1, ag from (ii). The cost for (wg, ug) is simply
/’LUQ dikg = /w d g + 2a19)\(K) = )\(X) + 2m+1a10. (Viii)

In the next step, we approximate the pair (wg, ug) by feasible polynomials. In this step we use smoothness
of wg,uyp and Theorem 3.10. Let ¢ = ¢ € R be the constant from Theorem 3.10. That is, there exist
polynomials pg, g4 € Ry[x] with

Ck .
lw = pallss » lu = gallo2x) < o5 (ix)
Recall that u = grad u, i.e. grad ¢4 is an approximation of u. For § > 0 and d > deg(h) we define

Pd,0 ‘= Pd + 20a, € Rd[x], qd,0 ‘= grad g4 — 0 grad h € Rd[x]m.

We have [lws — paollk = llw—pal|X and [[ug —qq,
by (ix), we get

lorxym = llgrad (u—qa)lcr k)= < |lu—qallc2 k), thus,

ck
lwo — paolls » wo —qaollcr k) < ok (x)
On X we have, for the first constraint in (54b),
Pae —divgee—1 = we—divug—1+pge —we+div (qq,0 — ug),

and hence, from (vi) and (x), we get

. C .
pdo —div qqe —1 > a16 — Qd—lz. (xi)

Further, on K we have by (vii) and (x)
|pd,9 — div dd,0 — 1| < "LUQ —div uy — 1| + |pd79 — w9| + |diV dd,0 — div UQ‘

< W+20a1+U+9a3+1+2%. (xii)

For the second constraint in (54b) we have on 90X, by (iv) and (ix),
—qqe-grad h = —ugp-grad h+ (ug —qqy)- grad h
> fas + (ug — qu) - grad h > fas — %\/@. (xiii)
Further, on K we have, by (v) and (ix),

lgrad gq0 - grad h| < |ug-grad h|+ |grad (ugp — qae) - grad h
ck

< (U +6a3)-as+ gk 03 (xiv)
And for the third constraint in (54b), we have by (iii)
c c c
2a10—d—i§wg—d—2§pd79§W—|—2a19+d—]Z. (xv)

Before invoking the effective version of Putinar’s Positivstellensatz, Theorem 3.7, we make the choice

0:=04:= G ax{g, 1+\/§} co(d™").

= — m
dk aq ag

For this choice of # we have for (xi) and (xiii) on X that

. Ck .
Dd,0, — div dge, — 1, —dq,, - grad h > aF > 0. (xvi)
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On K it holds P r

i 5% > 0, (xvii)
in particular (pg,e, dq,0) is feasible for (54b). Further, for the upper bounds (xii),(xiv) and (xv), we have on
K for d large enough (such that 65 < 1,¢/a* < 1)

Pde, = 6

Dd,6, Pap —div dqe — 1, —qq9-grad h < K (xviii)

for the constant K := max{W +2a; +U+a3+3, (U+asz+1)-a3}. Now, by Theorem 3.7 and inserting (xvi)
and (xviii), the pair (pq4,0,qq4,0) is feasible for the first two constraints in the ¢-th level of the moment-SoS
hierarchy for (54b) for

2.5mkL
¢ > ~(m, h)d>>"E ( K ) .

Ck/dk

Similarly, by inserting (xvii) and (xviii) into Theorem 3.7 for K (note that . = 1 in that case), we get
that the pair (pag,qa,0) is feasible for the third constraint in the ¢-th level of the moment-SoS hierarchy for

(54b) for
K 2.5m
3.5m
> ~(m,f)d (5Ck/dk>

Taking the maximum of the just obtained two bounds for ¢ we get that (p4e,qq,) for the optimization
problem (54b) for

2.5mbE
< maxly(m i) om0} (1) asseE, (xix)

The cost of (pg,0,dq,0) for the optimization problem (54b) is bounded by

/pdﬂ Ak < /wg Ak + %A(K)

(viii) m Ck
ZIAX) + 27 (200(d) + o)

3 1+\/§}

ay a2

=\X)+ %27” max{

This shows (57); namely, for ¢ > 0 take the smallest d € N with d > (2”’%’“ rnax{a%, 1';;/5}) k. Then, from
(xix), Vol — A(X) < ¢ for £ € N with

3.5mkE

O\ 20mE R 1 2.5mE4 8:51
¢ > max{y(m,h),y(m,f)} (c) dB3-5+2.5k)mb o (5)
k
S
In other words, Vol, — A\(X) € O (f 2.5m+3-5m/k ) Taking k£ € N arbitrarily large proves the claim. O

Remark 5.7 (Quantifying the efficiency of Stokes constraints).

The convergence rate in Theorem 5.6 improves the rate in Theorem 5.2 by more than the power of two.
This improvement originates from the smoothness of solutions (w,u) of (54b).

Remark 5.8 (Room for improvement in effective Positivstellensétze).

The proof of Theorems 5.6, 4.4 and 4.14 show that an effective version of a Positivstellensatz for polyno-
mials p on X C [—1,1]™, taking into account only the maximum of p on X and not on [—1,1]™, is desirable
to obtain stronger rates. The reason why we would obtain better rates is that we obtained an upper bound
of the function of interest on K by first extending it from X to a function on [—1, 1]™ which heavily increased
the upper bound. Thus, an effective Positivstellensatz that only takes into account ||p||X (without inducing
large degree-dependent bounds) would further improve the convergence rates in the Stokes-augmented case,
highlighting that the actual difference between Theorems 5.2 and 5.6 is in fact much sharper, as Theorem
5.2 would not benefit from such improvement of the effective Positivstellensatz.
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Remark 5.9 (On specialized Positivstellensitze).

In this section we applied Theorem 3.7 to obtain degree bounds for quadratic module representations over

the hypercube K = [—1,1]. Nevertheless, there exists specialized (and probably tighter) versions of effective
Putinar Positivstellensitze on a variety of sets, such as the unit ball [46], the unit sphere [10] and, more
recently, the hypercube [1]. However, these effective P-sitze do not come with explicit bounds depending

on deg(p) in addition to maxx p and minx p; more precisely, they include constants similar to the vy(m,h)
displayed in the current work, but that also depend on deg(p), i.e. under the form ~(m,deg(p)). As the
volume computing hierarchy involves polynomials p with varying degrees d — oo, these bounds could not
be directly plugged into our analyses, and would require to be specified into more explicit expressions to be
useful in all applications of the moment-SoS hierarchy.

6 Conclusion

We state a structured approach to obtaining convergence rates for the moment-SoS hierarchy for the gener-
alized moment problem. For the analysis of the convergence rates, we distinguish three important objects
and properties. Namely, the existence and regularity of minimizers, an effective version of Putinar’s Posi-
tivstellensatz, and a geometric feasibility condition (see the inward-pointing condition in Section 3.4). Our
proposed procedure points out how those properties interact and is demonstrated to obtain upper bounds
on the convergence rate for certain instances of the moment-SoS hierarchy: Using recent improvements on
an effective version of Putinar’s Positivstellensatz, we build up on and strongly improve existing convergence
rates for the optimal control and the volume computation of a semialgebraic set; and we give an original
convergence rate for a moment-SoS hierarchy of exit location computation for stochastic differential equa-
tions. We hope our work provides a guideline and the necessary tools for computing convergence rates of
the moment-SoS hierarchy for various generalized moment problems that are actively formulated in the field
in recent and following years.

Future work and improvement of effective Positivstellensétze can be integrated within our work simply
by applying the most suited available convergence rate for Putinar’s Positivstellensatz. Furthermore, we
observe in our analysis that a well-suited effective Positivstellensatz could strongly further improve the
convergence rate. As mentioned in Remark 5.8, particularly advantageous for our method would be an
effective Positivstellensatz — for a polynomial p on a semialgebraic set X — that only takes into account the
values of p on X without the need of bounding its value on an ambient set (such as the hypercube in Theorem
3.7). Similarly, specialized Positivstellensétze could be improved by expliciting all the terms in their degree
bounds. Considering the recent improvement and active work on degree bounds for Positivstellensitze,
we see here a very interesting, exciting, and promising development for further improvements of existing
convergence rates for the moment-SoS hierarchy for generalized moment problems, as well as quantitative
analysis of many other moment-SoS-based methodologies that will appear in the future.

We think it is important to mention that the asymptotic analysis of the moment-SoS hierarchy for generalized
moment problems might not transfer to practical applications. The reason is twofold. Firstly, current
computational capacities restrict the computation of the moment-SoS hierarchy already for medium-sized
problems to low-degree instances. Secondly, the conditioning of the ¢-th level of the moment-SoS hierarchy
gets worse with increasing ¢ € N, hampering the convergence in practice. In other words, this work essentially
addressed the recasting from the infinite dimensional GMP into SoS programming problems, while future
works will shift the focus onto the translation from SoS programming to actual SDP, involving deeper
investigations on what polynomial basis to choose in that process (the usual one being the numerically
ill-behaved basis of monomials).
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A On norm equivalence in polynomial spaces

Lemma A.1. Let X C K :=[-1,1]™ satisfy Condition 6.2. For any nonnegative polynomial p € P(X)4,
it holds deg(p)?
eglp de
Il = e} < (14 S5 yien ) g, (30)

where b € (0,1) is such that [—b,b]"™ C X (whose existence is guaranteed by Condition 6.2).

Proof. The proof of [4, Lemma 28] actually shows that, for ¢ € P(K)y of degree k and p > 0, defining
K, :=[-1—p,1+ p|™, one has

¥k, > ¥k — Te(1+p) - p- k- maxp (t)
Where T} denotes the degree & Chebyshov polynomial of the first kind. We apply this result to
p(x) := maxp — p(bx),

so that k = deg(p) = deg(p). Let p := 132 so that b- K, = K. Then, one has

*
= max p — max
YK, axp axp
*
= max p — max
YK 2 p pa p

max ¢ = maxp — min
K v X p b-Kp

which can be reinjected in (1) to get

AP — Maxp EW*%}%{XP*Tk(lJFP) pk° (Hgég@g}%lp) :

l/b

This expression in turn rephrases, accounting for inequalities miny.x p > minxp > 0 and maxygp <
maxx p = ||p/|X (because b- K C X), as

1-b 1-b
< 1) . —— . k2. < 1) . —— . k2 X
maxp < maxp + Tjp(1/p) - —— -k -maxp < <1 +Te(fo) - —p— -k ) IPll%

It remains to compute an upper bound of Ty (1/»). Here we recall that the Chebyshov polynomials are defined
by To(s) = 1, T1(s) = s and the recurrence formula Tj11(s) = 2sTx(s) — Tk—1(s) (for k > 1). Moreover,
T (s) oscillates between —1 and 1 for s € [—1,1] (because T(cos#) = cos(k - 0)), and is always strictly
increasing on (1,+00), so that for s > 1 one has Ty (s) > T;(1) =1 > 0. Eventually, we can prove that, for
all £ > 1, it holds

Te(Vp) < % (i)k (1)

First, we check that this holds for & = 1: Ty (1/b) = 1/b < 1/2-2/y. Second, defining s = 1/b, we notice that by
design of b € (0,1), s > 1. Then we simply use the recurrence formula to get, for k > 1:

Tit1(8) = 25Tk(s) — Ti-1(s) < 2sTk(s)
>0

so that, if Tj(s) < 1/2(2s)* (which holds for k = 1) then Ty, 1(s) < 1/2(2s)*+1. This way, we get

k
1/2\" 1-b
<|(14+:=(2)  — k2 X
H}gXp_<+2(b) 5 k?)llplloo
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Finally, let us not forget that it is maxk [p| that we want to upper bound, and not only maxk p, so we still
have to upper bound maxk (—p) = —mink p = —p}. Again we use (1) with ¢(x) = p(bx) to get

Pk = ¥k,

s mimp— L(2) 12t
=Pk ? 72 \% b R P
k
1 /2 1
>minp =3 (b) kg
k
1/ 1-bv , o«
>__(2) . k2.
> -5 (3) 5w I
and hence .
o122\ 1o
mI%X(_p) =—pk < B (b) T k2 - [|pl| %
leading to

deg(p)
1/2 1-b

<l14+=(2 . 2 X
Ipll < ( +3 <b) 7 deg(p) ) ol

Finally we deduce the announced inequality by observing that (1 —b) € (0,1), so that

1 /92 des®) 1—b<1 9 des(p)+1
2 \b b —4\b

B Extension of Holder continuous functions

Lemma B.1 (Extension Lemma; [12, Lemma 6.37]).

Let k > 1 be an integer and a € (0,1]. Let Y C R™ be a compact with C*% boundary. Let £ be an open and
bounded set containing Y. Then every function w € C**(Y) there exists an evtension w € C**(Q) with
w(y) =w(y) forally € Y and

[0 cr.ai@) < cllwllerayy (33)

for some constant ¢ = ¢(n, k,a,Y,Q) independent of w.

As a corollary, we obtain the following extension result that aims at preserving the maximum value for the
extension.

Corollary B.2. Let Y C R™ be a compact with C*° boundary and f € C*(Y). Then, for any k € N and
e > 0, there exists an estension f € CF(R™) of f with

IFI& < IFI% +e. (o)

Proof. Let € > 0 and k € N and let R > 0 with By 5z(0) D Y. By the extension Theorem 4.8 there exists an
extension f € C*(Bg(0)) of f with F := ||f||cl(BR(0)) < co. Without loss of generality we assume & < £,
otherwise we take a smaller €. Set 2 := {x+y:x€Y,|y[| < £} and let ¢ € C>°(R") with 0 < ¢ <1 with
¢=1onY and ¢ = 0 on R™\ 2. We claim that the function f := ¢- f (and extended by zero on R™\ Q) is
C* and satisfies (¢). From the construction, it follows that f is C*. For x € Y it holds f(x) = f(x) and for
x € R"\ Q we have f(x) = 0. It remains to bound f(x) for x € @\Y. Let x € Q\'Y and y with [|y|| < &
such that x —y € Y. We have

~ ~ €
F(x)] < |f(x—y) + llgrad f|| 22|y ||| < [I£]1¥ + Fz= 1£11% + <.
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C Smooth solutions to the Poisson PDE

Here we state the proof of Theorem 5.5 for existence of smooth solutions of (54b) and (55).

Proof. Of Theorem 5.5. We prove this Theorem using two lemmas.
Lemma C.1 (Existence of smooth source term).

There exists a smooth ¢ € C°(R™) such that
1. ¢ satisfies conditions (55.c), (55.d) and ¢ =1 on R™\ X.

2. / ¢ dXN=0 for alli e {1,...,Q}, where
X,

i

is the partition of X into its connected components.

Proof. We work on a connected component X;, i € {1,...,Q}. As X; is an open set, there exists w; € X;,
R; > 0 such that
B; = {XGR”;|X—UJ¢‘ SRl} C X;.

According to [33, Proposition 2.25], there exists a smooth bump function ¢; € C°°(R™) such that:
e Vx e R"\ X;, p;(x) =0
e Vx € By, pi(x)=1
e Vx e X;\B;, 0 < pi(x) < 1.

In particular, ¢; > 0 in X; and ¢; = 0 on 0X;. Next, we define for x € R",

bito) = 2 F) ),
/ i dA
X

with 0 < A(B;) < / i dX by design of p;.

0

Again, ¥; > 0 in X; and v¢; = 0 on dX;. Moreover, now
[ wean=axo). (+)
X;

Eventually, we construct, for x € R™,
Q

B(x) i=1—=Y 1,

i=1
so that condition 1. is trivially satisfied, and smoothness of ¢ follows from smoothness of the p;s. We
conclude by checking condition 2.: for ¢ € {1,...,Q},

/xiMA:/x,. 1—2% d)\:/Xild)\—jZ:/Xi%d)\

=AXy) = [ widA=> | aydr =0

X j=1 i
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Lemma C.2 (Existence of smooth PDE solution).

Let ¢ € C=(X) be given by Lemma C.1. Then, there exists a solution u € C°°(X) to the Poisson PDE
with Neumann boundary condition:

-Au = ¢ im X
{ Oht = 0 on 09X (55)
Proof. If =1 (i.e. X is connected), then this is a classical result, see e.g. [12]*. Else, we just solve the
problem separately on each connected component and glue the resulting solutions u; together into
Q
u = Zuz 1x, € C*(X)
i=1
because by construction of X (with smooth boundary) the X; are disjoint. O

The ¢ and u given by Lemmas C.1 and C.2 are a valid solution to (55). By construction, they also have
the required smoothness. It remains to show that we can choose ¢, u such that the functions u,w given by
(56) are optimal for (54b). Let us take ¢ as in Lemma C.1 and u the corresponding solution of (55). By the
above, the functions u,w from (56) are smooth. Further, as shown in [19], u,w are feasible (and optimal)
for (54b). Here, we only recall optimality, i.e.

/w d\ = A(X). ()

To show (V), we use condition 2. in Lemma C.1 and simply integrate w =1 — ¢ > 0 on X. This gives

/wd)\K:/l—qﬁd/\K:)\(X)—/qﬁdAK:)\(X).
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