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Introduction

Context. In recent years various kinds of (nonlinear) problems have been formulated via a specific instance of infinite dimensional linear programming (LP), known as the generalized moment problem (GMP). GMPs appear in various problems coming from diverse fields wuch as geometry, where it has been used in volume computation, for semialgebraic sets [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF][START_REF] Lasserre | Computing Gaussian and exponential measures of semi-algebraic sets[END_REF][START_REF] Tacchi | Exploiting sparsity for semi-algebraic set volume computation[END_REF] as well as sets defined with quantifiers [START_REF] Jean B Lasserre | Tractable approximations of sets defined with quantifiers[END_REF], approximation of projections and polynomial images of semialgebraic sets [START_REF] Victor Magron | Semidefinite approximations of projections and polynomial images of semialgebraic sets[END_REF], as well as set separation a la Urysohn [START_REF] Korda | Urysohn in action: separating semialgebraic sets by polynomials[END_REF]. Other examples arise from dynamical systems and include optimal control [START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI-relaxations[END_REF], stability analysis [START_REF] Korda | Inner approximations of the region of attraction for polynomial dynamical systems[END_REF][START_REF] Korda | Computing controlled invariant sets from data using convex optimization[END_REF][START_REF] Oustry | Inner approximations of the maximal positively invariant set for polynomial dynamical systems[END_REF][START_REF] Korda | Convex computation of the maximum controlled invariant set for polynomial control systems[END_REF][START_REF] Jones | Converse Lyapunov functions and converging inner approximations to maximal regions of attraction of nonlinear systems[END_REF], localisation of global attractors [START_REF] Goluskin | Bounding extrema over global attractors using polynomial optimisation[END_REF][START_REF] Schlosser | Converging outer approximations to global attractors using semidefinite programming[END_REF], and more generally calculus of variations [START_REF] Henrion | Occupation measure relaxations in variational problems: the role of convexity[END_REF], as well as partial differential equations [START_REF] Marx | A moment approach for entropy solutions to nonlinear hyperbolic PDEs[END_REF]. Due to the natural role of Borel measures in the GMP, it is also widely used to study stochastic systems, with applications to exit location [START_REF] Henrion | Moment-SOS hierarchy and exit location of stochastic processes[END_REF], infinite time averaging [START_REF] Fantuzzi | Bounds for deterministic and stochastic dynamical systems using sum-of-squares optimization[END_REF], computing invariant measures [START_REF] Korda | Convex computation of extremal invariant measures of nonlinear dynamical systems and Markov processes[END_REF], peak value-at-risk [START_REF] Miller | Peak Value-at-Risk estomation for stochastic differential equations using occupation measures[END_REF] and probability of unsafety [START_REF] Miller | Unsafe probabilities and risk contours for stochastic processes using convex optimization[END_REF].

In the framework of the GMP approach the problems mentioned above can be represented by dual pairs of linear programming problems: the primal problem (measure LP) is defined on the infinite dimensional space of Borel measures and features (possibly infinitely many) linear equality constraints; the dual problem (function LP) is defined on a (possibly infinite dimensional) vector space of polynomials and features infinite dimensional (functional) linear inequality constraints. The moment-sum-of-squares (moment-SoS) hierarchy is a two steps procedure that provides a powerful tool for tackling such linear programming problems and has been applied widely. In the first step, the primal decision variables, i.e. Borel measures, are represented by their moments, that are characterized via linear matrix inequality (LMI) constraints on the so-called moment matrices. In the second step, the moment matrices are truncated, i.e. only moments up to a finite degree ℓ ∈ N are considered and paired with the constraints in the LP; resulting in a hierarchy of semidefinite programs. This operation is referred to as moment relaxation. By duality, this procedure leads to a tightening in the function LP. There, the inequality constraints of the function LP are first strengthened to SoS constraints (by the aid of Putinar's Positivstellensatz [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF]). In the second step, the degree of the SoS polynomials is truncated, thus obtaining a hierarchy of so-called SoS strengthening. The scheme of the moment-SoS hierarchy approach is summarized in Figure 1.

The moment-SoS hierarchy provides guaranteed convergence [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF][START_REF] Nie | Optimality conditions and finite convergence in Lasserre's hierarchy[END_REF][START_REF] Lasserre | An introduction to polynomial and semi-algebraic optimization[END_REF][START_REF] Tacchi | Convergence of Lasserre's hierarchy: the general case[END_REF] but, apart from the case of polynomial optimization, the speed of the convergence for the infinite dimensional problems has been rarely investigated. Two examples where explicit convergence rates were derived can be found in [START_REF] Korda | Convergence rates of moment-sum-of-squares hierarchies for optimal control problems[END_REF] and [START_REF] Korda | Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets[END_REF] where a slow convergence rate was presented based on [START_REF] Nie | On the complexity of Putinar's Positivstellensatz[END_REF]. Since then, the problem of providing bounds on the minimal truncation required to fully represent positive polynomials as sums of squares has been deeply studied, both in the generic case [START_REF] Baldi | On the effective Putinar's Positivstellensatz and moment approximation[END_REF][START_REF] Baldi | On łojasiewicz inequalities and the effective Putinar's Positivstellensatz[END_REF] and in specific settings [START_REF] Slot | Sum-of-Squares hierarchies for polynomial optimization and the Christoffel-Darboux kernel[END_REF][START_REF] Baldi | Degree bounds for Putinar's Positivstellensatz on the hypercube[END_REF].

Contribution. The speed of convergence can be derived from such bounds, and is determined by two main factors:

1. The regularity of optimal solutions to the function LP and, if they are not polynomial, their approximation with polynomials;

2. The degree ℓ ∈ N needed for an SoS representation of the approximating polynomials.

We treat those two principal concepts in Section 3.2 and aim at describing an interplay between results on degree bounds in Putinar's Positivstellensatz, structural approximation properties for polynomials and compatibility conditions of the LPs concerning polynomials.

The main objective of this article is to provide a method for deriving convergence rates of the moment-SoS hierarchy when applied to a specific instance of the GMP, using the degree bounds provided in [START_REF] Baldi | On the effective Putinar's Positivstellensatz and moment approximation[END_REF]. We provide examples of computing and improving the convergence rates of the hierarchy with the state-of-art versions of Putinar's Positivstellensatz. Namely, we use [START_REF] Baldi | On the effective Putinar's Positivstellensatz and moment approximation[END_REF] to improve the convergence rates for the optimal control problem stated in [START_REF] Korda | Convergence rates of moment-sum-of-squares hierarchies for optimal control problems[END_REF] and for the standard volume problem [START_REF] Korda | Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets[END_REF]. Additionally, we derive an original convergence rate for the problem of exit location of stochastic processes [START_REF] Henrion | Moment-SOS hierarchy and exit location of stochastic processes[END_REF]. Last but not least, we use our methodology to answer a long-standing question related to volume computation, namely: how much does the use of Stokes' theorem improve the moment-SoS hierarchy for volume computation? Indeed, the first application of the moment-SoS hierarchy to this problem in [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF] exhibited a very slow convergence in practice, and was soon complemented with [START_REF] Lasserre | Computing Gaussian and exponential measures of semi-algebraic sets[END_REF], yielding a sharp improvement in the numerical accuracy of the relaxations. To further understand this improvement, a qualitative study [START_REF] Tacchi | Stokes, Gibbs and volume computation of semialgebraic sets[END_REF] showed that it was related to the Gibbs phenomenon and regularity of solutions in the function LP. In this work we complement the qualitative study with a first quantitative analysis of the two formulations, by computing and comparing the convergence rates in both cases.

As a consequence, in most examples covered in this work we get a convergence rate of O(ℓ -1 /c ) for some constant c > 0 (the only exception being generic optimal control, for which the rate is O ( 1 /log ℓ), see Corollary 4.6, although mild assumptions allowed us to bring back a polynomial convergence rate in Theorem 4.10), which is a significant improvement compared to the double log bounds obtained in [START_REF] Korda | Convergence rates of moment-sum-of-squares hierarchies for optimal control problems[END_REF][START_REF] Korda | Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets[END_REF].

Outline. The paper is structured as follows: In Section 2, we fix the notation and focus on the central underlying concept of moment-SoS hierarchy for the generalized moment problem (GMP). Section 3 recalls the current state of an effective version of Putinar's Positivstellensatz and we introduce and motivate our general procedure for obtaining effective degree bounds for SoS tightening of the infinite dimensional function LPs. In Sections 4 and 5 we apply the procedure to establish convergence rates for old and new instances of the moment-SoS hierarchy and where strong improvements compared to the existing rates are demonstrated. Section 4 treats dynamic settings, where optimal control for deterministic systems and the exit location problem of stochastic processes are considered. Section 5 is concerned with volume computation with and without the aid of reinforcing Stokes constraints.

2 Preliminaries: the moment-SoS hierarchy

Basic notations

We work with the standard notations for usual sets R (real numbers), Z (integers), N (natural integers), for which the superscript ⋆ indicates that we remove the element 0. For a topological space X , C(X ) denotes the space of continuous functions from X to R equipped with the topology of uniform convergence. For two real vector spaces V, W, the set L(V, W) denotes the space of linear maps from V to W. For a real Banach space V, define the dual space

V ′ := L(V, R) ∩ C(V), with duality ⟨v, v ′ ⟩ ∈ R, v ∈ V, v ′ ∈ V ′ .
In particular, for a compact Hausdorff space X , the space of signed Radon measures M(X ) is identified with C(X ) ′ .

For α = (α 1 , . . . , α n ) ∈ N n , |α| := α 1 + . . . + α n is the range of α and (x 1 , . . . ,

x n ) = x → x α := x α1 1 • • • x αn n is the corresponding monomial. For n, d ∈ N, N n d := {α ∈ N n ; |α| ≤ d} is the set of bounded multi- indices, R d [x] := {x → |α|≤d c α x α ; (c α ) α ∈ R N n d } is the space of degree at most d polynomial functions, R[x] := ∪ d∈N R d [x] is the space of polynomials. For Ω ⊂ R n , P d (Ω) := C(Ω)∩R d [x] and P(Ω) := C(Ω)∩R[x]. If V is equipped with a set of "entry" forms {δ i } i∈I ⊂ V ′ (e.g. dual basis {x → x i } i∈ n in R n , or evaluation functionals {f → f (x)} x∈Ω in function spaces over a set Ω), then the nonnegative (resp. positive) cone of V is V + := {v ∈ V ; ∀i ∈ I, ⟨v, δ i ⟩ ≥ 0} (resp. V ⊕ := {v ∈ V ; ∀i ∈ I, ⟨v, δ i ⟩ > 0}), as in R ⊕ , R n + , C(X) ⊕ . In particular, the dual cone of K ⊂ V is K ′ := (V ′ ) + for entry forms {⟨κ, •⟩} κ∈K (e.g. M(X) + = C(X) ′ + ).
S n = {M ∈ R n×n ; M ⊤ = M} is the vector space of symmetric real matrices of size n with entry forms

{M → x ⊤ M x} x∈R n , so that S n + is the usual p.s.d. cone. For h = (h 1 , . . . , h r ) ∈ R[x] r , define the basic semialgebraic set S(h) := h -1 (R r + ).
We make the convention that the Assumptions 1, 2 and 3 hold throughout the whole paper. Conditions hold only when explicitly stated.

Generalized Moment Problem

Let M, N ∈ N ⋆ , r = (r 1 , . . . , r M ) ∈ (N ⋆ ) M , m = (m 1 , . . . , m M ) ∈ N M , n = (n 1 , . . . , n N ) ∈ N N . For i ∈ M , let X i := S(h i ) ⋐ R mi be a compact basic semialgebraic set with h i ∈ R[x i ] ri .
For j ∈ N , let Y j ⋐ R nj be a compact subset. Let:

X := M(X 1 ) × . . . × M(X M ), Y = P(Y 1 ) × . . . × P(Y N ), X ′ := C(X 1 ) × . . . × C(X M ), Y ′ := P(Y 1 ) ′ × . . . × P(Y N ) ′ .
We equip X , X ′ with the product topology. For Y we use a well-chosen norm ∥ • ∥ Y (see the discussion around equation ( 16) in Section 3.2) and Y ′ is its topological dual. For v = (v 1 , . . . , v M ) ∈ X ′ and µ = (µ 1 , . . . , µ M ) ∈ X , we define the vector integral as

v • dµ := M i=1 v i dµ i .
Let A : X -→ Y ′ be a continuous linear map, T ∈ Y ′ be a vector of continuous linear forms (i.e. moment sequences),

g ∈ R[x 1 ] × . . . × R[x M
] ⊂ X ′ be a vector of polynomials. We define the Generalized Moment Problem (GMP) as

p ⋆ GM = sup µ∈X g • dµ s.t. ∀i ∈ M , µ i ∈ M(X i ) + A µ = T (1) 
Remark 2.1 (On the generality of ( 1)).

Note that the generic framework X = S(h) allows for a finite (discrete) set X, for which measures can be represented as vectors. In particular, binary optimization has a GMP formulation which is proved to be equivalent to semidefinite programming [START_REF] Lasserre | An explicit exact SDP relaxation for nonlinear 0-1 programs[END_REF]. From this simple remark, one can observe that problem (1) can feature finite size PSD constraints on moments, as proposed in [START_REF] Miller | Peak Value-at-Risk estomation for stochastic differential equations using occupation measures[END_REF]. Hence, the tools displayed in this work can be used on GMPs featuring finite size LP, convex QP, SOCP, and SDP constraints on moments.

Throughout this text, we always make the following assumption:

Assumption 1 (Existence of feasible solutions).

The feasible set of (1) is not empty. Now that the problem has been introduced in full generality, we quickly drop some notational burden by setting M = N = 1, without loss of generality: now X = M(X) with X = S(h), X ′ = C(X), Y = P(Y), Y ′ = P(Y) ′ so that the problem rewrites as a "simple" moment problem1 :

p ⋆ M = sup µ∈M(X) g dµ s.t. µ ∈ M(X) + A µ = T.
(

) 2 
Remark 2.2 (Existing GMPs).

The framework of GMPs covers a large class of problems, notably static polynomial optimization [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF], but also the LPs from [START_REF] Tacchi | Stokes, Gibbs and volume computation of semialgebraic sets[END_REF][START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI-relaxations[END_REF][START_REF] Oustry | Inner approximations of the maximal positively invariant set for polynomial dynamical systems[END_REF][START_REF] Korda | Convex computation of the maximum controlled invariant set for polynomial control systems[END_REF][START_REF] Schlosser | Converging outer approximations to global attractors using semidefinite programming[END_REF][START_REF] Korda | Convex computation of extremal invariant measures of nonlinear dynamical systems and Markov processes[END_REF][START_REF] De Castro | Exact solutions to super resolution on semi-algebraic domains in higher dimensions[END_REF][START_REF] Jones | Converse Lyapunov functions and converging inner approximations to maximal regions of attraction of nonlinear systems[END_REF][START_REF] Henrion | Occupation measure relaxations in variational problems: the role of convexity[END_REF], to name only a few, can all be represented in the form [START_REF] Bagby | Multivariate simultaneous approximation[END_REF].

The GMP is an infinite dimensional instance of conically constrained linear programs (CCLP), and as such it is subject to Lagrange duality. To write the dual problem, we introduce the Lagrange operator

Λ := M(X) × P(Y) ∋ (µ, w) -→ g dµ + ⟨T -A µ Tµ , w⟩, (3) 
and it is straightforward (using the fact that inf w∈P(Y)

⟨T µ , w⟩ = -∞ iff T µ ̸ = 0) that p ⋆ M = sup inf Λ(µ, w) ; w ∈ P(Y) ; µ ∈ M(X) + .
Finally, the dual problem to (2) is obtained by swapping the sup and inf operators:

d ⋆ M = inf sup Λ(µ, w) ; µ ∈ M(X) + ; w ∈ P(Y)
i.e., defining the adjoint operator A ′ : P(Y) -→ C(X) such that for µ ∈ M(X) and w ∈ P(Y),

A ′ w dµ = ⟨A µ, w⟩ so that Λ(µ, w) = (g-A ′ w) dµ+⟨T, w⟩ (and again sup µ∈M(X)+ (g-A ′ w) dµ = +∞ iff A ′ w-g / ∈ C(X) + ): d ⋆ M = inf w∈P(Y) ⟨T, w⟩ s.t. A ′ w -g ∈ C(X) + . ( 2 
′ )
From this, one can deduce the fully general dual problem by taking generic M and N :

d ⋆ GM = inf w∈Y ′ ⟨T, w⟩ s.t. ∀i ∈ M , (A ′ w) i -g i ∈ C(X i ) + .
(

′ ) 1 
This duality between (1) and (1 ′ ) comes with two interesting properties [START_REF] Barvinok | A Course in Convexity[END_REF][START_REF] Tacchi | Convergence of Lasserre's hierarchy: the general case[END_REF], which we state next.

Proposition 2.3 (Weak duality).

In all generality, with the above notations, one has p ⋆ GM ≤ d ⋆ GM . Proposition 2.4 (Strong duality).

One has p

⋆ GM = d ⋆ GM if one of the following two Conditions is satisfied. Condition 1 (Slater [45]). ∃ • w ∈ Y s.t. ∀i ∈ M , (A ′ • w) i -g i ∈ C(X i ) ⊕ .
Condition 2 (Primal compactness [START_REF] Tacchi | Moment-SoS hierarchy for large scale set approximation[END_REF]). ∃B > 0 s.t. ∀µ feasible for (1), one has ∀i ∈ M ,

1 dµ i ≤ B.
Remark 2.5 (On the links between Conditions 1 and 2).

Condition 1 is instrumental in numerically constructing approximate solutions of (1 ′ ), while Condition 2 is used in [START_REF] Tacchi | Convergence of Lasserre's hierarchy: the general case[END_REF] to prove a strong convergence result on the numerical approximation of (1). Ideally, one would like to deduce both conditions from one, stronger condition.

If for i ∈ M , we have g i ∈ P(X i ) + , then Condition 1 implies Condition 2. Indeed, assuming Condition 1, one gets a Slater point

• w such that ∀i ∈ M , (A ′ • w) i > g i ≥ 0 on X i . But then, denoting γ ⋆ i := min Xi (A ′ •
w) i > 0 and γ ⋆ := min 1≤i≤M γ ⋆ i > 0, and taking a feasible µ for (1), one gets

M i=1 γ ⋆ i 1 dµ i ≤ M i=1 (A ′ • w) i dµ i = A ′ • w • dµ = ⟨A µ, • w⟩ = ⟨T, • w⟩ < ∞
and, a sum of nonnegative terms being bigger than any of its terms, one deduces that for all i ∈ M , it holds

1 dµ i ≤ ⟨T, • w⟩ γ ⋆ i ≤ ⟨T, • w⟩ γ ⋆ =: B ∈ (0, ∞)
which is exactly Condition 2. Thus, up to a shift on g, Condition 1 implies Condition 2.

In this text, we follow an established line of reasoning for solving the GMP (1) and its dual (1 ′ ) via moment relaxations and semidefinite programming. This technique is often called the moment-SoS hierarchy, which we recall in the following sections.

A motivating example

Consider the problem of computing the Lebesgue volume denoted λ(X) of a bounded basic semi-algebraic set

X := S(h) = {x ∈ R m ; h 1 (x) ≥ 0, . . . , h r (x) ≥ 0}
with m, r ≥ 1 integers and h 1 , . . . , h r ∈ R[x]. For this, we suppose that X satisfies2 

X ⊂ B := {x ∈ R m ; x ⊤ x ≤ 1}.
The standard moment-SoS approach to numerically solve the volume problem is discussed in detail in [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF].

The method consists of formulating a GMP whose optimal solution is λ(X), after which one numerically approximates this optimal solution using the moment-SoS hierarchy that we are now going to introduce. We first notice that denoting λ B the Lebesgue measure on B, it holds λ(X) = λ B (X) (because X ⊂ B), and there exists a closed formula (in terms of Euler's Γ function) for the Lebesgue moments on the unit ball B ⟨T,

x α ⟩ := x α dλ B (x).
Hence, one can write the following GMPs

p ⋆ X := max µ∈M(X)+ ν∈M(B)+ 1 dµ (4) 
s.t. µ + ν = λ B d ⋆ X := inf w∈P(B) w dλ B (4 ′ ) s.t. w| X -1 ∈ C(X) + w ∈ C(B) +
and it is straightforward to find that p ⋆ X = λ(X) with optimal solution µ ⋆ = 1 X λ B the Lebesgue measure restricted to X, ν ⋆ = (1 -1 X ) λ B , where 1 X stands for the indicator function of X, which takes value 1 on X and 0 elsewhere. We are going to illustrate the moment-SoS hierarchy using (4 ′ ) as a motivating example. First, notice that the infimum in (4 ′ ) is not attained; a preliminary recasting can be done to tackle this issue:

λ(X) = max u,v∈L ∞ (B)+ u dλ B s.t. u| B\X = 0 (5) u + v = 1 λ(X) = min w∈L 1 (B) w dλ B s.t. w| X -1 ∈ L 1 (X) + (5 ′ ) w ∈ L 1 (B) +
where L ∞ (B) is the Banach space of Lebesgue essentially bounded functions on B and, its pre-dual, L 1 (B) is the space of Lebesgue integrable functions on B (both factored by the equivalence u ≡ v ⇐⇒ u = v λ-a.e.) and for s ∈ {1, ∞},

L s (B) + = {v ∈ L s (B) ; v ≥ 0 λ-a.e.}.
Now, both primal and dual have optimal solutions, u ⋆ = w ⋆ = 1 X and v ⋆ = 1 -1 X . Our preliminary step is formulated as follows:

Step 0: By density of P(B) in L 1 (B) with respect to the norm ∥u∥ L 1 (B) := |u| dλ B , it holds d ⋆ X = λ(X) and minimizing sequences for (4 ′ ) approximate 1 X from above w.r.t. ∥ • ∥ L 1 (B) : ∀ε > 0, ∃w ε ∈ P(B) feasible for (4 ′ ) and such that λ(X) < w ε dλ B < λ(X) + ε.

In the following steps we recall how to recast (4 ′ ) as a hierarchy of finite dimensional convex problems that approximate λ(X).

Step 1: Noticing that for w ∈ R[x], w| X -1 ∈ P(X), it is possible to replace C(X) + and C(B) + with P(X) + and P(B) + in (4 ′ ), without changing its optimal value, yielding

λ(X) = inf w∈R[x] w dλ B = ⟨T, w⟩ (6a) 
s.t. w| X -1 ∈ P(X) + w ∈ P(B) + .

Step 2: Second, we notice that Slater's Condition 1 holds with

• w := 2, so that we can look for a minimizing sequence of strictly feasible polynomials w:

λ(X) = inf w∈R[x] ⟨T, w⟩ (6b) s 
.t. w| X -1 ∈ P(X) ⊕ w ∈ P(B) ⊕ .
Step 3: Next, we use a real algebraic geometry theorem that we will introduce in the next section, to recast positivity constraints using sums of squares of polynomials:

λ(X) = inf w,σ0,σ1∈R[x] σ=(σ1,...,σr+1) T ∈R[x] r+1 ⟨T, w⟩ (6c) 
s.t. w = 1 + h ⊤ 1 σ w = σ 0 + (1 -x ⊤ x)σ 1 σ 0 , σ 1 , σ 1 , .
. . , σ r+1 are sums of squares.

Step 4: Eventually, we impose a bound ℓ ∈ N on the degree of the involved polynomials to get a convex, SDPrepresentable optimization problem (see [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF]Proposition 2.1] for SDP-representability of sum-of-squares constraints): Note that (6d) is a tigthening of (6c) in the sense that we replaced the feasible set with a strictly smaller one (even finite dimensional): in this instance, it holds

d ℓ X := inf w,σ0,σ1∈R[x] σ∈R[x] r+1 ⟨T, w⟩ (6d) 
s.t. w = 1 + h ⊤ 1 σ = σ 0 + (1 -x ⊤ x)σ 1 σ 0 , σ 1 ,
d ℓ X > λ(X).
Moreover, increasing the degree bound ℓ increases the size of the feasible set for (6d), so that the following monotone convergence theorem holds for free:

d ℓ X ↘ ℓ→∞ λ(X).
Step 5: It is possible to write a Lagrangian dual to problem (6d), which can be proved to be a finite dimensional relaxation of problem (4).

The moment-SoS hierarchy systematizes this process for generic instances of ( 1) and (1 ′ ).

The moment-SoS hierarchy

The moment-SoS hierarchy builds on real algebraic geometry results to formulate a sequence of finite dimensional convex optimization problems that approximate (1) and (1 ′ ):

Theorem 2.6 (Putinar's Positivstellensatz [41, Theorem 1.3 & Lemma 3.2]).
Let r, m ∈ N ⋆ be positive integers, h ∈ R[x] r a family of r polynomials in m variables.

Introduce the closed semialgebraic set S := x ∈ R m ; h(x) ∈ R r + as well as the convex cones

P(S) + := {p ∈ R[x] ; p(S) ⊂ R + } Σ[x] := K k=1 p 2 k ; K ∈ N ⋆ , p 1 , . . . , p K ∈ R[x] P(S) ⊕ := {p ∈ R[x] ; p(S) ⊂ R ⊕ } Q(h) := h ⊤ 1 σ ; σ ∈ Σ[x] r+1 ⊂ P(S) + . If there exists R > 0 s.t. R 2 -x ⊤ x ∈ Q(h) (Archimedean property), then P(S) ⊕ ⊂ Q(h).
Under the same Archimedean condition, the dual cones Q(h) ′ and M(S) + are isomorphic.

Remark 2.7 (On the Archimedean condition).

As Q(h) ⊂ P(S) + , the Archimedean property automatically yields that

S ⊂ B R := x ∈ R m ; x ⊤ x ≤ R 2 ,
i.e. S is bounded (and thus compact as it is closed). Conversely, if S ⊂ B R for some R > 0, then adding a polynomial h r+1 := R 2 -x ⊤ x to h does not change the geometry of S, while it results in adding h r+1 to Q(h). Thus, in practice, the Archimedean condition is considered equivalent to compactness of S.

Eventually, to properly formulate the moment-SoS hierarchy, we make a last assumption on A.

Assumption 2 (Moment operator).

A is a moment operator, which writes as follows in the setting M = N = 1 of (2):

There exists a sequence of polynomials (φ β ) β ∈ P(X) N n such that, for all µ ∈ M(X), A µ is the linear operator defined on the monomial basis by

⟨A µ, y β ⟩ = φ β dµ. ( 7 
)
Remark 2.8 (Generic moment operator).

The generic case M ̸ = 1, N ̸ = 1 is identical to the above statement, where the sequence of polynomials lies in P(X 1 ) × . . . × P(X M ) N n 1 ×...×N n N instead of P(X) N n .

Lemma 2.9. Assumption 2, is equivalent to supposing that A ′ maps polynomials onto polynomials:

Im(A ′ ) ⊂ P(X 1 ) × . . . × P(X M ). (8) 
Proof. To avoid unnecessary technicalities and index notations, we restrict to the case M = N = 1 of (2). The generalization to (1) is straightforward. We first prove ( 7) =⇒ [START_REF] De Castro | Exact solutions to super resolution on semi-algebraic domains in higher dimensions[END_REF]. By linearity of A ′ , it is sufficient to prove that for all β ∈ N n , A ′ [y β ] ∈ P(X). Let β ∈ N n , x ∈ X and consider the Dirac measure µ = δ x . By Assumption 2 and by construction of the adjoint operator, one has

A ′ [y β ](x) = A ′ [y β ] dµ = ⟨A µ, y β ⟩ = φ β (x).
As this holds for all x ∈ X, we deduce that A ′ [y β ] = φ β ∈ P(X).

We then prove ( 8) =⇒ [START_REF] Davis | Gibbs phenomena for some classical orthogonal polynomials[END_REF]. Let µ ∈ M(X), β ∈ N n . Then, one has

⟨A µ, y β ⟩ = A ′ [y β ] φ β dµ
which concludes the proof as by [START_REF] De Castro | Exact solutions to super resolution on semi-algebraic domains in higher dimensions[END_REF],

φ β = A ′ [y β ] ∈ P(X) holds.
Remark 2.10 (On the validity of Assumption 2).

To our best knowledge, all existing formulations of the GMP (including those in [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF][START_REF] Tacchi | Stokes, Gibbs and volume computation of semialgebraic sets[END_REF][START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI-relaxations[END_REF][START_REF] Oustry | Inner approximations of the maximal positively invariant set for polynomial dynamical systems[END_REF][START_REF] Korda | Convex computation of the maximum controlled invariant set for polynomial control systems[END_REF][START_REF] Schlosser | Converging outer approximations to global attractors using semidefinite programming[END_REF][START_REF] Korda | Convex computation of extremal invariant measures of nonlinear dynamical systems and Markov processes[END_REF][START_REF] De Castro | Exact solutions to super resolution on semi-algebraic domains in higher dimensions[END_REF]) satisfy Assumption 2. Indeed, using Lemma 2.9, it is clear that all operations whose adjoint preserves the space of polynomials (such as summation, polynomial multiplication/pushforward/composition, differentiation) satisfy Assumption 2.

Corollary 2.11 (Action on bounded degree polynomials).

Under Assumption 2, for all ℓ ∈ N, there exists

d ℓ ∈ N such that any p ∈ Im(A ′ ) ∩ R 2ℓ [x] has an antecedent of degree at most d ℓ : ∃w ∈ R d ℓ [y] ; p = A ′ w.
Proof. Let ℓ ∈ N and define B ℓ := {β ∈ N n ; deg(φ β ) ≤ 2ℓ}. By Assumption 2 and Lemma 2.9,

Im(A ′ ) = span{φ β ; β ∈ N n } and thus Im(A ′ ) ∩ R 2ℓ [x] = span{φ β ; β ∈ B ℓ }. Let p ∈ Im(A ′ ) ∩ R 2ℓ [x]: there exists (c β ) β ∈ R B ℓ such that p(x) = β∈B ℓ c β φ β (x). If B ℓ is finite, then d ℓ := max{deg(φ β ) ; β ∈ B ℓ } concludes the proof. If B ℓ is infinite, then because dim (Im(A ′ ) ∩ R 2ℓ [x]) ≤ dim(R 2ℓ [x]) = m+2ℓ m < ∞, one can extract a finite subset Bℓ ⊂ B ℓ such that Im(A ′ ) ∩ R 2ℓ [x] = span{φ β ; β ∈ Bℓ },
and one is back to the case where B ℓ is finite.

Then, it is possible to generalize steps 1 to 5 of the previous section to write a hierarchy of finite dimensional convex problems that approximate (1) and (1 ′ ). For simplicity of exposition, here we rather approximate (2) and (2 ′ ).

Step 1: First, by Lemma 2.9, under Assumption 2 it is possible to replace C(X) + with P(X) + without changing the optimal value d ⋆ M :

d ⋆ M = inf w∈P(Y) ⟨T, w⟩ s.t. A ′ w -g ∈ P(X) + . (9a) 
Step 2: Second, assuming that Condition 1 holds, we look for a minimizing sequence of strictly feasible polynomials w:

d M = inf w∈R[y] ⟨T, w⟩ s.t. A ′ w -g ∈ P(X) ⊕ . (9b) 
Step 3: Using Theorem 2.6, we recast the positivity constraint of (9b) as a quadratic module constraint:

d M = inf w∈R[y]
⟨T, w⟩

s.t. A ′ w -g ∈ Q(h). (9c) 
Step 4: Eventually, we project our infinite dimensional quadratic module onto the bounded degree quadratic module defined for ℓ ∈ N by

Q ℓ (h) := h ⊤ 1 σ ∈ Q(h) ; ∀i ∈ r , max(deg(σ i h i ), deg(σ r+1 )) ≤ 2ℓ
which happens to be a finite dimensional convex cone, obtaining the following SoS programming problem:

d ℓ M := inf w∈R d ℓ [y]
⟨T, w⟩

s.t. A ′ w -g ∈ Q ℓ (h), (9d) 
where we used Corollary 2.11 to bound the degree of w. Note that (9d) is a tigthening of (9c) in the sense that we replaced the feasible set with a strictly smaller one (even finite dimensional): in general,

d ℓ M > d ⋆ M .
Moreover, as

Q(h) = ∪ ℓ∈N Q ℓ (h) and Q L (h) = ∪ ℓ≤L Q ℓ (h)
are clear, one also has the following monotone convergence theorem for free:

d ℓ M ↘ ℓ→∞ d ⋆ M .
Step 5: Using Lagrange duality, from the SoS tightening (9d) we deduce the following moment relaxation:

p ℓ M := sup Z∈Q ℓ (h) ′ ⟨Z, g⟩ s.t. A ′′ ℓ Z = T R d ℓ [y] (9e) 
the "double adjoint"

A ′′ ℓ := (A ′ | R d ℓ [y] ) ′ : R 2ℓ [x] ′ → R d ℓ [y] ′ coinciding with A on M(X) ⊂ R 2ℓ [x] ′ : ∀β ∈ N n d ℓ , ⟨y β , A ′′ Z⟩ = ⟨φ β , Z⟩
under Assumption 2 and with deg(φ β ) ≤ 2ℓ by Corollary 2.11 and its proof.

Several results, ranging from practical to theoretical, come with these tightenings and relaxations. First, as

Step 3 assumes Slater's Condition 1, strong duality holds between (9e) and (9d):

p ℓ M = d ℓ M (for all ℓ such that d ℓ ≥ deg( • w)).
Second, [28, Proposition 2.1] gives a representation of Q ℓ (h) with p.s.d. matrices (and hence by duality Q ℓ (h) ′ is represented by linear matrix inequalities), so that the moment relaxations and SoS strengthenings are equivalent to semidefinite programming (SDP) problems. Eventually, the following theorem ensures strong convergence guarantees of the corresponding numerical scheme: Suppose that ∃B > 0, ℓ min ∈ N s.t. ∀ℓ ≥ ℓ min , any Z feasible for (9e) satisfies ⟨1, Z⟩ ≤ B, and that 1 -x ⊤ x ∈ Q(h) (up to rescaling, this second condition can be enforced if X is compact). Then, for ℓ ≥ ℓ min ,

d ℓ M = p ℓ M -→ ℓ→∞ p ⋆ M = d ⋆ M .
Moreover, if (2) has a unique solution µ ⋆ , then for ℓ ≥ ℓ min (9e) has a unique solution Z ℓ and

∀α ∈ N m , ⟨x α , Z ℓ ⟩ -→ ℓ→∞ x α dµ ⋆ (x).
3 Method for convergence rates computation

The aim of this section (and more generally of this article) is to design methods for computing the rate of the optimal values convergence given in Theorem 2.12.

From particular examples, we derive a generic method for computing such convergence rate, depending on the solutions of the infinite dimensional problem (9a).

Our strategy consists of the following steps:

1. Construction of a suitable minimizing sequence of polynomials. In this step it is important to control simultaneously the degree of those polynomials and the convergence of their cost towards the optimal value.

2. Application of effective version of Positivstellensätze. In this step, explicit convergence rates are derived. They are based on the convergence rates for Positivstellensätze and the minimizing sequence from the previous step.

There is an interplay between the two steps inherent to the choice of the minimizing sequence. We will see an adversarial behavior between, on the one hand, a good approximation of the optimal cost value via high degree polynomials and, on the other hand, degree bounds in the SDP relaxations.

Remark 3.1 (Focusing on the function LP).

We will focus on the dual LP (2 ′ ) and not on the primal (2) simply because we will use the effective version of Putinar's Positivstellensatz Theorem 3.7, which is more adapted to the dual problem (2 ′ ) than to the primal (2). However, under Slater's Condition 1, strong duality holds in each level of the moment-SoS hierachy.

Remark 3.2 (Sparse and symmetric problems).

The number of variables in the SDP for the ℓ-th level of the moment-SoS hierarchy grows combinatorial with ℓ ∈ N. Thus exploiting sparsity or symmetry, when present, is important in practice. Symmetry can be exploited without loss of accuracy, see [START_REF] Riener | Exploiting symmetries in SDP-relaxations for polynomial optimization[END_REF], and therefore the convergence rates translate immediately from the full moment-SoS hierarchy to the symmetry-reduced one. By [START_REF] Korda | Convergence rates for sums-of-squares hierarchies with correlative sparsity[END_REF], correlation-sparsity allows to transfer convergence rates. For (correlation-)sparse dynamical systems the convergence rates can even be improved as long as the bounds in the effective version of Putinar's Positivstellensatz grow with increasing state dimension, see [START_REF] Schlosser | Sparse moment-sum-of-squares relaxations for nonlinear dynamical systems with guaranteed convergence[END_REF].

Example: Static optimization

The Polynomial Optimization Problem (POP) is at the root of the development of the moment-SoS hierarchy, and will serve as a fundamental example for our convergence rates computation. It consists in globally

minimizing a polynomial f ∈ R[x] on a nonempty, compact basic semi-algebraic set ∅ ̸ = X := S(h) ⊂ R m , where h ∈ R[x] r : f ⋆ X := min x∈R m f (x) s.t. h(x) ∈ R r + . (10) 
By definition of the minimum, it is straightforward that f ⋆ X = max{w ∈ R : f -w ≥ 0 on X}, which can in turn be approximated by the moment-SoS hierarchy of SoS strengthenings:

f ℓ X := max w∈R w s.t. f -w ∈ Q ℓ (h). (11) 
Here there are two possible cases:

(i) f -f ⋆ X ∈ Q(h) or (ii) f -f ⋆ X ∈ P(X) + \ Q(h). In case (i), as Q(h) = ∪ ℓ∈N Q ℓ (h) and ℓ ≤ ℓ ′ =⇒ Q ℓ (h) ⊂ Q ℓ ′ (h), there exists an ℓ ⋆ ∈ N such that f -f ⋆ X ∈ Q ℓ (h) ⇐⇒ ℓ ≥ ℓ ⋆
and one has finite convergence:

f ⋆ X ≥ f ℓ X with f ⋆ X = f ℓ X ⇐⇒ ℓ ≥ ℓ ⋆ . (12) 
A sufficient condition for such finite convergence was given in [START_REF] Nie | Optimality conditions and finite convergence in Lasserre's hierarchy[END_REF], in the following setting:

Definition 3.3 (Constraint sets and Lagrange function).

• J + := {i ∈ r ; ∀j ∈ r , t < 0, h i ̸ = t h j } is the set of inequality constraints,

• J 0 := ( r \J+) / ↔, where i ↔ j iffhi hj ∈ R ⊕ , is the set of equality constraints,

• J ⋆ (x) := {i ∈ r ; h i (x) = 0} is the set of active constraints in x ∈ X, • Λ(x, y) := f (x) -y ⊤ h(x), x ∈ R m , y ∈ R r , is the Lagrange function. Condition 3.
Q(h) has the Archimedean property and, for each local minimum x ∈ X of f :

3.1 {grad h i (x) ; i ∈ J ⋆ (x)} are linearly independent (constraint qualification), 3.2 grad x Λ(x, y) = 0 ∀i ∈ J + , y i ≥ 0 and y i h i (x) = 0 =⇒ ∀i ∈ J + , y i + h i (x) > 0 (strict complementarity), 3.3      grad x Λ(x, y) = 0, v ̸ = 0 ∀i ∈ J + , y i ≥ 0 and y i h i (x) = 0 ∀i ∈ J ⋆ (x), grad h i (x) ⊤ v = 0 =⇒ v ⊤ Hess x Λ(x, y) v > 0 (second order condition).
Theorem 3.4 (Finite convergence of the moment-SoS hierarchy). Section 4] and [START_REF] Baldi | On łojasiewicz inequalities and the effective Putinar's Positivstellensatz[END_REF]. We reproduce here the main results, which are based on the following Theorem 3.5 and Assumption 3.

Under Condition 3, f -f ⋆ X ∈ Q(h). However, no bound on ℓ s.t. f -f ⋆ X ∈ Q ℓ (h) can be computed in general (see discussion in [38, Section 5]). Case (ii) is tackled in [2,
Theorem 3.5 (Łojasiewicz exponent [2, Theorem 2.3, Definition 2.4]). For x ∈ [-1, 1] m , let H(x) := | min(h 1 (x), . . . , h r (x), 0)| D(x) := min{|x -x ′ | ; x ′ ∈ S(h)},
where |x| :=

√ x ⊤ x is the Euclidean norm of x. Then there exists Ł, c ∈ R ⋆ + s.t. for x ∈ [-1, 1] m D(x) Ł ≤ c H(x). (13) 
For the effective version of Putinar's Positivstellensatz we make the following assumption.

Assumption 3.

1. 1 -x ⊤ x ∈ Q(h) (normalized Archimedean property), 2. ∀i ∈ r , ∥h i ∥ := max x∈[-1,1] m h i (x) ≤ 1 2
Remark 3.6 (On the validity of Assumption 3).

The normalized Archimedean property can be seen as a restatement of compactness of X. For compact X = S(h), up to rescaling, S(h) is included in the unit ball so that it is possible to add the redundant inequality constraint 1 -x ⊤ x ≥ 0 to the description of S(h). This is the practical approach for guaranteeing Assumption 3.1. The second condition in Assumption 3 is only of technical nature and can be obtained by scaling h.

In this text, we will use the below effective version of Putinar's Positivstellensatz. For the statement of this theorem we recall the notations For m ≥ 2, p ∈ P(X) ⊕ , under Assumption 3, one has

p ⋆ X := inf x∈X p(x), ∥p∥ := max x∈[-1,1] m p(x).
ℓ ≥ γ(m, h) deg(p) 3.5mŁ ( ∥p∥ /p ⋆ X ) 2.5mŁ =⇒ p ∈ Q ℓ (h) (14) 
where 1 ≤ γ(m, h) ≤ Γ m 3 2 5Ł-1 r m c 2m deg(h) m and Γ > 0 does not depend on m, p, h. In the rest of this paper, we will consider fixed m and h, so that we simplify the notation γ(m, h) into γ.

Remark 3.8 (Farkas Lemma). Regardless of m, if deg(p) = deg(h) = 1 (affine forms), then p ∈ P(X) + ⇐⇒ p ∈ Q 1 (h).
In such case, both [START_REF] Fang | The Sum-of-Squares hierarchy on the sphere and applications in quantum information theory[END_REF] and its order 0 SoS strengthening [START_REF] Fantuzzi | Bounds for deterministic and stochastic dynamical systems using sum-of-squares optimization[END_REF] are equivalent to the same linear program (LP). For m ≥ 2, under Assumption 3, one has

0 < ε ≤ ∥f ∥ and ℓ ≥ γ deg(f ) 3.5mŁ ( 3∥f ∥ /ε) 2.5mŁ =⇒ 0 ≤ f ⋆ X -f ℓ X ≤ ε (15a) 0 ≤ f ⋆ X -f ℓ X ≤ ( γ /ℓ) 1 2.5mŁ 3∥f ∥ deg(f ) 7 w ∈ R d [y]
such that ŵ := w ⋆ + w is still feasible for (9a) but also ⟨T, ŵ⟩ ≤ d ⋆ M +ε and p := A ′ ŵ -g ∈ P(X) ⊕ , i.e. ŵ is feasible for (9b) and thus for (9c) by Theorem 2.6. Then, Theorem 3.7 will give us a lower bound on ℓ such that ŵ is feasible for our SoS strenghtening (9d), which will prove that

d ⋆ M ≤ d ℓ M ≤ d ⋆ M + ε.
This is what we did in the previous section:

-f ⋆ X := min w∈R -w = ⟨T, w⟩ s.t. (-w) A ′ w -(-f ) g ∈ P(X) + .
with n = 0 (so that Y = P({0}) = R), w ⋆ = f ⋆ X and w = -ε.

If (9a) has no optimal solution, then we look for minimizing sequences. One way of doing so is to relax (2 ′ ) into

d ⋆ F = inf w∈Y ⟨T , w⟩ s.t. A ′ w -g ∈ X ′ + ( 16 
)
where Y ⊃ Y is the closure of Y for its "well-chosen" topology, T (resp. A ′ ) is the unique continuous linear extension of T (resp. A ′ ) to Y and

X ′ + = Im(A ′ ) ∩ R X
+ is a cone of nonnegative functions. To our best knowledge, in relevant applications, a good choice for the topology on Y often results in ( 16) having an optimal solution w ⋆ ∈ Y with ⟨T , w

⋆ ⟩ = d ⋆ F = d ⋆ M .
Then, by continuity of T and density of Y in Y one can find w ε ∈ Y feasible for (9a) such that ⟨T, w ε ⟩ ≤ d ⋆ M + ε 2 , after which one only needs to repeat the process of previous paragraph, looking for w ∈ R d [y] (where d = deg(w ε )) such that ŵ = w ε + w is feasible for (9b) and (9c) and ⟨T, ŵ⟩ ≤ ⟨T, w ε ⟩ + ε 2 ≤ d ⋆ M + ε, and using Theorem 3.7 to find a lower bound on ℓ s.t. ŵ is feasible for (9d), proving again that

d ⋆ M ≤ d ℓ M ≤ d ⋆ M + ε.
Hence, the general process for computing the degree ℓ needed for a given ε > 0 accuracy and the corresponding convergence rate is summarized as follows:

1. Take a minimizer w ⋆ of the LP (9a) (or of the extended LP [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF] for which a minimizer exists).

2. If w ⋆ is not a polynomial, then approximate it with a feasible polynomial w ε with ⟨T, w ε ⟩ ≤ d ⋆ M + ε /2. 3. Perturb the polynomial w ⋆ (resp. w ε ) into a strictly feasible polynomial ŵ with ⟨T, ŵ⟩ ≤ d ⋆ M + ε. 4. Apply effective Positivstellenstätze to show that ŵ is feasible for the SDP hierarchy at some level ℓ ∈ N.

5.

Relate the approximation error ε and the hierarchy level ℓ to derive a convergence rate.

In conclusion, in the case where only ( 16) has an optimal solution, only one additional step is needed, and the convergence rate is obtained by combining Theorem 3.7 with an approximation theorem that gives a lower bound on the degree d required for w ε ∈ R d [y] to be as defined above. Thus, the rest of this section will be devoted to proving general results on the degree needed to find proper w ε and w polynomials.

Polynomial approximation (finding w ε )

This section introduces polynomial approximation results that depend on the regularity of the function to be approximated. .

When Y is compact, the subscript b is omitted as continuous functions are bounded on compact sets.

An important object is the modulus of continuity ω f,k,y (ρ) of a function f ∈ C k b (Y) of order k at a point y ∈ Y ⊂ R n for the radius ρ > 0, defined as

ω f,k (y, ρ) := sup α∈N n k sup ∥y-y ′ ∥≤ρ |∂ α f (y) -∂ α f (y ′ )| (17a)
where

∂ α f = ∂ α1 ∂y α1 1 • • • ∂ αn ∂y αn n f,
as well as the global modulus of continuity

ω L ∞ f,k (Y, ρ) := ∥ω f,k (•, ρ)∥ Y ∞ = sup y∈Y ω f,k (y, ρ) ≤ ∞ (17b)
and, for µ ∈ M(Y) + and s ≥ 1, the L s (µ)-averaged modulus of continuity

ω L s f,k (µ, ρ) := ∥ω f,k (•, ρ)∥ L s (µ) := ω f,k (•, ρ) s dµ 1 /s (17c) Notice that Y ⊂ Y ′ =⇒ ω L ∞ f,k (Y, •) ≤ ω L ∞ f,k (Y ′ , •) and µ 1 -µ 2 ∈ M(Y) + =⇒ ω L s f,k (µ 1 , •) ≥ ω L s f,k (µ 2 , •).
With the notion of modulus of continuity we can state the following theorem from [START_REF] Bagby | Multivariate simultaneous approximation[END_REF] concerning convergence speed for polynomial approximation of regular functions. Theorem 3.10 (An extended Jackson inequality [START_REF] Bagby | Multivariate simultaneous approximation[END_REF]).

Let Y ⊂ R n be open and bounded, f ∈ C k b (Y). For d ∈ N there is a polynomial p d ∈ R d [y] such that for each α ∈ N n with |α| ≤ min(k, d) we have ∥∂ α (f -p d )∥ Y ∞ ≤ c d k-|α| ω L ∞ f,k (Y, 1 /d) . ( 18a 
)
where c is a positive constant depending only on n, k and Y.

Corollary 3.11 (Approximating smooth functions).

Let Y ⊂ R n be open and bounded, f ∈ C k (Y). For d ≥ k there is a polynomial p d ∈ R d [y] such that ∥f -p d ∥ C k (Y) ≤ c 1 + 1 d k ω L ∞ f,k Y, 1 /d ≤ c 0 ω L ∞ f,k Y, 1 /d (18b)
where c, c 0 = e • c are positive constants depending only on n, k and Y.

Proof. Consider the polynomial p d given by Theorem 3.10. Then, one has

∥f -p d ∥ C k (X) * = |α|≤k ∥∂ α (f -p d )∥ Y ∞ (18a) ≤ |α|≤k c d k-|α| ω L ∞ f,k (Y, 1 /d) = c d k ω L ∞ f,k (Y, 1 /d) |α|≤k d |α| = c d k ω L ∞ f,k (Y, 1 /d) (1 + d) k = c 1 + 1 d k ω L ∞ f,k (Y, 1 /d) ≤ c 1 + 1 d k ω L ∞ f,k Y, 1 /d
where the first equality at * follows from continuity of ∂ α (f -p d ). We conclude by noticing (1

+ 1 /d) k ≤ (1 + 1 /k) k ≤ e.
With a view toward the problem of computing the volume of a semialgebraic set from Section 2.3, the following one-sided approximation result is useful.

Theorem 3.12 (One-sided polynomial approximation [START_REF] Samir | Interpolating operators for multiapproximation[END_REF]).

Let Y ⊂ [-1, 1] n , λ Y be the Lebesgue measure on Y and f : Y -→ R be bounded and measurable.

For all s ∈ [1, ∞) and d ∈ N there is a polynomial

p d ∈ R d [y] such that p d ≥ f on Y and p d -f s dλ Y ≤ c ω L s f,0 (λ, 1 /d) (18c) 
for some constant c depending only on n and s.

Moreover, for all d ∈ N there is a polynomial

p d ∈ R d [y] such that p d ≥ f on Y and λ y ∈ Y ; p d (y) > f (y) + ĉ ω L ∞ f,0 (Y, 1 /d) = 0 (18d)
for some constant ĉ depending only on n.

Inward pointing condition (finding w)

In this section, we complement polynomial approximations from the previous section with conditions that assure feasibility for those approximations. We will see in Lemma 3.13 that the following condition is sufficient for guaranteeing the existence of a minimizing sequence of strictly feasible polynomials.

Condition 4 (Inward-pointing condition).

We say the LP ( 16) satisfies the inward-pointing condition if for each feasible point w for ( 16) there exists ϕ ∈ Y such that A ′ (w + θϕ) -g > 0 on X

for all θ ∈ [0, 1].

Lemma 3.13. Under Condition 4, there exists a minimizing sequence of strictly feasible polynomials.

Proof. Let ε > 0 and

w ε ∈ Y with ⟨T , w ε ⟩ < d ⋆ F + ε 3 . (20) 
Let ϕ ε be as in the inward-pointing Condition 4, such that w ε + θϕ ε is strictly feasible for all θ ∈ [0, 1]. By continuity of T let θ = θ ε be small enough such that

⟨T , θ ε ϕ ε ⟩ = θ ε ⟨T , ϕ ε ⟩ < ε 3 . ( 21 
)
From compactness of X it follows that there exists ρ > 0 with A ′ (w ε + θ ε ϕ ε ) -g ≥ ρ on X. By density of Y in Y, and continuity of A and T , there exists a polynomial p ε ∈ Y (close enough to w ε + θ ε ϕ ε ) with Ap ε -g ≥ ρ 2 on X, i.e. p ε is strictly feasible, and

⟨T, p ε ⟩ -⟨T , w ε + θ ε ϕ ε ⟩ < ε 3 . ( 22 
)
Putting together (20), ( 21) and ( 22) we get for p ε ⟨T,

p ε ⟩ ≤ ⟨T, p ε ⟩ -⟨T , w ε + θ ε ϕ ε ⟩ + ⟨T , θ ε ϕ ε ⟩ + ⟨T , w ε ⟩ < d ⋆ F + ε.
Letting ε go to zero shows the statement.

A simpler version of Condition 4 is that there exists ϕ ∈ Y with Aϕ > 0.

Lemma 3.14. Assume there exists ϕ ∈ Y with Aϕ > 0. Then Condition 4 is satisfied.

the minimizer on this set; for this reason, we recall an extension theorem for smooth functions in appendix. In Theorem 4.10 and Theorem 5.6 we demonstrate that an extension argument, indeed, avoids the appearance of exponential degree bounds.

Conditions 5.2 and 5.3 are specifically formulated to keep simultaneous control of deg(p), p ⋆ X and ∥p∥ X ∞ (ideally; in the present case, we rather have to control ∥p∥ K ∞ ), allowing for a simple use of the effective Positivstellensatz. Hence, the "only" remaining difficulty lies in effectively verifying those two conditions. Examples on how the above three concepts work together for obtaining convergence rates are demonstrated in the following sections, in which we focus on optimal control problems and volume computation of semialgebraic sets.

Application: dynamical systems

We are now going to demonstrate the methodology on instances of the moment-SoS hierarchy related to the study of dynamical systems, such as optimal control [START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI-relaxations[END_REF] or stochastic differential equations [START_REF] Henrion | Moment-SOS hierarchy and exit location of stochastic processes[END_REF].

Optimal control

In this section, we consider the infinite horizon optimal control problem as presented in [START_REF] Korda | Convergence rates of moment-sum-of-squares hierarchies for optimal control problems[END_REF]:

V ⋆ (y 0 ) := inf y(•),u(•) ∞ 0 e -βt g(y(t), u(t)) dt s.t. y(t) = y 0 + t 0 f (y(s), u(s)) ds (24) 
y(t) ∈ Y, u(t) ∈ U with discount factor β > 0, f ∈ R[y, u] n , g ∈ R[y, u] and compact basic semi-algebraic sets Y := S(h Y ) ⊂ R n , U := S(h U ) ⊂ R mu , h Y ∈ R[y] ry , h U ∈ R[u] ru .
If the function y 0 -→ V ⋆ (y 0 ) is continuously differentiable, then it satisfies the Hamilton-Jacobi-Bellman inequality

g -β V -f • grad V ≥ 0 on X := Y × U (25) 
and for any V satisfying (25) it holds V ≤ V ⋆ on Y, see for instance [START_REF] Korda | Convergence rates of moment-sum-of-squares hierarchies for optimal control problems[END_REF]. Hence, for any probability measure µ 0 ∈ M(Y) + (i.e. s.t. µ 0 (Y) = 1) defining a random initial condition Y 03 :

E µ0 [V ⋆ (Y 0 )] ≥ sup V ∈C 1 (Y) V (y 0 ) dµ 0 (y 0 ) =: E µ0 [V (Y 0 )] s.t. g -β V -f • grad V ≥ 0 on X := Y × U (26a)
which can in turn be approximated, defining r

:= r y + r u , h := (h Y , h U ) ∈ R[y, u] r
, by the hierarchy of SoS strengthenings:

V ℓ (µ 0 ) := sup V ∈R d ℓ [y]
V (y 0 ) dµ 0 (y 0 )

s.t. g -β V -f • grad V ∈ Q ℓ (h). (26b) 
The approximation scheme and its convergence rely on the following Condition (see [22, Assumption 1]): Condition 6. The following conditions hold:

1. X = Y × U ⊂ B = {x ∈ R m ; x ⊤ x ≤ 1} where m = n + m u 2. h(0) ∈ R r ⊕ (i.e. the interior of X contains 0). 3. V ⋆ ∈ C 1,1 (X), that is V ⋆ is differentiable and grad V ⋆ is Lipschitz continuous on X (thus the sup in (26a) is attained).
4. For all y ∈ Y, the set f (y, U) and the map v → inf{g(y, u) ; u ∈ U and f (x, u) = v} are convex.

Using Condition 6.1 one can complement the description of X = S(h) with the polynomial

h r+1 (x) := 1 -x ⊤ x,
so that Assumption 3 always holds. Let µ 0 ∈ M(Y) + be a probability measure. Then, under Condition 6,

1. There is ℓ 0 ∈ N s.t. ∀ℓ ≥ ℓ 0 , V ℓ (µ 0 ) > -∞, i.e. (26b) is feasible.
2. Any V feasible for (26b) satisfies V ≤ V ⋆ (lower bounds on the value function).

3. ∀ℓ ≥ ℓ 0 , (26b) has an optimal solution

V ⋆ ℓ ∈ R d ℓ [x] s.t. V ℓ (µ 0 ) = E µ0 [V ⋆ ℓ ]. 4. E µ0 [V ⋆ (X 0 )] -V ℓ (µ 0 ) = E µ0 [V ⋆ (X 0 ) -V ⋆ ℓ (X 0 )] -→ ℓ→∞ 0 i.e. V ⋆ ℓ converges to V ⋆ in L 1 (µ 0 ).
In [START_REF] Korda | Convergence rates of moment-sum-of-squares hierarchies for optimal control problems[END_REF], the authors give an upper bound on the convergence rate for item 4. in Theorem 4.1, which we will now improve using our function approximation results and [START_REF] Baldi | On the effective Putinar's Positivstellensatz and moment approximation[END_REF].

Lemma 4.2. For d ∈ N let V d ∈ R d [y] with ∥V d -V ⋆ ∥ C 1 (Y) ≤ c1 d , where the constant c 1 is deduced from Corollary 3.11. For any η > 0 let V d,η := V d -c1 d 1 + ∥f ∥ X ∞ β -η ∈ R d [y]. Then V d,η satisfies ∥V d,η -V ⋆ ∥ C 1 (Y) ≤ 2 + ∥f ∥ X ∞ β c 1 d + η (27a) and g -βV d,η + f • grad V d,η ≥ βη on X = Y × U. (27b) 
Proof. The arguments can be found in [19, Lemma 3] and [19, Lemma 2]. Since the arguments are short, we will state the proof here as well. First, we compute c 1 using Corollary 3.11: There exists

V d ∈ R d [y] such that ∥V d -V ⋆ ∥ C 1 (Y) ≤ c 0 ω L ∞ V ⋆ ,1 (Y, 1 /d) with, using the Lipschitz condition on grad V ⋆ given in Condition 6, ω L ∞ V ⋆ ,1 (Y, r) ∝ r, yielding the constant c 1 such that ω L ∞ V ⋆ ,k (Y, r) ≤ c 1 r. Then, we have ∥V d,η -V ⋆ ∥ C 1 (Y) ≤ ∥V d -V ⋆ ∥ C 1 (Y) + |V d,η -V d ∥ C 1 (Y) ≤ c 1 d + c 1 d 1 + ∥f ∥ X ∞ β + η.
This is (27a). For (27b) we compute 

g -βV d,η + f • grad V d,η = g -βV ⋆ + f • grad V ⋆ ≥0 + β(V ⋆ -V d,η ) + f • grad(V d,η -V ⋆ ) ≥ 0 + β V ⋆ -V d + c 1 d 1 + ∥f ∥ X ∞ β + η + f • grad(V d -V ⋆ ) ≥ β -∥V ⋆ -V d ∥ Y ∞ + c 1 d 1 + ∥f ∥ X ∞ β + η -∥grad(V ⋆ -V d )∥ Y ∞ ∥f ∥ X ∞ ≥ β -∥V ⋆ -V d ∥ C 1 (Y) + c 1 d 1 + ∥f ∥ X ∞ β + η -∥V ⋆ -V d ∥ C 1 (Y) ∥f ∥ X ∞ ≥ β - c 1 d + c 1 d 1 + ∥f ∥ X ∞ β + η - c 1 d ∥f ∥ X ∞ = βη.
ℓ ≥ γd 3.5mŁ f A η + B η d + 1 2.5mŁ 1 + C d f +1 • d 2 f/4 2.5mŁ . ( 28a 
)
Moreover, if

ε > 2 + ∥f ∥ X ∞ β c 1 d (28b)
and

η ≤ ε -2 + ∥f ∥ X ∞ β c 1 d , ( 28c 
)
then it holds E µ0 [V d,η (Y 0 )] ≥ E µ0 [V ⋆ (Y 0 )] -ε, (28d) 
hence proving that 0 ≤ E µ0 [V ⋆ (Y 0 )] -V ℓ (µ 0 ) ≤ ε.
Proof. Notice that (28b) is only to ensure (28c) has at least one solution η. We use Theorem 3.7:

Denoting p := g -β V d,η -f • grad V d,η ≥ β η > 0, we know that p ∈ Q ℓ (h) (i.e. V d,η is feasible for (26b)) for ℓ ≥ γ deg(p) 3.5mŁ ( ∥p∥ /p ⋆ X ) 2.5mŁ . ( 29a 
)
Hence we only need to estimate bounds on ∥p∥, deg(p) and p ⋆ X .

• p ⋆ X ≥ β η is a direct consequence of how we constructed V d,η in Lemma 4.2.

• deg(p) ≤ max(deg(g), deg(V d,η ), deg(f • grad V d,η )) ≤ d f := deg(f ) + d.
• Estimating ∥p∥ is the difficult part. First, we have, denoting q :

= g -β V ⋆ -f • grad V ⋆ ≥ 0: ∥p∥ X ∞ -∥q∥ X ∞ ≤ ∥p -q∥ X ∞ = ∥β(V ⋆ -V d,η ) + f • grad(V ⋆ -V d,η )∥ X ∞ = β V ⋆ -V d + c 1 d 1 + ∥f ∥ X ∞ β + η + f • grad(V ⋆ -V d ) X ∞ ≤ β ∥V ⋆ -V d ∥ X ∞ + c 1 d 1 + ∥f ∥ X ∞ β + η + ∥f ∥ X ∞ ∥grad(V ⋆ -V d )∥ X ∞ ≤ (β + ∥f ∥ X ∞ ) ∥V ⋆ -V d ∥ C 1 (Y) + c 1 d + η β ≤ 2(β + ∥f ∥ X ∞ ) c 1 d + η β which gives the upper bound ∥p∥ X ∞ ≤ ∥q∥ X ∞ + 2(β + ∥f ∥ X ∞ ) c 1 d + η β. (29b) 
However, what we are looking for is an upper bound on ∥p∥ ≥ ∥p∥ X ∞ (since X ⊂ K := [-1, 1] m by Condition 6.1). By equivalence of norms in finite dimensional spaces there is a constant c such that ∥p∥ ≤ c∥p∥ X ∞ . We will now compute such a bound using results in [START_REF] Baldi | Degree bounds for Putinar's Positivstellensatz on the hypercube[END_REF]. Lemma 4.5. For any nonnegative polynomial p ∈ P(X) + , it holds

∥p∥ ≤ 1 + deg(p) 2 4 ( 2 /b) deg(p)+1 ∥p∥ X ∞ , (30) 
where b ∈ (0, 1) is such that [-b, b] m ⊂ X (whose existence is guaranteed by Condition 6.2).

Proof. See Appendix A.

We finally get our bound by reinjecting the bounds on p ⋆ X , deg(p) and equations ( 29b) and ( 30) in (29a):

ℓ ≥ γd 3.5mŁ f ∥q∥ X ∞ β η + 2 β + ∥f ∥ X ∞ β η c 1 d + 1 ≥ ∥p∥ X ∞/p ⋆ X 2.5mŁ 1 + d 2 f 4 ( 2 /b) d f +1 ≥ ∥p∥ /∥p∥ X ∞ 2.5mŁ
which is exactly (28a). Eventually, we compute

0 ≤ E µ0 [V ⋆ (Y 0 )] -V ℓ (µ 0 ) ≤ E µ0 [V ⋆ (Y 0 ) -V d,η (Y 0 )] ≤ ∥V ⋆ -V d,η ∥ Y ∞ ≤ ∥V ⋆ -V d,η ∥ C 1 (Y) (27a) ≤ 2 + ∥f ∥ X ∞ β c 1 d + η (28c) ≤ ε.
Corollary 4.6 (Convergence rate for optimal control).

Under Condition 6, for ℓ ∈ N large enough it holds

|E µ0 [V ⋆ (Y 0 )] -V ℓ (µ 0 )| ∈ O( 1 /log ℓ) as ℓ → ∞. ( 31 
)
Proof. We are going to use Theorem 4.4. Let d ∈ N and take

ε d := 1 d 2 + ∥f ∥ X ∞ β c 1 + 1 > 2 + ∥f ∥ X ∞ β c 1 d
so that (28b) holds and we can saturate (28c) with

η := ε d -2 + ∥f ∥ X ∞ β c 1 d = 1 d . Then, Theorem 4.4 ensures that 0 ≤ E µ0 [V ⋆ (Y 0 )] -V ℓ (µ 0 ) ≤ ε d for ℓ ≥ γd 3.5mŁ f (A d + B + 1) 2.5mŁ (1 + C d f +1 • d 2 f/4) 2.5mŁ =: ℓ b .
Now, an asymptotic equivalent is given by

ℓ b ∼ d→∞ γ A 4 d 11mŁ C (d+deg(f )+1)2.5mŁ ∈ O d→∞ d 11mŁ C 2.5mŁd
and taking the log yields

log(ℓ b ) ∈ O(d) = O( 1 /ε d ) as d → ∞.
Finally, remembering that 0

≤ E µ0 [V ⋆ (Y 0 )] -V ⌈ℓ b ⌉ (µ 0 ) ≤ ε d

and inverting the above asymptotic expression

gives the announced result.

Remark 4.7 (Comparison with [START_REF] Korda | Convergence rates of moment-sum-of-squares hierarchies for optimal control problems[END_REF]).

In [START_REF] Korda | Convergence rates of moment-sum-of-squares hierarchies for optimal control problems[END_REF], using a previous effective version of Putinar's Positivstellensatz, the authors came up with a much worse convergence rate of 1 /log log ℓ. Using the new effective Putinar Positivstellensatz from [START_REF] Baldi | On the effective Putinar's Positivstellensatz and moment approximation[END_REF], we could remove an exponential dependence in the degree and hence sharply improve the convergence rate. Moreover, at the price of some additional assumptions on the state set Y, it is even possible to derive a polynomial convergence rate, as we will show now. Indeed, the remaining exponential dependence is an artifact coming from Lemma 4.5, but the effective Positivstellensatz actually gives polynomial dependence.

A polynomial convergence rate

In this paragraph, we derive a convergence rate for the GMP (26b) in which the level ℓ of the hierarchy is polynomial in 1 ε for the relaxation gap

E µ0 [V ⋆ (Y 0 )] -V ℓ (µ 0 ) ≤ ε.
The idea is to side-step the exponential growth of the degree bound in Lemma 4.5 that arises from bounding the supremum of a polynomial on the hypercube by its supremum on a smaller cube. Here, we will extend the optimal cost function V ⋆ to the whole hypercube [-1, 1] n and, only then, approximate it on the full hypercube [-1, 1] n by a polynomial V d . This allows us to bound ∥V d ∥ simply by

∥V ⋆ ∥ + 1 (for d large enough) instead of ∥V d ∥ ≤ C d ∥V d ∥ Y ∞ .
For this to work we need to guarantee that there exists an extension of V ⋆ to [-1, 1] n with sufficient regularity.

To extend V ⋆ we need to introduce the Hölder spaces and norms: We say a function w belongs to the Hölder space C k,a (Y) for k ∈ N and a ∈ (0, 1] if w ∈ C k (Y) and its k-th derivative is a-Hölder-continuous, i.e. its a-Hölder coefficient is finite:

ζ Y k,a (w) := max |α|=k sup y̸ =y ′ ∈Y |∂ α w(y) -∂ α w(y ′ )| ∥y -y ′ ∥ a < ∞.
For bounded Y, we equip the space C k,a (Y) with the norm

∥w∥ C k,a (Y) := ∥w∥ C k (Y) + ζ Y k,a (w). 
The notion of Hölder regularity is used to state the following condition, which is instrumental in ensuring a polynomial convergence rate instead of the logarithmic one given in Corollary 4.6.

Condition 7.

The set Y has C 1,1 boundary, that is the boundary ∂Y is locally the graph of a C 1,1 function in the above sense of having a finite Hölder coefficient.

Next, we provide an extension result for Hölder functions from [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF].

Lemma 4.8 (Extension Lemma; [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Lemma 6.37]).

Let k ≥ 1 be an integer and a ∈ (0, 1]. Let Y ⊂ R n be compact with C k,a boundary. Let Ω be an open and bounded set containing Y. Then for every function w ∈ C k,a (Y) there exists an extension w ∈ C k,a (Ω) with w(y) = w(y) for all y ∈ Y and

∥ w∥ C k,a (Ω) ≤ c 2 ∥w∥ C k,a (Y) (33) 
for some constant c 2 = c 2 (n, k, a, Y, Ω) independent of w.

Under Conditions 7 and 6.3, Lemma 4.8 ensures that there exists an extension

V ∈ C 1 ([-1, 1] n ) of V ⋆ such that grad V is Lipschitz continuous and there exists a constant c 2 = c 2 (n, Y) such that ∥V ∥ C 1,1 ([-1,1] n ) ≤ c 2 ∥V ⋆ ∥ C 1,1 (Y) . (34a) 
For the rest of this paragraph, we follow the same path as previously in this section. That is, by Corollary 3.11, let V d ∈ R d [y] be a polynomial and c 1 be a constant (independent of V ) with

∥V -V d ∥ C 1 ([-1,1] n ) ≤ c 1 d . (34b) 
As in Lemma 4.2, for η > 0, we define

V d,η := V d - c 1 d 1 + ∥f ∥ β -η ∈ R d [y], (34c) 
where we recall that ∥f ∥ = max{|f (y, u)| ; (y, u) ∈ [-1, 1] m } with m = n + m u . In the following lemma, we show that V d,η is strictly feasible.

Lemma 4.9. Let Condition 7 hold and

c 1 = c 1 (n, Y, V ⋆ ), c 2 = c 2 (n, Y) be the constants from (34a) and (34b). For d ∈ N, η > 0 the function V d,η satisfies ∥V d,η -V ⋆ ∥ C 1 (Y) ≤ 2 + ∥f ∥ β c 1 d + η. (35a) 
Further, for the polynomial function

p := g -βV d,η + f • grad V d,η ∈ P(X) it holds p ≥ βη on X = Y × U (35b)
and, recalling that ∥p∥ = max{|p(x

)| ; x ∈ [-1, 1] m }, ∥p∥ ≤ ∥g∥ + c 2 ∥V ⋆ ∥ C 1,1 (Y) (β + ∥f ∥) + 2 c 1 d (β + ∥f ∥) + βη. (35c) 
Proof. The statements (35a) and (35b) follow similarly to (27a) and (27b) in Lemma 4.2. To show (35c), we simply apply the triangle inequality

∥p∥ = ∥g -βV d,η + f • grad V d,η ∥ ≤ ∥g∥ + β∥V d,η ∥ + ∥f • grad V d,η ∥ (36a) 
and separately bound βV d,η and f • grad V d,η . We begin with βV d,η

∥βV d,η ∥ ≤ β ∥V ∥ + ∥V d -V ∥ + c 1 d 1 + ∥f ∥ β + η ≤ β c 2 ∥V ⋆ ∥ C 1,1 (Y) + c 1 d + c 1 d 1 + ∥f ∥ β + η ≤ β c 2 ∥V ⋆ ∥ C 1,1 (Y) + c 1 d 2 + ∥f ∥ β + η
where in the last inequality we used (34a) and (34b). For bounding f • grad V d,η we use grad V d,η = grad V d and we have

∥f • grad V d,η ∥ = ∥f • grad V d ∥ ≤ ∥f ∥ (∥V ∥ + ∥V d -V ∥) ≤ ∥f ∥ c 2 ∥V ⋆ ∥ C 1,1 (Y) + c 1 d
Putting together in (36a) gives (35c).

As in the previous section, Lemma 4.9 ensures that V d,η is an inward pointing perturbation of V ⋆ . Now, all that remains is to apply an effective version of Putinar's Positivstellensatz from Theorem 3.7.

Theorem 4.10 (Polynomial rate for optimal control).

Under Conditions 6 and 7, for ℓ ∈ N large enough it holds

0 ≤ E µ0 [V ⋆ (Y 0 )] -V ℓ (µ 0 ) ∈ O ℓ -1 6mŁ as ℓ → ∞. (37) 
Proof. We use the notation and constants from Lemma 4.9. Let V d,η be as in (34c). For d ∈ N we choose

η = η d := 1 d . Let d 0 ∈ N such that 2 + ∥f ∥ β c 1 d 0 + η d0 , 2 c 1 d 0 (β + ∥f ∥) + βη d0 ≤ 1. (38a) 
By monotony in d, both terms on the left-hand side in (38a) are bounded by 1 for all d ≥ d 0 . From Lemma 4.9, we have

∥V d,η -V ⋆ ∥ C 1 (Y) ∈ O 1 d as d → ∞ (38b) 
and for p := g -

βV d,η + f • grad V d,η it holds p ≥ β d on Y × U (38c) 
and ∥p∥ ≤ ∥g∥

+ c∥V ⋆ ∥ C 1,1 (Y) (β + ∥f ∥) + 1 =: c 3 . (38d) 
Note that the constant c 3 is independent of d and the choice of extension V . Inserting (38c) and (38d) into Corollary 3.9, we get that V d,η d is feasible for (26b) for any ℓ ∈ N with

ℓ ≥ γ(m, h) deg(p) 3.5mŁ c 3 d β 2.5mŁ . (38e) 
To finalize the proof, recall that deg(p)

≤ d + deg(f ) ∈ O(d). Thus, for given ℓ ∈ N (large enough), we choose the largest d = d ℓ ∈ N (with d ≥ d 0 ) such that (38e) is satisfied. By (38e), such d ℓ is of order ℓ 1 6mŁ
and we get

|E µ0 [V ⋆ (Y 0 )] -V ℓ (µ 0 )| ≤ |V ⋆ (y 0 ) -V d ℓ ,η d ℓ (y 0 )| dµ 0 (y 0 ) ≤ ∥V d ℓ ,η d ℓ -V ⋆ ∥ Y ∞ = ∥V d ℓ ,η d ℓ -V ⋆ ∥ C 1 (Y) ∈ O 1 d ℓ ∈ O ℓ -1 6mŁ as ℓ → ∞.
This shows the statement.

Remark 4.11 (Relaxing the regularity assumption on V ⋆ ).

The same arguments in the proof of Theorem 4.10 work still for V ⋆ with slightly less regularity, namely, for V ⋆ ∈ C 1,a (Y) and Y with C 1,a boundary for some a ∈ (0, 1). The convergence rate then takes the form

E µ0 [V ⋆ (Y 0 )] -V ℓ (µ 0 ) ∈ O ℓ - 1 2.5mŁ+3.5m Ł /a as ℓ → ∞

Exit location of stochastic processes

In this example, we apply our framework to [START_REF] Henrion | Moment-SOS hierarchy and exit location of stochastic processes[END_REF], in which the exit location of stochastic processes is computed by a GMP. We recall the setting from [START_REF] Henrion | Moment-SOS hierarchy and exit location of stochastic processes[END_REF]. Consider a stochastic differential equation

dX t = f 0 (X t ) dt + F(X t ) dB t , X 0 = x 0 (39) 
for f 0 = (f 0i ) i : R m → R m , F = (f ij ) i,j : R m → R m×n , a deterministic initial condition x 0 and (B t ) t≥0 a n-dimensional Brownian motion. The SDE (39) is equipped with an open, bounded constraint set X and for a given function g : ∂X → R, the expected exit value for x ∈ X is given by

v ⋆ (x 0 ) := E(g(X τ )) (40) 
where τ = inf{t ≥ 0 ; X t ∈ ∂X} is the first time at which the process (X t ) t starting at X 0 = x 0 hits ∂X.

In [START_REF] Henrion | Moment-SOS hierarchy and exit location of stochastic processes[END_REF], the following assumptions were made Condition 8.

It holds

X = S(h) ⊂ K = [-1, 1] m for some h ∈ R[x] r .

8.2

The boundary ∂X is smooth and is represented by

∂X = S(h ∂ ) for some h ∂ ∈ R[x] r ∂ . 8.3 We assume g, f 0i , f ij ∈ R[x] for i = 1, .
. . , m and j = 1, . . . , n.

8.4

The matrix F(x)F(x) ⊤ is positive definite for all x ∈ X.

Remark 4.12. The case when the boundary ∂X decomposes into several disjoint components ∂X = X ∂ 1 ∪ . . . ∪ X ∂ l is treated similarly in [START_REF] Henrion | Moment-SOS hierarchy and exit location of stochastic processes[END_REF]. By Condition 8.2, we restrict to the notationally simpler case of ∂X = S(h ∂ ).

Under the above conditions there exists a unique solution X t of (39) for t ≤ τ , see [START_REF] Henrion | Moment-SOS hierarchy and exit location of stochastic processes[END_REF][START_REF] Lawrence | An introduction to stochastic differential equations[END_REF].

In [START_REF] Henrion | Moment-SOS hierarchy and exit location of stochastic processes[END_REF], from Dynkin's formula, the following GMP for the value v ⋆ (x 0 ) of the exit value ( 40) is derived

v ⋆ (x 0 ) = max v v(x 0 ) s.t. Lv ≤ 0 on X, v ≤ g on ∂X ( 41 
)
where L is the second-order partial differential operator

Lv(x) := - m i,j=1 a ij (x) ∂ 2 v ∂x i ∂x j (x) + m i=1 f 0i (x) ∂v ∂x i (x) (42) 
for (a ij (x)) i,j=1,...,m = F(x)F(x) ⊤ . The moment-SoS hierarchy for the LP (41) reads

v ⋆ ℓ (x 0 ) := sup v∈R[x] v(x 0 ) s.t. -Lv ∈ Q ℓ (h) g -v ∈ Q ℓ (h ∂ ). (43) 
The function v ⋆ is the solution of the following boundary value problem

Lv = 0 on X v = g on ∂X. (44) 
Thus, the question about existence and regularity of minimizers of ( 41) is transferred to the question about existence and regularity of solutions of [START_REF] Schlosser | Converging outer approximations to global attractors using semidefinite programming[END_REF]. Fortunately, the answer here is positive, see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF][START_REF] Urbas | Lecture on second order linear partial differential equations[END_REF][START_REF] Henrion | Moment-SOS hierarchy and exit location of stochastic processes[END_REF]. Namely, under Condition 8, there exists a unique solution v ∈ C ∞ (X) of [START_REF] Schlosser | Converging outer approximations to global attractors using semidefinite programming[END_REF]. Next, we investigate an inwardpointing direction. Therefore, we recall that for ϕ ∈ C ∞ (X) there exists a unique solution

u ϕ ∈ C ∞ (X) of Lu ϕ = ϕ in X u ϕ = 0 on ∂X. (45) 
To construct an inward-pointing direction let ϕ(x) := -1 for all x ∈ X and u ϕ be a corresponding solution to [START_REF] Morton | Lagrange multipliers revisited[END_REF]. Let 0 < η, θ ∈ R, we define the function

v := v ⋆ + θ(u ϕ -η). (46) 
In the following lemma we show that v is indeed strictly feasible for all θ > 0; in other words u ϕ -η is an inward-pointing direction for v ⋆ .

Lemma 4.13. For all θ > 0, the function v from ( 46) is strictly feasible for [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF].

Proof. On X it holds

Lv = L(v ⋆ + θ(u ϕ -η)) = Lv ⋆ + θL(u ϕ -η) = Lv ⋆ + θLu ϕ = 0 + θ(-1) = -θ < 0.
For x ∈ ∂X we have

v(x) = v ⋆ (x) + θ(u ϕ (x) -η) = g(x) + θ(0 -η) = g(x) -θη < g(x).
This shows that v is strictly feasible for [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF].

The cost of v for the infinite dimensional LP ( 41) is given by v(x 0 ) = v ⋆ (x 0 ) + θ(u ϕ (x 0 ) -η).

Following our procedure from Section 3.2, we obtain the following convergence rate for the moment-SoS hierarchy for (41) from [START_REF] Henrion | Moment-SOS hierarchy and exit location of stochastic processes[END_REF].

Theorem 4.14 (Convergence rate for exit location of stochastic systems).

Let Assumption 3 hold for X and ∂X, and let Ł (resp. Ł ∂ ) be the Łojaciewicz exponent of h (resp. h ∂ ).

Then, defining Ł := max(Ł, Ł ∂ ), under Condition 8, it holds for ℓ ∈ N large enough that

v ⋆ (x 0 ) -v ⋆ ℓ (x 0 ) ∈ O ℓ - 1 (2.5+s)m Ł
for any s > 0.

(47)

Proof. Let s > 0, k := ⌈ 3.5 /s⌉, v, u ∈ C k+2 (K) be extensions of v ⋆ and u ϕ according to Lemma 4.8 with

∥v∥ C k+2 (K) ≤ c 2 ∥v∥ C k+2 (X) and ∥u∥ C k+2 (K) ≤ c 2 ∥u ϕ ∥ C k+2 (X) (48a) 
for some constant c 2 ∈ R. For d ∈ N, by Theorem 3.10, let

p q , q d ∈ R d [x] with ∥v -p d ∥ C k+2 (K) , ∥u -q d ∥ C k+2 (K) ≤ c 1 d k (48b)
for some constant c 1 ∈ R. Further, we set

A := sup x∈K m i,j=1 |a ij (x)| + m i=1 |f 0i (x)|.
We define θ d , η d > 0 for large enough d ∈ N as

θ d := 2c 2 A d k (1 -c1A /d k ) ∈ O(d -k ) and η d := c 2 d k (1 + 2θ -1 d ) ∈ O(1). (48c) 
Motivated by [START_REF] Slot | Sum-of-Squares hierarchies for polynomial optimization and the Christoffel-Darboux kernel[END_REF], we define v d by

v d := p d + θ d (q d -η d ) (48d) 
and verify that v d is feasible for [START_REF] Schlosser | Sparse moment-sum-of-squares relaxations for nonlinear dynamical systems with guaranteed convergence[END_REF] for ℓ ∈ N to be determined. We first bound v d on K. On K we have for large enough d ∈ N

|v d | ≤ |v| + |v -p d | + θ d (|u| + |u -q d | + η d ) ≤ ∥v∥ K ∞ + ∥v -p d ∥ K ∞ + θ d (∥u∥ K ∞ + ∥u -q d ∥ K ∞ + η d ) ≤ ∥v∥ C 2 (K) + ∥v -p d ∥ C 2 (K) + θ d (∥u∥ C 2 (K) + ∥u -q d ∥ C 2 (K) + η d ) ≤ c 2 ∥v ⋆ ∥ C k+2 (X) + c 1 d k + θ d c 2 ∥u ϕ ∥ C k+2 (X) + θ d c 2 ∥v ⋆ ∥ C k+2 (X) + θ d c 1 d k + θ d η d ≤ c 2 ∥v ⋆ ∥ C k+2 (X) + 1 + θ d c 2 ∥u ϕ ∥ C k+2 (X) + 3 =: C 1 .
Similarly, we can bound Lv d on K. Note first that for all x ∈ K we have for all w ∈ C 2 (K)

|Lw(x)| = m i,j=1 a ij (x)∂ i ∂ j w(x) + m i=1 f 0i (x)∂ i w(x) ≤   m i,j=1 |a ij (x)| + m i=1 |f 0i (x)|   ∥w∥ C 2 (K) ≤ A∥w∥ C 2 (K) .
For large enough d ∈ N we get on K

|Lv d | ≤ |Lv| + |L(v -p d )| + θ(|Lu| + |L(u -q d )|) ≤ A∥v∥ C 2 (K) + A∥v -p d ∥ C 2 (K) + θA∥u∥ C 2 (K) + θA∥u -q d ∥ C 2 (K) ≤ Ac 2 ∥v ⋆ ∥ C k+2 (X) + A c 1 d k + θA∥u ϕ ∥ C k+2 (X) + θA c 1 d k ≤ Ac 2 ∥v ⋆ ∥ C k+2 (X) + 3 =: C 2 .
Next, we verify strict feasibility of v d for [START_REF] Schlosser | Sparse moment-sum-of-squares relaxations for nonlinear dynamical systems with guaranteed convergence[END_REF]. It holds on X

Lv d = Lv ⋆ =0 +L(p d -v ⋆ ) + θ d (Lu ϕ =-1 +L(q d -u ϕ ) + η d ) ≤ A∥v ⋆ -p d ∥ C k+2 (X) -θ + θA∥u ϕ -q d ∥ C k+2 (X) ≤ A∥v -p d ∥ C k+2 (X) -θ + θA∥u -q d ∥ C k+2 (X) ≤ θ d (-1 + A c 1 d k ) + Ac 1 d k (48c) = - Ac 1 d k (48e)
and on ∂X it holds

v d = v ⋆ =g +p d -v ⋆ + θ d ( u ϕ =0 +q d -u ϕ -η d ) ≤ g + ∥v * -p d ∥ (∂X) ∞ + θ∥u ϕ -q d ∥ (∂X) ∞ -θ d η d ≤ g + θ d (1 + c 1 d k -η d ) (48c) = g - c 2 d k . ( 48f 
)
Applying Theorem 3.7, we get that v d is feasible for ℓ ∈ N with

ℓ ≥ d 3.5m Ł max γ(m, h) C 2 d k Ac 1 2.5mŁ , γ(m, h ∂ ) C 1 d k c 2 2.5mŁ ∂ ∈ O d (3.5+2.5k)m Ł . (48g) 
For such ℓ the optimal value v ⋆ ℓ is at least v d (x 0 ); hence we get

v ⋆ (x 0 ) -v ⋆ ℓ (x 0 ) ≤ (v ⋆ -v ⋆ -(p d -v ⋆ ) -θ d (u ϕ + q d -u ϕ -η d ))(x 0 ) ≤ c 1 d k + θ d (∥u ϕ ∥ X ∞ + c 1 d k + η d ) ∈ O d -k . ( 48h 
)
Defining

ε d := d -k , (48g) yields that v d is feasible for ℓ ≥ ℓ b ∈ O ε - 1 ( 3.5 /k+2.5)m Ł d so that (48h) ensures that |v ⋆ (x 0 ) -v ⋆ ℓ b (x 0 )| ≤ ε d ∈ O ℓ - 1 ( 3.5 /k+2.5)m Ł b ⊂ O ℓ - 1 (s+2.5)m Ł b
, which is the announced result.

Application: Volume computation

In this section, we analyze the moment-SoS hierarchy for computing the volume λ(X) of a bounded basic semi-algebraic set

X := S(h) = {x ∈ R m ; h 1 (x) ≥ 0, . . . , h r (x) ≥ 0} ⊂ B with r ≥ 1 integer and h 1 , . . . , h r ∈ R[x].
A standard moment-SoS hierarchy method was proposed in [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF], but with a bad convergence behavior both in practice and in theory (see [START_REF] Korda | Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets[END_REF] for convergence rates), due to a Gibbs phenomenon occurring in the SoS approximations. An alternative formulation was proposed in [START_REF] Lasserre | Computing Gaussian and exponential measures of semi-algebraic sets[END_REF], with much better numerical behavior, which was recently supported by a qualitative analysis in [START_REF] Tacchi | Stokes, Gibbs and volume computation of semialgebraic sets[END_REF], showing that no Gibbs phenomenon occurs in this improved formulation. In this section we complement the existing qualitative analysis with a first quantitative analysis of how much better the convergence rate is in the improved formulation.

The standard approach

The standard moment-SoS approach to numerically solve the volume problem is discussed in detail in [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF]. The method consists in formulating a GMP whose optimal solution is λ(X), after what one numerically where w d comes from Condition 9. Let ε > 0. From Theorem 3.12, we know that

(w d -1 X ) dλ K ≤ c ω L 1 1 X ,0 (λ K , 1 /d), (53b) 
with

ω L 1 1 X ,0 (λ K , 1 /d) = sup |1 X (x) -1 X (y)| ; x ∈ K, ∥x -y∥ ≤ 1 /d dλ K (y).
From [19, Lemma 1], there exists a c 4 ≥ 0 depending only on X such that

ω L 1 1 X ,0 (λ K , 1 /d) ≤ c 4 d ,
which we reinject into (53b) to get (introducing

C := 2 c c 4 ) (w d -1 X ) dλ K ≤ C 2d . (53c) 
It remains to specify w so that we get a good bound on the second term in (53a). Defining w := w d + C /2dλ(K), we automatically get

|w -w d | dλ K = C 2d ,
which we can reinject into (53a) to get

0 ≤ d ℓ X -λ(X) ≤ C d ,
for any ℓ such that w is feasible in (51) at order ℓ. The last remaining piece is a value for such ℓ, which we compute using again Theorem 3.7 on both K and X. We first work on X: we want a lower bound on ℓ ∈ N such that p := w -1 ∈ Q ℓ (h); denoting Ł the Łojaciewicz exponent of h, it is given by the effective Putinar P-satz as ℓ ≥ γ(m, h) deg(p) 3.5mŁ ( ∥p∥ /p ⋆ X )

2.5mŁ

with:

• deg(p) = deg(w -1) = deg(w d + C /(2 m+1 d) -1) ≤ d (as λ(K) = λ[-1, 1] m = 2 m ) • ∥p∥ = max{p(x) ; x ∈ [-1, 1] m } ≤ c G + C /(2 m+1 d) -1 (because K = [-1, 1] m ) • p ⋆ X = min{p(x) ; x ∈ X} ≥ C /(2 m+1 d) so that we get ℓ ≥ γ(m, h) d 3.5mŁ c G + C /(2 m+1 d) -1 C /(2 m+1 d) 2.5mŁ = γ(m, h) d 3.5mŁ 1 + 2 m+1 c G -1 C d 2.5mŁ . (53d) 
Next, we work on K = [-1, 1] m = S(f ), for which the Łojaciewicz exponent is 1, and we want a lower bound on ℓ such that w ∈ Q ℓ (f ), which is again given by the effective Putinar P-satz as

ℓ ≥ γ(m, f ) deg(w) 3.5m ( ∥w∥ /w ⋆ K ) 2.5m
with:

•

deg(w) = deg(w d + C /(2 m+1 d)) ≤ d • ∥w∥ = max{w(x) ; , x ∈ K} ≤ c G + C /(2 m+1 d) • w ⋆ K = min{w(x) ; x ∈ K} ≥ C /(2 m+1 d) so that we get ℓ ≥ γ(m, f ) d 3.5m 1 + 2 m+1 c G C d 2.5m (53e) 
Eventually, taking ℓ larger than the maximum between the right hand sides of (53d) and (53e) with d := ⌈ C /ε⌉ yields the announced bound.

where the X i are the connected components of X. As a result, ϕ was proved to be only Lipschitz continuous, so that the optimal function w = 1 -ϕ was also only Lipschitz continuous. However, another, smooth optimal function can be designed.

Theorem 5.5 (Existence of smooth solutions).

There exist smooth functions u, ϕ ∈ C ∞ (X) solutions to (55). Further, u, ϕ ∈ C ∞ (X) can be chosen such that u, w given by (56) are smooth and optimal for (54b), i.e. it holds w dλ K = λ(X).

Proof. See Appendix C.

The regularity result in Theorem 5.5 allows us to incorporate higher order approximation rates via the Jackson-inequality Theorem 3.10. Its effect on the convergence rate of the moment-SoS hierarchy for the GMP (54b) is stated in the following theorem. For ℓ ∈ N, let us denote by Vol ℓ the optimal value in the ℓ-th level of the moment-SoS hierarchy for (54b).

Theorem 5.6 (Rate for Stokes-augmented volume computation).

Under Condition 10 it holds, for ℓ ∈ N large enough and with Ł := max{1, Ł}, that

0 ≤ Vol ℓ -λ(X) ∈ O ℓ - 1 (2.5+s)m Ł as ℓ → ∞ for any s > 0. (57) 
Proof. Recall that we assume K = [-1, 1] m . By Theorem 5.5, let u, ϕ be smooth solutions of (55) such that u = grad u and w = (1 -ϕ) X from (56) are smooth and optimal for (54b). Let k ∈ N and w and ū be C k+1 respectively C k+3 extensions of w respectively u from Theorem 4.8, i.e. w ∈ C

k+1 (K), ū ∈ C k+3 (K) with ∥ w∥ C k+1 (K) ≤ c∥w∥ C k+1 (X) , ∥ū∥ C k+3 (K) ≤ c∥u∥ C k+3 (X)
for some constant c = c(k, X). We denote by W, U ∈ R the following constants

W := ∥ w∥ K ∞ ≤ c∥w∥ C k+1 (X) , U := ∥ū∥ C 2 (K) ≤ c∥u∥ C k+3 (K) . (i) 
In the rest of the proof, we will also use the following constants:

a 1 := ∥∆h∥ X ∞ , , a 2 := inf x∈∂X ∥grad h(x)∥ 2 , a 3 := ∥h∥ C 2 (K) (ii) 
Note that a 2 > 0 by Condition 10. We define an inward-pointing direction, namely, for θ > 0 it holds (w θ , u θ ) := (w + 2a 1 θ, u -θ grad h) is strictly feasible.

To verify this, note first that by feasibility of w it holds w ≥ 0 on K and thus

0 < 2a 1 θ ≤ w + 2a 1 θ = w θ ≤ W + 2a 1 θ on K. (iii) 
In particular, this shows feasibility for the last constraint in (54b). For the second constraint in (54b) let x ∈ ∂X; we have

-(u θ • grad h)(x) = -(u • grad h)(x) + θ∥grad h(x)∥ 2 = θ∥grad h(x)∥ 2 = θa 2 > 0 (iv)
with the constant a 2 from (ii); i.e. feasibility for the second constraint in (54b). We further have, for

x ∈ K |(u θ • grad h)(x)| = |(u -θ grad h) • grad h)(x)| ≤ (U + θa 3 ) • a 3 . (v)
Now, let us verify strict feasibility in the first constraint in (54b). On X we have

w θ -div u θ -1 = w -div u -1 + 2θa 1 + θ∆h = 2θa 1 + θ∆h ≥ 2θa 1 -θa 1 = θa 1 (vi)
with a 1 from (ii).

Further, on K we have

|w θ -div u θ -1| = |w + 2a 1 θ -div (u -θgrad h) -1| ≤ W + 2θa 1 + U + θa 3 + 1 (vii)
for the constants W, U from (i) and a 1 , a 3 from (ii). The cost for (w θ , u θ ) is simply

w θ dλ K = w dλ K + 2a 1 θλ(K) = λ(X) + 2 m+1 a 1 θ. (viii) 
In the next step, we approximate the pair (w θ , u θ ) by feasible polynomials. In this step we use smoothness of w θ , u θ and Theorem 3.10. Let c = c k ∈ R be the constant from Theorem 3.10. That is, there exist polynomials

p d , q d ∈ R d [x] with ∥w -p d ∥ K ∞ , ∥u -q d ∥ C 2 (K) ≤ c k d k . (ix) 
Recall that u = grad u, i.e. grad q d is an approximation of u. For θ > 0 and d ≥ deg(h) we define

p d,θ := p d + 2θa 1 ∈ R d [x], q d,θ := grad q d -θ grad h ∈ R d [x] m . We have ∥w θ -p d,θ ∥ K ∞ = ∥w -p d ∥ K ∞ and ∥u θ -q d,θ ∥ C 1 (K) m = ∥grad (u -q d )∥ C 1 (K) m ≤ ∥u -q d ∥ C 2 (K) , thus, by (ix), we get ∥w θ -p d,θ ∥ K ∞ , ∥u θ -q d,θ ∥ C 1 (K) ≤ c k d k . (x)
On X we have, for the first constraint in (54b), p d,θ -div q d,θ -1 = w θ -div u θ -1 + p d,θ -w θ + div (q d,θ -u θ ), and hence, from (vi) and (x), we get For the second constraint in (54b) we have on ∂X, by (iv) and (ix), -q d,θ • grad h = -u θ • grad h + (u θ -q d,θ ) • grad h

p d,θ -div q d,θ -1 ≥ a 1 θ -2 c k d k . (xi 
≥ θa 2 + (u θ -q d,θ ) • grad h ≥ θa 2 - c k d k √ a 2 . (xiii) 
Further, on K we have, by (v) and (ix), |grad q d,θ • grad h| ≤ |u θ • grad h| + |grad (u θ -q d,θ ) • grad h|

≤ (U + θa 3 ) • a 3 + c k d k a 3 . (xiv) 
And for the third constraint in (54b), we have by (iii)

2a 1 θ - c k d k ≤ w θ - c k d k ≤ p d,θ ≤ W + 2a 1 θ + c k d k . (xv)
Before invoking the effective version of Putinar's Positivstellensatz, Theorem 3.7, we make the choice

θ := θ d := c k d k max 3 a 1 , 1 + √ 2 a 2 ∈ O(d -k ).
For this choice of θ we have for (xi) and (xiii) on X that .

p d,θ d -div q d,θ d -1, -q d,θ d • grad h ≥ c k d k > 0. (xvi 
Similarly, by inserting (xvii) and (xviii) into Theorem 3.7 for K (note that Ł = 1 in that case), we get that the pair (p d,θ , q d,θ ) is feasible for the third constraint in the ℓ-th level of the moment-SoS hierarchy for (54b) for

ℓ ≥ γ(m, f )d 3.5m K 5c k/d k

2.5m

Taking the maximum of the just obtained two bounds for ℓ we get that (p d,θ , q d,θ ) for the optimization problem (54b) for

ℓ ≤ max{γ(m, h), γ(m, f )} K c k 2.5m Ł d (3.5+2.5k)m Ł . (xix)
The cost of (p d,θ , q d,θ ) for the optimization problem (54b) is bounded by

p d,θ dλ K ≤ w θ dλ K + c k d k λ(K) (viii) = λ(X) + 2 m 2a 1 θ(d) + c k d k = λ(X) + c k d k 2 m max 3 a 1 , 1 + √ 2 a 2 .
This shows (57); namely, for ε > 0 take the smallest d ∈ N with d ≥ 2 m c k ε max{ 3 a1 , 1+ The convergence rate in Theorem 5.6 improves the rate in Theorem 5.2 by more than the power of two. This improvement originates from the smoothness of solutions (w, u) of (54b). The proof of Theorems 5.6, 4.4 and 4.14 show that an effective version of a Positivstellensatz for polynomials p on X ⊊ [-1, 1] m , taking into account only the maximum of p on X and not on [-1, 1] m , is desirable to obtain stronger rates. The reason why we would obtain better rates is that we obtained an upper bound of the function of interest on K by first extending it from X to a function on [-1, 1] m which heavily increased the upper bound. Thus, an effective Positivstellensatz that only takes into account ∥p∥ X ∞ (without inducing large degree-dependent bounds) would further improve the convergence rates in the Stokes-augmented case, highlighting that the actual difference between Theorems 5.2 and 5.6 is in fact much sharper, as Theorem 5.2 would not benefit from such improvement of the effective Positivstellensatz.

Finally, let us not forget that it is max K |p| that we want to upper bound, and not only max K p, so we still have to upper bound max K (-p) = -min K p = -p ⋆ K . Again we use ( †) with φ(x) = p(bx) to get

p ⋆ K = φ ⋆ Kρ ≥ φ ⋆ K -T k (1 + ρ) • ρ • k 2 • max K φ ≥ min b•K p - 1 2 2 b k • 1 -b b • k 2 • max b•K p ≥ min X p - 1 2 2 b k • 1 -b b • k 2 • max X p ≥ - 1 2 2 b k • 1 -b b • k 2 • ∥p∥ X ∞ and hence max K (-p) = -p ⋆ K ≤ 1 2 2 b k • 1 -b b • k 2 • ∥p∥ X ∞ leading to ∥p∥ ≤ 1 + 1 2 2 b deg(p) • 1 -b b • deg(p) 2 ∥p∥ X ∞ .
Finally we deduce the announced inequality by observing that (1 -b) ∈ (0, 1), so that 

for some constant c = c(n, k, a, Y, Ω) independent of w.

As a corollary, we obtain the following extension result that aims at preserving the maximum value for the extension.

Corollary B.2. Let Y ⊂ R m be a compact with C ∞ boundary and f ∈ C ∞ (Y). Then, for any k ∈ N and ε > 0, there exists an extension

f ∈ C k (R n ) of f with ∥ f ∥ R n ∞ ≤ ∥f ∥ Y ∞ + ε. (⋄)
Proof. Let ε > 0 and k ∈ N and let R > 0 with B 0.5R (0) ⊃ Y. By the extension Theorem 4.8 there exists an extension f ∈ C k (B R (0)) of f with F := ∥ f ∥ C 1 (B R (0)) < ∞. Without loss of generality we assume ε F < R 2 , otherwise we take a smaller ε. Set Ω := {x + y : x ∈ Y, ∥y∥ < ε F } and let ϕ ∈ C ∞ (R n ) with 0 ≤ ϕ ≤ 1 with ϕ = 1 on Y and ϕ = 0 on R n \ Ω. We claim that the function f := ϕ • f (and extended by zero on R n \ Ω) is C k and satisfies (⋄). From the construction, it follows that f is C k . For x ∈ Y it holds f (x) = f (x) and for x ∈ R n \ Ω we have f (x) = 0. It remains to bound f (x) for x ∈ Ω \ Y. Let x ∈ Ω \ Y and y with ∥y∥ < ε F such that xy ∈ Y. We have

| f (x)| ≤ f (x -y) + ∥grad f ∥ B R (0) ∞ ∥y∥ ≤ ∥f ∥ Y ∞ + F ε F = ∥f ∥ Y ∞ + ε.
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 1 Figure 1: The standard application of the moment-SoS hierarchy.

  Real intervals are denoted [a, b] when closed, (a, b) when open; integer intervals are denoted a, b (with particular case n = 1, n for n ∈ N ⋆ ). For x ∈ R, ⌊x⌋ := max([x -1, x] ∩ Z) denotes the floor and ⌈x⌉ := min([x, x + 1] ∩ Z) denotes the ceiling.
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 5 k d k > 0,(xvii)in particular (p d,θ , q d,θ ) is feasible for (54b). Further, for the upper bounds (xii),(xiv) and (xv), we have onK for d large enough (such that θ d ≤ 1, c k/d k ≤ 1) p d,θ , p d,θ -div q d,θ -1, -q d,θ • grad h ≤ K (xviii)for the constant K := max{W +2a 1 +U +a 3 +3, (U +a 3 +1)•a 3 }. Now, by Theorem 3.7 and inserting (xvi) and (xviii), the pair (p d,θ , q d,θ ) is feasible for the first two constraints in the ℓ-th level of the moment-SoS hierarchy for (54b) forℓ ≥ γ(m, h)d 3.5nŁ K c k/d k 2.5mŁ
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 212 . Then, from (xix), Vol ℓ -λ(X) ≤ ε for ℓ ∈ N with ℓ ≥ max{γ(m, h), γ(m, f )} K c k 2.5m Ł d (3.5+2.5k)m Ł ∈ O In other words, Vol ℓ -λ(X) ∈ O ℓ -1 5m+ 3.5m /k. Taking k ∈ N arbitrarily large proves the claim.Remark 5.7 (Quantifying the efficiency of Stokes constraints).
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 58 Room for improvement in effective Positivstellensätze).

B

  Extension of Hölder continuous functionsLemma B.1 (Extension Lemma; [12, Lemma 6.37]). Let k ≥ 1 be an integer and a ∈ (0, 1]. Let Y ⊂ R n be a compact with C k,a boundary. Let Ω be an open and bounded set containing Y. Then every function w ∈ C k,a (Y) there exists an extension w ∈ C k,a (Ω) with w(y) = w(y) for all y ∈ Y and ∥ w∥ C k,a (Ω) ≤ c∥w∥ C k,a (Y)

The case where g = 0, X = Y and A µ = ( x α dµ) α∈N m is called the X-moment problem.

Up to a rescaling, the inclusion condition is equivalent to X being compact.

∈ O ℓ -1/2.5mŁ (15b)If constraint qualification Condition 3.1 holds for any x ∈ X, then Ł= 1.Proof. (15a) is[START_REF] Henrion | Moment-SOS hierarchy and exit location of stochastic processes[END_REF] with p = f -f ⋆ X + ε, so that p ⋆ X = ε and, as ε ≤ ∥f ∥ and |f ⋆ X | ≤ ∥f ∥, ∥p∥ ≤ 3∥f ∥. Thus, by Theorem 3.7, p ∈ Q ℓ (h), which means that w = f ⋆ X -ε is feasible for (11), so that f ℓ X ≥ f ⋆ X -ε, which is the announced inequality.Notice that the key idea here consists in perturbating the optimal f -f ⋆ X (which is nonnegative by design but in case (ii) does not belong to Q(h)) with some ε to obtain a positive polynomial p (which is then guaranteed to be in Q(h), using Putinar's Theorem 2.6) to which we apply Theorem 3.7 to get an effective order ℓ quadratic module representation. This in turn allows us to derive a bound on the rate of the convergencef ℓ X -→ ℓ→∞ f ⋆ X .In the next section, we will derive generic methods for constructing the right polynomial p, depending on the solutions of (9a).3.2 General method and function approximationIn this section, we specify the procedure that we have indicated at the beginning of Section 3. Let ε > 0. Supposing that (9a) has an optimal solution w ⋆ and noting d := deg(w ⋆ ), we want to perturbate it with some

This includes the deterministic setting under the form µ 0 = δy 0 , where y 0 ∈ Y and δy 0 is the Dirac measure in y 0 s.t. for all Borel measurable A ⊂ Y, δy 0 (A) = 1 if y 0 ∈ A, 0 else. Then, P(Y 0 = y 0 ) = µ 0 ({y 0 }) = 1: Y 0 is deterministic, and Eµ 0 [V ⋆ (Y 0 )] := V ⋆ dµ 0 = V ⋆ (y 0 ).

Smoothness of ∂X is necessary here. This is the reason for Assumption 10.
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Proof. Let w ∈ Y be feasible. Then for all θ > 0 it holds A(w + θϕ) -g = A(w) -g + θA(ϕ) > 0 on X.

The inward-pointing Condition 4 is closely related to the Slater Condition 1. We address this shortly in the following proposition. 

Remark 3.16 (On the relevance of Condition 4).

Upon reading Proposition 3.15, one could wonder why the inward-pointing condition is important, as it is equivalent to the better-known Slater condition. The reason is that this condition is a quantitative version of Slater's condition, in the sense that checking it gives effective values for ϕ, which will be instrumental in the computation of the convergence rates. Hence, the inward-pointing Condition 4 is to Slater's Condition 1 what the effective Putinar Theorem 3.7 is to the original Putinar Theorem 2.6. In practice, most of the time the inner pointing condition and corresponding ϕ are deduced from Lemma 3.14.

Obtaining the convergence rates

Here, we put together the steps we discussed in this section. We consider the GMP (2 ′ ) and formulate the following (quantitative) conditions.

Condition 5.

Effective version of Putinar's P-satz:

There is an effective degree bound

Existence and regularity of minimizer:

There exists a minimizer w ⋆ of the GMP (2 ′ ). To be precise, we generalize the GMP (2 ′ ) to allow for a larger class of functions than only polynomials, such that a (smooth) minimizer with desired optimal cost exists.

Quantitative inward-pointing condition:

We have access to quantitative estimates of "how much the inward-pointing direction is pointing inward". That is, we can bound from below the function ψ(θ) given by ψ(θ

Remark 3.17 (A need for embeddings and smooth extensions).

The effective degree bounds for Putinar's Positivstellensatz Theorem 3.7 works with ∥p∥ K ∞ for the ambient set K = [-1, 1] m ⊃ X. This comes with the disadvantage that we need to bound the polynomials of interest on a larger set K for which we have less or even no a-priori knowledge of the behavior of those polynomials. This may lead to additional terms in the degree bound that depend exponentially on the degree d, see Lemma 4.5. Thus, we propose to (smoothly) extend the minimizer to the larger set K and approximate approximates this optimal solution using the moment-SoS hierarchy. We have discussed this example in Section 2.3 and recall its moment-SoS hierarchy:

where Y contains X and is an Archimedean basic-semialgebraic set, λ Y denotes the Lebesgue measure on Y and these are such that the numbers y β dλ Y (y), β ∈ N m , are known. Here it is straightforward to show that the dual problem (4 ′ ) neither has a polynomial nor even continuous optimal solution w.

In this subsection, the convergence rate for the hierarchy of SoS programs obtained in [START_REF] Korda | Convergence rates of moment-sum-of-squares hierarchies for optimal control problems[END_REF] for the volume problem considered in [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF] is improved with the help of Theorem 3.7, with convention

(which is the best choice for computing the convergence rate; notice that Y can be chosen arbitrarily here without changing the optimal value λ(X)). Let us consider a hierarchy of problems from [START_REF] Korda | Convergence rates of moment-sum-of-squares hierarchies for optimal control problems[END_REF] (which can be regarded as SoS strengthenings of Problem (4 ′ ):

To compute the rate of convergence of (51) we need to estimate the dependence of the degree ℓ on ε > 0 for which it holds |d ℓ X -λ(X)| < ε. We shall use the standard condition from [START_REF] Korda | Convergence rates of moment-sum-of-squares hierarchies for optimal control problems[END_REF]:

Condition 9 (Finite one-sided Gibbs phenomenon).

There exists a constant c G ≥ 0 depending only on X such that problem (4 ′ ) admits a minimizing sequence

Remark 5.1 (On finite Gibbs phenomena).

It is well known in Fourier analysis that the Gibbs phenomenon that occurs when approximating a discontinuous periodic function ϕ with trigonometric polynomials induces an overshoot of approximately 9%, and thus the polynomial approximation is uniformly bounded by some constant c ϕ that only depends on ϕ. This is also the case for generic L 1 approximation of discontinuous functions with algebraic polynomials [START_REF] Davis | Gibbs phenomena for some classical orthogonal polynomials[END_REF]. However, to our best knowledge, these results have not been extended to one-sided polynomial approximations, as it is the case here. Following [START_REF] Korda | Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets[END_REF], we conjecture (which is supported by the numerical experiments displayed in [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF][START_REF] Lasserre | Computing Gaussian and exponential measures of semi-algebraic sets[END_REF][START_REF] Tacchi | Exploiting sparsity for semi-algebraic set volume computation[END_REF][START_REF] Tacchi | Stokes, Gibbs and volume computation of semialgebraic sets[END_REF]) that Condition 9 also holds generically.

Theorem 5.2 (Effective Putinar for volume computation).

Define γ(m, f , h) := max (γ(m, f ), γ(m, h)) and Ł := max(Ł, 1) where Ł is the Łojaciewicz exponent of h. Then, under Condition 9, there exists C > 0 such that, for all ε ∈ (0, 1) it holds d ℓ X -λ(X) < ε for any

Proof. We first notice that for any d, ℓ ∈ N and any w ∈ R d [x] feasible for (51) at order ℓ, it holds

Corollary 5.3. Using the notations in Proposition 5.2 and under Condition 9, it holds

Proof. Simply inverting the expression in (52).

Stokes constraints

In this subsection, we investigate the effect of smoothness of optimal solutions of the infinite dimensional LP. We consider the case of only one defining polynomial inequality, i.e. r = 1. This means we compute the volume of the open set

and, as in ( 50), let K be given by K = [-1, 1] m = S(f ). Moreover, we add the following condition Condition 10. It holds grad h(x) ̸ = 0 for all x ∈ ∂X, in particular the boundary ∂X is smooth.

Remark 5.4 (No more Gibbs phenomenon).

Note that now, we do not assume the finite Gibbs phenomenon from Condition 9. As we will show, this is because in the following formulations, optimal solutions cease to be discontinuous and thus the Gibbs phenomenon does not occur anymore, see [START_REF] Tacchi | Stokes, Gibbs and volume computation of semialgebraic sets[END_REF] for a more in-depth discussion on that topic.

In [START_REF] Tacchi | Stokes, Gibbs and volume computation of semialgebraic sets[END_REF], a new formulation is designed to cope with the slow convergence of the moment-SoS hierarchy corresponding to ( 4) and (4 ′ ) using the divergence theorem:

It has been proved in [START_REF] Tacchi | Stokes, Gibbs and volume computation of semialgebraic sets[END_REF] that the existence of an optimal solution to (54b) can be deduced from the existence of a solution to a Poisson PDE with Neumann boundary condition:

Namely, for a pair (u, ϕ) satisfying (55), set u := grad u and w(x

then (w, u) is optimal for (54b).

In [START_REF] Tacchi | Stokes, Gibbs and volume computation of semialgebraic sets[END_REF], ϕ is proposed under the form

Remark 5.9 (On specialized Positivstellensätze).

In this section we applied Theorem 3.7 to obtain degree bounds for quadratic module representations over the hypercube K = [-1, 1]. Nevertheless, there exists specialized (and probably tighter) versions of effective Putinar Positivstellensätze on a variety of sets, such as the unit ball [START_REF] Slot | Sum-of-Squares hierarchies for polynomial optimization and the Christoffel-Darboux kernel[END_REF], the unit sphere [START_REF] Fang | The Sum-of-Squares hierarchy on the sphere and applications in quantum information theory[END_REF] and, more recently, the hypercube [START_REF] Baldi | Degree bounds for Putinar's Positivstellensatz on the hypercube[END_REF]. However, these effective P-sätze do not come with explicit bounds depending on deg(p) in addition to max X p and min X p; more precisely, they include constants similar to the γ(m, h) displayed in the current work, but that also depend on deg(p), i.e. under the form γ(m, deg(p)). As the volume computing hierarchy involves polynomials p with varying degrees d → ∞, these bounds could not be directly plugged into our analyses, and would require to be specified into more explicit expressions to be useful in all applications of the moment-SoS hierarchy.

Conclusion

We state a structured approach to obtaining convergence rates for the moment-SoS hierarchy for the generalized moment problem. For the analysis of the convergence rates, we distinguish three important objects and properties. Namely, the existence and regularity of minimizers, an effective version of Putinar's Positivstellensatz, and a geometric feasibility condition (see the inward-pointing condition in Section 3.4). Our proposed procedure points out how those properties interact and is demonstrated to obtain upper bounds on the convergence rate for certain instances of the moment-SoS hierarchy: Using recent improvements on an effective version of Putinar's Positivstellensatz, we build up on and strongly improve existing convergence rates for the optimal control and the volume computation of a semialgebraic set; and we give an original convergence rate for a moment-SoS hierarchy of exit location computation for stochastic differential equations. We hope our work provides a guideline and the necessary tools for computing convergence rates of the moment-SoS hierarchy for various generalized moment problems that are actively formulated in the field in recent and following years.

Future work and improvement of effective Positivstellensätze can be integrated within our work simply by applying the most suited available convergence rate for Putinar's Positivstellensatz. Furthermore, we observe in our analysis that a well-suited effective Positivstellensatz could strongly further improve the convergence rate. As mentioned in Remark 5.8, particularly advantageous for our method would be an effective Positivstellensatz -for a polynomial p on a semialgebraic set X -that only takes into account the values of p on X without the need of bounding its value on an ambient set (such as the hypercube in Theorem 3.7). Similarly, specialized Positivstellensätze could be improved by expliciting all the terms in their degree bounds. Considering the recent improvement and active work on degree bounds for Positivstellensätze, we see here a very interesting, exciting, and promising development for further improvements of existing convergence rates for the moment-SoS hierarchy for generalized moment problems, as well as quantitative analysis of many other moment-SoS-based methodologies that will appear in the future.

We think it is important to mention that the asymptotic analysis of the moment-SoS hierarchy for generalized moment problems might not transfer to practical applications. The reason is twofold. Firstly, current computational capacities restrict the computation of the moment-SoS hierarchy already for medium-sized problems to low-degree instances. Secondly, the conditioning of the ℓ-th level of the moment-SoS hierarchy gets worse with increasing ℓ ∈ N, hampering the convergence in practice. In other words, this work essentially addressed the recasting from the infinite dimensional GMP into SoS programming problems, while future works will shift the focus onto the translation from SoS programming to actual SDP, involving deeper investigations on what polynomial basis to choose in that process (the usual one being the numerically ill-behaved basis of monomials).

A On norm equivalence in polynomial spaces

Lemma A.1. Let X ⊂ K := [-1, 1] m satisfy Condition 6.2. For any nonnegative polynomial p ∈ P(X) + , it holds

where b ∈ (0, 1) is such that [-b, b] m ⊂ X (whose existence is guaranteed by Condition 6.2).

Proof. The proof of [4, Lemma 28] actually shows that, for φ ∈ P(K) + of degree k and ρ > 0, defining

Where T k denotes the degree k Chebyshov polynomial of the first kind. We apply this result to

This expression in turn rephrases, accounting for inequalities

It remains to compute an upper bound of T k ( 1 /b). Here we recall that the Chebyshov polynomials are defined by T 0 (s) = 1, T 1 (s) = s and the recurrence formula T k+1 (s) = 2s T k (s) -T k-1 (s) (for k ≥ 1). Moreover, T k (s) oscillates between -1 and

, and is always strictly increasing on (1, +∞), so that for s > 1 one has T k (s) > T k (1) = 1 > 0. Eventually, we can prove that, for all k ≥ 1, it holds

First, we check that this holds for k = 1:

. Second, defining s = 1 /b, we notice that by design of b ∈ (0, 1), s > 1. Then we simply use the recurrence formula to get, for k ≥ 1:

so that, if T k (s) ≤ 1 /2(2s) k (which holds for k = 1) then T k+1 (s) ≤ 1 /2(2s) k+1 . This way, we get

C Smooth solutions to the Poisson PDE

Here we state the proof of Theorem 5.5 for existence of smooth solutions of (54b) and (55).

Proof. Of Theorem 5.5. We prove this Theorem using two lemmas.

Lemma C.1 (Existence of smooth source term).

There exists a smooth ϕ ∈ C ∞ (R n ) such that 1. ϕ satisfies conditions (55.c), (55.d) and ϕ = 1 on R n \ X.

2.

Xi ϕ dλ = 0 for all i ∈ {1, . . . , Ω}, where

is the partition of X into its connected components.

Proof. We work on a connected component X i , i ∈ {1, . . . , Ω}. As X i is an open set, there exists

According to [33, Proposition 2.25], there exists a smooth bump function

In particular, φ i ≥ 0 in X i and φ i = 0 on ∂X i . Next, we define for x ∈ R n ,

Again, ψ i ≥ 0 in X i and ψ i = 0 on ∂X i . Moreover, now

Xi

so that condition 1. is trivially satisfied, and smoothness of ϕ follows from smoothness of the φ i s. We conclude by checking condition Proof. If Ω = 1 (i.e. X is connected), then this is a classical result, see e.g. [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] 4 . Else, we just solve the problem separately on each connected component and glue the resulting solutions u i together into

because by construction of X (with smooth boundary) the X i are disjoint.

The ϕ and u given by Lemmas C.1 and C.2 are a valid solution to (55). By construction, they also have the required smoothness. It remains to show that we can choose ϕ, u such that the functions u, w given by (56) are optimal for (54b). Let us take ϕ as in Lemma C.1 and u the corresponding solution of (55). By the above, the functions u, w from (56) are smooth. Further, as shown in [START_REF] Tacchi | Stokes, Gibbs and volume computation of semialgebraic sets[END_REF], u, w are feasible (and optimal) for (54b). Here, we only recall optimality, i.e.

w dλ = λ(X).

(▽)

To show (▽), we use condition 2. in Lemma C.1 and simply integrate w = 1 -ϕ ≥ 0 on X. This gives