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Abstract.  The energy sharing used to heat water represents around 
15% in European houses. To improve energy efficiency, smart heating 
systems could benefit from accurate domestic hot water consumption 
forecasting in order to adapt their heating profile. However, forecasting 
the hot water consumption for a single accommodation can be difficult 
since the data are generally highly non smooth and present large varia- 
tions from day to day. We propose to tackle this issue with three deep 
learning approaches, Recurrent Neural Networks, 1-Dimensional Convo- 
lutional Neural Networks and Multi-Head Attention to perform one day 
ahead prediction of hot water consumption for an individual residence. 
Moreover, similarly as in the transformer architecture, we experiment 
enriching the last two approaches with various forms of position encod- 
ing to include the order of the sequence in the data. The experimented 
models achieved satisfying performances in term of MSE on an individual 
residence dataset, showing that this approach is promising to conceive 
building energy management systems based on deep forecasting models. 

 

Keywords:  Time Series Forecasting · Domestic Hot Water · Deep Learn- 
ing · Convolutional Neural Networks · Multi-Head Attention 

 
1 Introduction 

 
In 2020, the average energy sharing used in an European house to heat water was 
around 15% [1]. Most of the time, water is heated before being used by a water 
heating system which priority is to insure user comfort by providing enough hot 
water at any time. The system can heat too much water in advance leading to 
energy waste [2]. This is even more true if the system is alimented by a heat 
pump which performance depends on a large number of external factors such 
as the weather. These considerations highlight the need for accurate forecasting 
models of hot water consumption, that would allow to heat up just the right 
amount of water at the best moment improving the building energy efficiency. 

However, Domestic Hot Water (DHW) forecast for individual residences can 
be difficult due to the consumption being very sporadic and highly variable from 
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days to days [3]. To solve this problem, we explore the use of deep learning mod- 
els. Indeed, we propose to compare three deep learning approaches adapted to 
sequence processing to forecast individual hot water consumption: Recurrent 
Neural Networks (RNN), Convolutional  Neural  Networks  (CNN)  and  Multi- 
Head Attention  (MHA).  Unlike  RNN,  CNN  and  MHA  do  not  explicitly  take 
into account the temporal dependencies in the data (they both consider a se- 
quence as an unordered matrix). One way to correct this is to use position 
encoding as in the whole transformer architecture [4]. A position encoding will 
be added to a representation in order to drag it in a specific direction in the 
feature space, the same for elements at the same position in different sequences. 
We compare CNN and MHA equipped with 3 different position encoding: fixed 
as in [4], learned as in [5] and produced by a RNN. In a similar way as in [6], 
we also propose a version where the days and hours are embedded the same way 
instead of being one hot encoded. Another aspect of the proposed models is that 
they are constituted of a few layers unlike recent approaches proposed for time 
series forecasting [7] and this has two upsides. Firstly, they can be trained on 
a small number of samples and therefore be put into production quickly with 
data coming from a single accommodation. Secondly, they can also more easily 
be embedded inside a heating system with small computation power preserving 
the privacy of data. We test those architectures on a dataset recorded on a real 
system installed in an individual accommodation. 

The remaining of the paper is organized as follows. Section 2 overviews the 
state of the art of water consumption forecasting with a focus on deep learning 
approaches. Section 3 describes the components of the employed deep architec- 
tures and specifically the different position encodings experimented. Section 4 
presents the individual consumption dataset we used, the experimental setup 
and the achieved results. Finally, Section 5 concludes this paper and presents 
some perspectives of this work. 

 

2 Related work 
 

In this section, we give an overview of the different approaches used in the lit- 
erature to forecast water consumption. First, a large number of papers seek to 
forecast water consumption at a large scale, for neighborhood, cities or even en- 
tire regions [8–10]. Candelieri et al. [11] proposed to use several Support Vector 
Machine (SVM) models to forecast the water demand in a distribution network 
with a 24h delay. Each model takes as input the first six hours of the day and 
forecast one different time slot of one hour of consumption. Moreover, the au- 
thors employ time series clustering to determine several consumption profiles 
and train different SVM models accordingly. Mu et al. [12] proposed to use a 
Long-Short term memory network (LSTM) [13] to forecast the water demand 
of a city at a one-hour or 24h delay. They found that their approach got bet- 
ter results than AutoRegressive Integrated Moving Average modeling (ARIMA), 
which combines an autoregressive part consisting of a weighted sum of the previ- 
ous times steps and a moving average part to model the error, SVM and random 
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forests models. This was particularly true when performing high resolution pre- 
dictions (e.g. a prediction every few minutes) on data with abrupt changes. They 
also highlighted the upside of LSTM to allow to output a sequence of predictions. 
Finally, in a recent paper, Karamaziotis et al. [14] compared ARIMA models, 
Optimized Theta (a form of exponential smoothing model), Ensemble methods 
and neural networks to forecast the water consumption of in European capital 
cities with a forecast horizon of several months. They concluded, based on vari- 
ous metrics, that ARIMA models seem the best approach in several prediction 
scenarii. From these papers, we can conclude that various machine learning mod- 
els can be considered to forecast the water consumption with ARIMA models 
seemingly achieving the best performances. 

However, individual residences present an additional difficulty since the con- 
sumption is generally non smooth and irregular compared to apartment building. 
Moreover, large variations across days could happen more frequently (for exam- 
ples, all the inhabitants of the house leave for several days). This assumption 
was observed experimentally by Maltais et al. [3] who proposed to use neural 
networks to predict the DHW consumption of residential buildings with different 
sizes. They observed that the prediction performances were better when increas- 
ing size of the systems. They attributed this difference to the smallest ones pre- 
senting too much variations in their consumption and they were consequently the 
worst predicted. Overall, the problem of small or individual residences has been 
less tackled by the literature and the employed approaches generally fall into 
two categories. The first one is once again ARMA modeling [15]. This approach 
have been used by Lomet et al. [16] to perform DHW load prediction for a single 
family accommodation. After studying the data, notably the autocorrelograms, 
they decided to take into account the weekly periodicity (the seasonality of the 
time series) and the consumption of the two previous days to build their model. 
Gelažanskas  et  al.  [17]  also  analyzed  the  effect  of  seasonality  to  improve  re- 
gression performances. They likewise found that a SARIMA (Seasonal ARIMA) 
model taking into account daily and weekly consumption patterns performed 
better. The second type of approaches is deep learning. Barteczko-Hibbert et 
al. [18] experimented using Multi-Layer Perceptron (MLP) to predict the tem- 
perature of the drawn hot water to optimize the heating system. They trained 
the network on a particular heating profile and tested on another one and found 
that the model generalized better if it was trained on two different heating pro- 
files  instead  of  one.  In  another  publication,  Gelažanskas  et  al.  [19]  tackled  the 
issue of hot water forecasting with an auto regressive neural network taking as 
input data from the previous hours, data from seven days before and external 
variables, in an autoregressive manner. They showed the importance of external 
variables to improve predictions. Regarding the type of approaches, the last two 
papers did not employed specific deep learning models for sequences such as 
LSTM mentioned above. Gelažanskas et al. took into account the seasonality of 
the data but with a MLP architecture. 

If ARIMA models have proven their efficiency to model hot water consump- 
tion, more results seem needed with neural networks to conclude. However, neu- 
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ral networks have also been found to perform better than ARIMA in various 
conditions which are realized for individual housing profiles: when the needed 
resolution of the prediction is high and when the data present gaps [12] or high 
variability [20]. Moreover, ARIMA models are linear unlike neural networks than 
can model non-linear relationships which has proven to be useful to forecast hot 
water consumption [21]. As a consequence, ARIMA models seem less adapted to 
this task. Additionally, pure deep learning models present several upsides com- 
pared to classical machine learning or hybrid models: firstly they do not require 
feature engineering, secondly they can be trained end to end with a single ob- 
jective and allow to simply combine different types of layers and differentiable 
processings, finally they have a very low inference time making them suited for 
real time systems. Based on these observations, in this paper, we propose to 
employ deep learning architectures to build lightweight forecast models for in- 
dividual homes that can be easily embedded inside heat pump control systems. 
We focus on architectures specifically adapted for time series processing and we 
will now present them. 

 
3 Proposed Architectures 

In this section, we describe the different neural network components that will 
constitute the tested deep architectures for DHW forecasting. 

 
3.1 Recurrent Neural Networks 

Recurrent Neural Networks (RNN) are the primary component to deal with 
sequences and time series. A simple RNN’s equation is as follows: 

 

ht = f (Wixt + bi + Whht−1 + bh), (1) 

where xt ∈ Rn defines a sequential input, f is a non linear activation function, 
most  of  the  time  hyperbolic  tangent  or  sigmoid  and  Wi,  Wh,  bi  and  bh  are 
parameters of the models to be learned. The output ht Rm defines a sequence 
with the same length as the input sequence and is reinjected each time with 
along the new input. This way, the RNN is able to learn temporal correlations 
inside the sequence. 

However, vanilla RNN as the one described above actually do not work when 
sequence become too long. Due to a phenomenon called vanishing gradient, they 
are in fact not able to learn long-term dependencies in the sequence [22]. To 
work around this issue, gated RNN such as LSTM [13] and later Gated Recurrent 
Units (GRU) [23] have been developed. These neural networks emulate a memory 
thanks to a system of gates that let pass new information and forget old one. 

 
3.2 One-dimensional Convolutional Neural Networks 

One-dimensional Convolutional Neural Networks (1DCNN) are a variant of CNN 
that has been employed to perform signal processing tasks and time series fore- 
casting [24–26]. They are actually close to the old Time-Delay neural networks 
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[27]. One great upside of 1DCNN compared to their 2D counterparts is their 
lower time complexity: they are therefore well suited to build compact embed- 
ded architectures with few layers [28]. 

1DCNN uses convolutional filters that move only in the time direction on 
all the features at the same time, with a kernel size determining the number of 
convoluted timesteps. This way, they can detect local temporal correlations in 
the data. The locality can be extended by adding more layers. Similarly as with 
2D CNN, after one or several convolution layers, a pooling layer is called. In our 
experiments, we used average pooling instead of the classical maximum pooling 
as we found it achieved better results. 

 
3.3 Multi-Head Attention 

Multi-Head attention (MHA) [4] is the central component of the transformer 
neural network architecture that is primarily used for natural language process- 
ing tasks. Transformer architectures can also be used for time series forecasting 
[29, 7], by they are very deep and would require much more data to be properly 
trained as well as a lot of computation power. Therefore, in this paper, we will 
not make use of a whole transformer model but only some of its components to 
build an ad hoc architecture: position encodings (see below) and thus Multi-Head 
Attention. 

Attention is a differentiable mechanism that allows to make a query on a 
discrete set to get a result as a weighted sum of the elements of the set. Formally, 
consider three matrices Q, K and V , respectively the query, the keys and the 
values, attention is computed the following way: 

 
Attention(Q, K, V ) = softmax 

QKT 
√

m
 

 
V, (2) 

 

where m is the number of features of K used here to scale the softmax. In 
practice, self-attention is used meaning that Q, K and V are the same matrix, 
in our case, a sequence. To make Multi-Head Attention, for the desired number 
of heads, Q, K and V are each projected in a different (learnable) space before 
Equation 2 is applied. Then, the results are concatenated and projected again. 

The output of the MHA being a sequence, we need a mechanism to obtain 
a vector to be then projected into a single value. We explored three way to 
perform this operation: with a RNN, using a average pooling similarly as with 
CNN and simply taking the last value of the sequence. After several tests, we 
finally decided to use an average pooling as with 1DCNN. 

 
3.4 Position encodings 

Along MHA, position encoding (or embeddings) in another component of the 
transformer architecture [4]. It is used to introduce information about the order 
in the data since the transformer will see the sequence as a whole and not 
timesteps by timesteps as for a RNN. A similar idea was introduced in [5] for 
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CNN with learned embedding. For both architectures, we start by projecting the 
input a time t inside a first representation space for dimensionality reduction 
before adding the position encodings associated with time t: 

rt = Wxt + et, (3) 

where rt, et     Rm   and W are learnable parameters. We detailed below the two 
types of positional encoding previously mentioned along with two others. 

 
Fixed position embedding This approach is used in [4] and relies on fixed 
predefined codes to be added to the representations. Those codes are computed 
the following way for timestep t and feature index i: 

e (2i) = sin
 t 

, (4) 

e (2i + 1) = cos
 t 

. (5) 
 

With this position embedding, each position is uniquely represented by trigono- 
metric functions with different frequencies. 

 
Learned position embedding This approach was proposed by Gehring et al. 
[5] for CNN. Here, each timestep t is embedded in a feature space of the same 
dimensionality as: 

 

et = Wtt, (6) 

where Wt are learnable parameters. 

 
Generated by a RNN Recurrent networks take into account the temporal 
dependencies of the data by design since the timesteps of the sequence are input 
one after the other. We explore the possibility of including the temporal infor- 
mation of the data inside the MHA  and CNN architectures  by directly  adding 
the output sequence of a RNN to the input embedding: 

 

et = RNN(x)t. (7) 

In this paper, the RNN is implemented by a single layer of GRU. 

 
Enriched learned position embedding In a similar way as [6], one can add 
multiple different embeddings corresponding to different categories. Along with 
position, we propose to use learned embedding for the day of the week and the 
hour of the day instead of one-hot encoded features: 

et = Wtt + Wdd + Whh, (8) 

   Wxt + et  
rt = , (9) 

||Wxt + et||2 
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where Wd and Wh are learnable parameters and d and h are respectively the day 
of week and the hour of the day. The representation rt is normalized after the 
sum to preserve its scale. We shall compare experimentally those four approaches 
in the next section. 

 

4 Experiments 
 

4.1 Dataset 

This dataset was recorded by the Fraunhofer Institute for Solar Energy Systems 
ISE on a sensor equipped heating system of an individual residence. The system 
contains an heat pump to supply energy and a water tank to heat up water. 
In addition to drinking water, the hot water is used in the floor heating of the 
house. The dataset contains several months of recorded data sampled at one 
minute. Various measurement types for each component of the heating system 
are available: supply an return temperatures of the water, water flow, power and 
energy. The system is alimented by a heat pump for which we also have the 
energy and power measurements. Finally, ambient temperature has also been 
recorded. 

The raw dataset contains more than 100 features. After removing the columns 
that were missing to much values, there are 93 features left. We also add 24 
features for the hour of the day one-hot encoded, 7 features for the day of the 
week one-hot encoded, 1 feature indicating if it is the weekend and another one 
for the holidays for a total of 126 features. A simple interpolation was realized 
to complete the remaining few holes in the dataset. 

 

4.2 Experimental Setup 

We used sequences of length 72, sampled at one value every twenty minutes 
(equivalent to a day of data). We tested different downsampling values and 
found that this value was sufficient. The input sequence used to predict the 
DHW consumption at time t is constituted of the sequence from time t-48h to t-
24h concatenated on the feature dimension with the sequence from time t-7 
days to t-6 days. This allows to take into account potential weekly periodicity in 
the data, as most approaches from the state of the art. The water flow to predict 
is accumulated during a day to smooth the values to output since the hot water 
consumption in the dataset is very sporadic, as expected for an individual house. 
We give here more details about the training process and the hyperparameters. 
The experiments were conducted with 2 months of data from which 3 disjoint 
sets were created: 1 month for the training set, 10 days for validation and 20 
days for test. One value every 30 minutes was predicted. We used a starting 
learning rate of 0.001 divided by 10 every 25 epochs without improvement. The 
training is stopped once the loss on the validation set has not decreased during 
500 epochs. The batch size is 128. Finally, the features were scaled between 0 
and 1 to ease the training for the neural networks. 
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The position encoding approaches are compared with constant architectures. 
Those architectures were found after hyperparameter search. The dimensions for 
each architecture are reported in Table 1, in addition the kernel size used for 
the CNN is 3. The dimension of the position encoding thus corresponds to the 
dense layer sizes. 

 
 

Architecture type Dense layer size Specific layer size/filters Output 

GRU/LSTM 80 20 1 

1DCNN 100 [8, 16] 1 

MHA 64 32 1 

Table 1: Architecture dimension summary 
 
 
 

The models are trained with the Mean Squared Error loss (MSE) and regu- 
larized with weight decay (factor 10−4 and dropout (probability 0.5). We trained 
each version of each model 10 times and saved the best trained model regarding 
validation to perform a test. 

We compare the results of the deep learning models with an ARIMA model. 
We generally followed the results of the study by Lomet et al. [16] to select the co- 
efficients but adapted it to our data since the sampling is notably different by us- 
ing the validation set. The autoregressive and moving average orders were set to 
336 (one week of data sampled at 30 minutes to have the same rate of prediction) 
with all coefficients set to zero except for p46, ..., p50, p332, ..., p336, q47, q48, q49 . 
Similarly as for deep learning models and [16], the prediction only depends on 
data from 24h and one week before the prediction. We restrained the coefficients 
in order to avoid overfitting, especially for the moving average ones. No differen- 
tiation was performed following a study using the augmented Dickey–Fuller test 
and the seasonal orders were as well set to zero. The remaining exogenous vari- 
ables were embedded through a principal components analysis in order to reduce 
their dimension to 6. The results are obtained by sliding along the validation set 
and making a one-step ahead prediction each time. 

 

4.3 Results 
 

We present in this section our results on the ISE dataset. The standard regression 
scores MSE and Mean Absolute Error (MAE) are reported. It is sometimes 
advised in the literature [30] to report Mean Average Percentage Error. However, 
this score explodes when the value to predict is zero which is often the case here, 
during the night for example. That is why we reported MAE instead. 

The validation results for the version without position encodings are pre- 
sented on Table 2. The best average MSE and MAE are achieved by GRU with 
0.0033 and 0.0329 of MSE and MAE respectively. However, the best models over- 
all where produced with the LSTM with 0.0028 and 0.0288 of MSE and MAE 
respectively. The 1DCNN and MHA architectures achieved results around ten 
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Algorithms Position encoding average MSE average MAE best MSE best MAE 

GRU None 0.0033 ± 0.0002 0.0329 ± 0.0015 0.0030 0.0310 

LSTM None 0.0037 ± 0.0006 0.0337 ± 0.0026 0.0028 0.0288 

1DCNN None 0.0336 ± 0.0074 0.1413 ± 0.0169 0.0221 0.1145 

MHA None 0.0353 ± 0.0085 0.1323 ± 0.0295 0.0245 0.1051 

ARIMA None - - 0.1044 0.2741 

Table 2: Validation results on ISE dataset for models without position encoding, 
average of 10 runs and best values 

 
 
 
 
 

Algorithms Position encoding average MSE average MAE best MSE best MAE 

1DCNN Fixed 0.0084 ± 0.0023 0.0632 ± 0.0120 0.0052 0.0463 

1DCNN Learned 0.0185 ± 0.0029 0.1002 ± 0.0114 0.0104 0.0720 

1DCNN RNN 0.0272 ± 0.0067 0.1213 ± 0.0183 0.0175 0.0938 

1DCNN Enriched 0.0277 ± 0.0087 0.1269 ± 0.0201 0.0175 0.0996 

Table 3: Validation results on ISE dataset for CNN with position encoding, 
average of 10 runs and best values 

 
 
 
 
 

Algorithms Position encoding average MSE average MAE best MSE best MAE 

MHA Fixed 0.0067 ± 0.0015 0.0533 ± 0.0072 0.0045 0.0420 

MHA Learned 0.0123± 0.0009 0.0723 ± 0.0024 0.0111 0.0697 

MHA RNN 0.0111 ± 0.0041 0.0692 ± 0.0148 0.0060 0.0490 

MHA Enriched 0.0132 ± 0.0074 0.0708 ± 0.0255 0.0047 0.0407 

Table 4: Validation results on ISE dataset for MHA with position encoding, 
average of 10 runs and best values 

 
 
 
 
 

Algorithms PE MSE MAE 

GRU None 0.0032 0.0352 

LSTM None 0.0046 0.0409 

1DCNN Fixed 0.0074 0.0917 

MHA Fixed 0.0030 0.0328 

Table 5: Test results on ISE dataset 
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times inferior to the RNN architectures showing that information about the tem- 
poral order of the vectors seems necessary for this task on this dataset. ARIMA 
also seem to achieve lower results on this dataset. This observation is further con- 
firmed in Table 3 and Table 4 which respectively present the validation results for 
1DCNN and MHA with position encodings. Indeed, both approaches achieved 
better results with all forms of position encodings than without. However, the 
performance improvement is clearly better for MHA than for the 1DCNN: the 
best MSE scores achieved, 0.0045, is the closest we could achieve from the RNNs 
performances. In both cases also, fixed position encoding led to the best results 
with the enriched version being close second for MHA for the best iterations. 
We suppose that the low quantity of data favors the fixed version since nothing 
more needs to be learn. Finally, for MHA and 1DCNN, we remark than standard 
deviations are higher than for GRU and LSTM. We make the assumption that 
for these architectures, on this dataset, the initialization is a crucial factor to 
achieve the best performances. 

We now present test results on Table 5, obtained each time from the best 
trained model from the validation phase. We observe that GRU and MHA with 
fixed position encoding achieved the best results with the later being slightly 
better with 0.0030 and 0.0328 of MSE and MAE respectively. The model  based 
on LSTM seems to generalize a bit less well than GRU, with an MSE of 0.0046 
even though it achieved a better validation MSE than GRU. Figure 1 shows the 
comparison between the obtained fit for both models and the groundtruth for 
the 10 first days of the test set. We see that the consumption of days 1 and 3 
is overestimated by both models whereas it is underestimated for day 2, though 
less by MHA than GRU. An interesting day is day 5 whose gaps are correctly 
predicted by MHA unlike GRU, the inverse is observed for day 7. Those gaps, 
that constitute the major difficulties of individual housing datasets, are therefore 
possible to predict with neural networks, though not always easily. 

The 1DCNN architecture achieves lower results as expected from the val- 
idation. We make the assumption that the local temporal correlations in the 
sequence bring too less information to the model due notably to the presence of 
large plateau observed in the groundtruth curves (see blue curves on Figure 1). 
Extending the range of possible correlations would require to increase the depth 
of the network and thus to train it with more data, threatening the use of the 
model in an embedded environment. 

 

5 Conclusion and Perspectives 
 

We proposed in this paper to use deep learning to tackle the issue of hot wa- 
ter consumption for individual housing. Neural networks are especially recom- 
mended when the data are variable and present abrupt variations [20, 12] which 
is the case when dealing with individual house consumption profiles. We com- 
pared three deep learning approaches adapted to time series forecasting: RNN, 
1DCNN and MHA, the last two being equipped with various form of position 
encodings [4] to improve their sequence processing ability. One objective was 
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(b) MHA 
 

Fig. 1: Comparison between the fits and the true water consumption 



12 P. Compagnon et al. 
 

 

 

to conceive lightweight models able to be embedded in an energy management 
system to preserve the privacy of the data and to avoid wasting energy with com- 
putationally greedy models. We experimented the three approaches on a dataset 
recorded in a real individual housing. We achieved the best results with GRU 
and MHA with fixed position encoding architectures and demonstrated the abil- 
ity of the models to correctly predict in some cases the gaps in the consumption 
on this dataset. 

In the future, we plan to test those architectures on more datasets, notably 
on datasets containing less features since the inclusion of multiple sensors in a 
heating system also costs energy resource. We plan as well to integrate those 
models in real energy management system to see if the prediction they produce 
can effectively reduce the energy consumption. 
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