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In a previous paper we have defined a graph transformation that applies rewrite rules simultaneously
to an input graph (or object in a suitable category), called the Global Coherent Transformation. The
expressiveness of this transformation is enhanced by enabling the use of subsumption morphisms
between rules and between direct (individual) transformations. Since this transformation is not com-
mitted to a particular approach to graph rewriting, it is formalized in a general representation of such
approaches, called a Rewriting Environment. It was shown that environments exist for the Double
Pushout (DPO), the Sesqui-Pushout and the Pullback-Pushout approaches, that each satisfy a cer-
tain Correctness Condition. In the present paper an environment is exhibited for the Single-Pushout
(SPO) approach in categories of presheaves, and it is shown that the Correctness Condition holds.
The link between SPO and DPO direct transformations is extended to subsumptions and expressed
in diagrammatic form.

1 Introduction

Many “approaches” to graph rewriting have been developed. The most familiar and oldest one is the
Double-Pushout (DPO) approach [5], that has a property unknown to term rewriting: a matching of a rule
in the input object G is not sufficient to apply the rule. Indeed, this approach imposes a strict semantics
of replacement where a matched vertex (say) cannot be removed and replaced unless all adjacent edges
are similarly matched and removed. Another semantics exists that tolerates the silent removal of such
edges: the Single-Pushout (SPO) approach [9]. It is based on pushouts of partial morphisms and has
been defined in a restricted class of categories compared to DPO. Other algebraic approaches, namely
the Sesqui-Pushout (SqPO) [4] and the Pullback-Pushout (PBPO) [3], provide the possibility to duplicate
matched parts of the input.

In this diversity it is difficult to isolate common features. An obvious one is that they all end with
a pushout, either in the category C whose objects are considered for computing (generally graph-like
data structures), or an extension of C to partial morphisms. A closer look reveals that the result of the
transformation is always obtained as a pushout of a C -span D k←− K r−→ R, where D is called the context
and K the interface. The object R may or may not (for SqPO transformations) be the right-hand side

of the rule. Besides, all approaches define a morphism G
f←− D, though in different ways. Hence all

approaches are based on specific rule-based transformations, from which a diagram G
f←− D k←− K r−→ R

can always be extracted (by some mapping). Such diagrams are called partial transformations in [2].
Hence in order to develop general methods related to rule-based algebraic transformations, methods

that are not committed to a specific approach, one can certainly rely on partial transformations. In [2] a
transformation is defined that applies algebraic rewrite rules simultaneously to the input object G. This
transformation is not restricted to a particular approach to algebraic rewriting, and can even be applied
by mixing rules from different approaches.

One important feature that enhances the expressiveness of this transformation is the use of morphisms
between rules. The idea is inspired by [11], where the overlap of two matchings in a graph can be
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2 Subsumptions of SPO Rules

represented as a common subgraph of the corresponding left-hand sides, or more generally as morphisms
between left-hand sides. But since the transformation in [2] is based on partial transformations, it relies
on a notion of morphisms between such diagrams, and hence of a category Cpt of partial transformations
(see Definition 2.2 below). A morphism s : p→ p′ can be understood as a subsumption (of p by p′)
due to the following property: the simultaneous application of partial transformations p and p′ yields the
same result as p′ [2, Proposition 5.12].

Hence we should also be able to find subsumption morphisms between the rule-based transforma-
tions (usually called direct transformations) of any given approach, hence the map from these to partial
transformations should involve morphisms; in other words there should be a functor from a category D
of direct transformations of the given approach, to the category Cpt. Similarly, there should be a functor
from D to a category R of rules whose morphisms can then be understood as subsumptions between
rules. This constitutes a Rewriting Environment (RE) R

R←− D
P−→ Cpt. The simplicity of this model is

very convenient as it encompasses many different situations. However, it does not provide a semantics to
rule morphisms. If D is discrete then any non trivial rule morphism is meaningless; it can never specify
a subsumption. We therefore need to enforce a Correctness Condition that ensures the existence of a
(unique) subsumption corresponding to a rule morphism, under a specific circumstance, namely that that
the rules are applied with overlapping matchings.

The difficulty is therefore to strike the right balance between the R-morphisms and the D-morphisms,
so that the Correctness Condition holds. This has been done in [2] for the Double-Pushout approach (or
DPO, see [5]) in adhesive categories, the SqPO approach and the PBPO approach (with a suitable notion
of overlap). The object of the present paper is to do the same for the SPO approach.

In Section 2 we define the category Cpt and the Correctness Condition suitable for the SPO approach.
This approach will be developed in categories of presheaves, which are equivalent to categories of Σ -
algebras for monadic many-sorted signatures Σ , as used in [9]. A number of results concerning these
categories are developed in Section 3. The SPO direct derivations and their subsumption morphisms are
defined in Section 4, where the Correctness Condition is proved. In Section 5 the classical comparison
between DPO and SPO direct transformations (the former being a particular case of the latter) is extended
to a comparison of their respective subsumption morphisms. Some perspectives are given as conclusion
in Section 6.

2 The Correctness Condition

The category-theoretic notions and notations are compatible with [10]. For any category C , we write
G ∈ C to indicate that G is a C -object, and |C | is the discrete category on C -objects. Then G also
denotes the embedding (faithful functor injective on objects, or equivalently, left-cancellable functor)
from the terminal category 1 to |C | that maps the object of 1 to G. The slice category C \G has as
objects C -morphisms of codomain G, and as morphisms h : f → g C -morphisms such that g◦h = f .

For any functor F : A →B and embedding J : B′�B, the inverse image of J (or simply B′) along
F is the embedding J′ : A ′� A where A ′ is the subcategory of A of all A -objects and morphisms
whose image by F belongs to the subcategory J(B′) of B, and J′ is the corresponding inclusion functor.
Together with the unique functor F′ : A ′→B′ such that J ◦F′ = F◦J′ we get a pullback in the category
of categories:
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A B

A ′ B′

F

J′ J

F′

A close look at the SPO approach reveals that the result of an SPO direct transformation, i.e., a
pushout in a category of partial morphisms (with the same objects as C ), is actually obtained as a pushout
in C of a C -span whose precise definition will be given in Section 4. For the time being we focus on
the fact that most approaches to graph rewriting produce a C -span D k←− K r−→ R, where D is called
the context, K the interface and R the right-hand side. The context D is obtained from the input G by
deletions/duplications so that, equivalently, we can see G as being obtained from D by additions/mergings
(inverse to deletions/duplications) hence that there is a morphism f : D→ G.

Definition 2.1 (partial transformation). A partial transformation τ in C is a diagram

G D K R
f k r

The transformation is partial in the sense that its result is not given, though it is only one pushout
away, and also because it does not contain a rule or a matching.

Following the informal description of a subsumption, we say that a partial transformation τ is sub-
sumed by τ ′ if the latter’s context D′ is be obtained from the former’s D (from the same input G) by
further deletions/duplications, so that there must be a morphism from D′ to D. Similarly, τ ′ should make
further additions/mergings than τ , hence there should ba a morphism from R to R′ and also from K to K′

(the interface glues the new part to the old, and further additions may require a bigger interface).

Definition 2.2 (category Cpt, functor In, Rewriting Environments). For any category C , let Cpt be the
category whose objects are partial transformations and morphisms ν : τ → τ ′ are triples (ν1,ν2,ν3) of
C -morphisms such that

G D K R

G′ D′ K′ R′

f k r

f ′ k′ r′

= ν1 ν2 ν3

commutes in C , with the obvious composition (ν ′1,ν
′
2,ν
′
3)◦ (ν1,ν2,ν3) := (ν1 ◦ν ′1,ν

′
2 ◦ν2,ν

′
3 ◦ν3).

Let In : Cpt→ |C | be the input functor defined as Inτ := G.
A Rewriting Environment (or RE) R for C consists of a category D of direct transformations, a

category R of rules and two functors

R D Cpt
R P

In [2] a rule system in R is a category S with an embedding J : S � R. Equivalently, S is a
subcategory of R and J is the canonical embedding, so that S simply picks up rules in R but also
morphisms between them.

Given a rule system and an input C -object G, the categories D |G, D |SG and functors JG, JS are
obtained as inverse images of the embeddings G (whose sole image is the object G ∈ C ) and J, in the
following way:
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S R

D |C |

1

Cpt

D |GD |SG

R

J

P In

GJG

JS

R′

It is easy to see that JG is full. However, neither R nor R′ are generally full, for the simple reason
that if a rule can be applied with two unrelated (say disjoint) matchings in G, then the corresponding
direct transformations may not subsume each other. Indeed, their contexts may be obtained by deleting
disjoint parts of G, and then none can be obtained by further deletions from the other. Hence, not every
morphism in S is reflected by a morphism in D |SG .

As already mentioned, we should still expect morphisms between rules to be reflected by morphisms
between direct transformations that are obtained by applying these rules with overlapping matchings.
This requires some clarity on what we mean by matchings and overlaps. To keep things simple, we stick
to standard matchings as C -morphisms (this is suitable for SPO but not for PBPO rules).
Definition 2.3 (overlap). Given two matchings m : L→ G and m′ : L′ → G in the same input object
G ∈ C , m is overlapped by m′ if there is a C -morphism f : L→ L′ such that m = m′ ◦ f (and f is called
an overlap of m by m′).

Note that f : L→ L′ means that the overlapping L′ can be obtained from the overlapped L by ad-
ditions/mergings, which corresponds to intuition (at least if we admit only monomorphisms). We also
need a way of expressing the compatibility between overlaps and morphisms between rules. This can be
done by assuming a (generally obvious) functor L : R→ C that yields the left-hand side of a rule. The
condition for reflecting morphisms between rules can then be expressed as follows:

for all direct transformations δ ,δ ′ ∈ D |SG and all S -morphism σ : R′δ → R′δ ′, if the matchings
used in δ and δ ′ (say mδ and mδ ′) overlap according to Lσ (i.e., if mδ = mδ ′ ◦ Lσ ) then σ is
reflected by a unique morphism between δ and δ ′, i.e., there exists a unique D |SG -morphism
µ : δ → δ ′ such that R′µ = σ .

(1)

But we expect this condition to hold for any S and G. We can express this independently of S and
G as follows:

for all δ ,δ ′ ∈ D and all R-morphism σ : Rδ → Rδ ′, if mδ = mδ ′ ◦Lσ then there exists a unique
D-morphism µ : δ → δ ′ such that Rµ = σ .

(2)

that we call the Correctness Condition.
Proposition 2.4. Condition (1) holds for all S and G iff the Correctness Condition (2) holds.

Proof. (⇒) Let δ ,δ ′ ∈D and σ : Rδ → Rδ ′ s.t. mδ = (Lσ)◦mδ ′ , since (1) holds for the subcategory S
of R restricted to σ and for the common codomain G of mδ and mδ ′ , and since δ ,δ ′ ∈D |SG , R′δ = Rδ

and R′δ ′ = Rδ ′ then there exists a unique µ : δ → δ ′ such that R′µ = Rµ = σ , hence (2) holds.
(⇐) Let δ ,δ ′ ∈D |SG and σ : R′δ → R′δ ′ s.t. mδ = (Lσ)◦mδ ′ , then JG JS δ ,JG JS δ ′ ∈D and Jσ :

RJG JS δ → RJG JS δ ′ hence by (2) there exists a unique µ : JG JS δ → JG JS δ ′ such that Rµ = Jσ .
Since JG is fully faithful there is a unique µ ′ : JS δ → JS δ ′ s.t. JG µ ′ = µ , hence s.t. RJG µ ′ = Jσ .
Since JS is the inverse image of J along R◦JG then µ ′ is a D |SG -morphism and JR′µ ′ = RJG µ ′ = Jσ ,
hence R′µ ′ = σ since J is faithful.
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Note that there may be no direct transformation δ that corresponds to a rule and a matching (this
is the case in the DPO approach when the gluing condition does not hold), and then the Correctness
Condition does not require that rule morphisms be reflected. It may also be the case that a rule and a
matching defines several (non isomorphic) direct transformations, and then a rule morphism should be
reflected by one D-morphism for each pair (δ ,δ ′) corresponding to the two rules and their overlapping
matchings.

3 Relevant Properties of Presheaves

In order to prove the Correctness Condition, and even simply to define SPO direct transformations, we
need to prove a number of properties of categories of presheaves. A first set concerns the notion of direct
image of morphisms between presheaves. A second set is about inverse images and their relations with
direct images. A third set exhibits a lattice structure in categories of presheaves, and its connection with
direct and inverse images.

We first briefly explain the use of presheaves.

Definition 3.1 (categories Ĉ and I , order v). For any small category C , the category of presheaves on
C , denoted Ĉ , is the functor category SetC

op
. Notations are as follows: for every A ∈ Ĉ and f : c→ c′

in C , A f is a function from Ac′ to Ac, and for every h : A→ B in Ĉ the diagram

Ac′ Ac

Bc′ Bc

A f

hc′ hc

B f

commutes in Set (h is a natural transformation).
An inclusion is a Ĉ -morphism i : A→ B such that (i c)(x) = x for all c ∈ C and all x ∈ Ac; these

morphisms will be indicated by hooked arrows. Since identities are inclusions and the composition of
two inclusions is an inclusion, there is a subcategory I of all inclusions of Ĉ , and it is obviously a
partial order. We write A v B if there exists an inclusion (necessarily unique) i : A ↪→ B. When B can
be deduced from the context, the inclusion i may be written A, so that the slice category I \B can be
identified to a (small) subcategory of I .

The SPO approach in [9] has been developed in graph structures, i.e., categories of Σ -algebras for
many-sorted signatures Σ with only unary operators. Such signatures can obviously be identified with
graphs whose vertices are sorts and arrows are operators (whose source, resp. target, is the domain,
resp. codomain, of the operator). Thus a Σ -algebra A is a function that maps sorts s to sets As and
arrows o : s→ s′ to functions Ao : As→ As′, very much like presheaves. Similarly, Σ -homomorphisms
h : A→ B are functions that map every sort s to a function hs : As→ Bs such that hs′ ◦Ao = Bo◦hs for
every operator o : s→ s′, very much like a morphism of presheaves.

So if we let C be the (small) category freely generated by the graph Σ (i.e., C is the category whose
morphisms f are the finite paths o1 · · ·on in Σ and composition is concatenation of paths, so that f =
on ◦ · · · ◦o1), we see that any Σ -algebra A can be trivially extended to a functor from C to Set (by A f :=
Aon ◦ · · ·◦Ao1) and every such functor extends a Σ -algebra. Hence every Σ -homomorphism h : A→ B is
also a natural transformation between the corresponding functors since for every f = on ◦ · · · ◦o1 : s→ s′

the diagram
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As As1

Bs Bs1

Ao1

hs hs1

Bo1

Asn−1 As′

Bsn−1 Bs′

Aon

hsn−1 hs′

Bon

· · ·

· · ·

A f

B f

commutes (and conversely every natural transformation is a Σ -homomorphism). Hence SetC is isomor-
phic to the category of Σ -algebras.

Note that there is no other reason to use C op than to stick to the standard definition of presheaves.
This way we dispense with many-sorted signatures and algebras and we will simply transpose the relevant
definitions from [9] to more standard category theoretic notations.

3.1 Direct images

Definition 3.2 (Imh, functor h+). For any Ĉ -morphism h : A→ B, let Imh be the presheaf defined by
(Imh)c := {hc(x) | x ∈ Ac} for all c ∈ C . The functor h+ : I \A→ I \B is defined by h+ A′ :=
Im(h◦A′) for all A′ v A. Let h �A′ : A′→ h+ A′ be the unique epimorphism such that

A B

h+ A′A′

h

h �A′

commutes.

We see that (k ◦h)+ = k+ ◦h+ for all k : B→C, and if h ∈I then h+ A′ = h◦A′ for all A′ v A.

Lemma 3.3. For all h : A→ B, A′ v A and B′ v B, we have h+ A′ v B′ iff there exists h′ such that

A B

B′A′

h

h′

commutes. If h′ exists it is unique.

Proof. If i : h+ A′ ↪→ B′ then h′ = i◦(h�A′). Conversely, if h′ exists but h+ A′ 6v B′ then there exists c∈C
and x ∈ A′ c such that hc(x) 6∈ B′ c, though hc(x) = h′ c(x) ∈ B′ c, a contradiction.

It is well known that Ĉ is complete and cocomplete, and that its limits and colimits can be computed
objectwise, i.e., for any diagram F : J → Ĉ we have (lim←−F)c ' lim←−Fc and (lim−→F)c ' lim−→Fc for all
c ∈ C , where Fc j := (F j)c for all J -morphism or object j.
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3.2 Inverse images

In particular, we know that for any h : A→ B in Set and any B′ ⊆ B, the inclusion A′ := {x ∈ A | h(x) ∈
B′} ⊆ A together with the restriction of h to A′ and B′ is a pullback of h and the inclusion B′ ⊆ B, hence
the same holds in Ĉ : not all pullbacks along an inclusion are inclusions, but at least one is. In fact, since
I is closed under decomposition (if i◦h ∈I and i ∈I then h ∈I ) and the only isomorphisms in I
are the identities, there is exactly one such pullback.

Definition 3.4 (functor h−). For any Ĉ -morphism h : A→ B, the functor h− : I \B→I \A is defined
by, for all B′ v B, let h−B′ be the unique Ĉ -object and h �B′ the unique Ĉ -morphism such that there is a
pullback square

A B

B′h−B′

h

h �B′

By pullback composition we easily see that (k ◦h)− = h− ◦k−. We also see that h− is right adjoint to
h+.

Lemma 3.5. For all h : A→ B, we have h+ a h−.

Proof. For all A′ v A and B′ v B, we consider the diagram

A B

h−B′ B′

A′ h+ A′

h

h �B′

h �A′
i

u

If h+ A′ v B′ then i exists and the diagram (without u) commutes, hence by the pullback there exists
a unique u : A′ → h−B′ such that the whole diagram commutes, so that u ∈ I , hence A′ v h−B′.
Conversely, if A′ v h−B′ then u ∈ I exists hence h ◦ A′ = B′ ◦ h � B′ ◦ u and by Lemma 3.3 we get
h+ A′ v B′.

There obviously follows that A′ v h−(h+ A′) and h+(h−B′)v B′.
The standard notion of inverse image (pullback of monomorphism) can be related to h− in the fol-

lowing way.

Lemma 3.6. If

A B

B′A′

h

h′

m n

commutes, where m and n are monomorphisms, then this square is a pullback iff h− Imn = Imm.
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Proof. Let i : Imm ↪→ A and j : Imn ↪→ B, since i◦m �A′ = m and j ◦n �B′ = n then m �A′ and n �B′ are
bimorphisms, and since Ĉ is balanced they are isomorphisms.

If h− Imn = Imm we have two pullback squares

A B

ImnImm

A′ B′

h

h � Imn

i j

h′

m �A′ n �B′

and we conclude by pullback composition.
Conversely, if the square is a pullback then

A B

A′ B′

h− Imn Imn

h

h′

m n

h �B′

(n �B′)−1u

j

commutes (without u), hence there exists a unique u : h− Imn→ A′ such that the whole diagram com-
mutes. Since the diagonal face is also a pullback, then so is the bottom face by pullback decomposition,
hence u is an isomorphism. We see that i◦ (m �A′)◦ u ∈I hence (m �A′)◦ u ∈I , and since this is an
isomorphism it must be an identity, so that h− Imn = Imm.

3.3 The lattice structure of I

Definition 3.7 (meet u, join t). For any A ∈ Ĉ , the partial order v in I \A is a complete lattice, where
the meet of a set J of objects is uJ (with (uJ )c := ∩{Jc | J ∈J } for all c ∈ C ) and its join is tJ
(with (tJ )c := ∪{Jc | J ∈J } for all c ∈ C ). This lattice is compatible with direct and inverse images
in the sense that for every h : A→ B:

• for all A′ v A and A′′ v A, h+(A′tA′′) = (h+ A′)t (h+ A′′),

• for all B′ v B and B′′ v B, h−(B′tB′′) = (h−B′)t (h−B′′),

• for all B′ v B, h+(h−B′) = B′u Imh.

These equations are well-known to hold in Set and it is therefore a trivial matter to show that they
also hold in Ĉ (noting that (h−B′)c = {x ∈ Ac | hc(x) ∈ B′ c} for all c ∈ C ).

We can use the lattice structure of I to prove that

Lemma 3.8. If
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A B

C D

h

k k′

h′

is a pushout square in Ĉ then D = Imh′t Imk′.

Proof. Let i : Imh′ ↪→ D and j : Imk′ ↪→ D, so that h′ = i◦ (h′ �C) and k′ = j ◦ (k′ �B). Let i′ : Imh′ ↪→
Imh′t Imk′, j′ : Imk′ ↪→ Imh′t Imk′ and e : Imh′t Imk′ ↪→ D, so that i = e◦ i′ and j = e◦ j′.

A B

C D

Imk′

Imh′

Imh′t Imk′

h

k

k′ �B

h′ �C

i

j

i′

j′

u

Since
e◦ i′ ◦ (h′ �C)◦ k = h′ ◦ k = k′ ◦h = e◦ j′ ◦ (k′ �C)◦h

and e is a monomorphism then i′ ◦ (h′ �C) ◦ k = j′ ◦ (k′ �B) ◦ h, hence there exists a unique u : D→
Imh′ t Imk′ such that i′ ◦ (h′ �C) = u ◦ h′ = u ◦ i ◦ (h′ �C) and j′ ◦ (k′ � B) = u ◦ k′ = u ◦ j ◦ (k′ � B).
Since h′ �C and K′ �B are epimorphisms then i′ = u ◦ i and j′ = u ◦ j, so that e ◦ u ◦ i = e ◦ i′ = i and
e◦u◦ j = e◦ j′ = j, hence{

e◦u◦h′ = e◦u◦ i◦ (h′ �C) = i◦ (h′ �C) = h′

e◦u◦ k′ = e◦u◦ j ◦ (k′ �B) = j ◦ (k′ �B) = k′.

Since (h′,k′) is an epi-sink then e◦u = 1D ∈I hence u ∈I and we obtain D = Imh′t Imk′.

We will also need the following key lemma, for which we only give a purely set-theoretic proof.
Lemma 3.9. If

A B

C D

h

k k′

h′

is a pushout square in Ĉ and J v B such that k′−(k′+ Ju Imh) = Ju Imh then k′−(k′+ J) = J.

Proof. We need only prove k′−(k′+ J) v J. Suppose this is not true, then there exists a c ∈ C and an
x ∈ J c such that k′ c−(k′ c+(x)) 6⊆ J c. By hypothesis we must therefore have x 6∈ Imhc. Besides, this
also entails the existence of an x′ ∈ Bc such that k′ c(x′) = k′ c(x) and x′ 6∈ J c, i.e., x 6= x′. But we know
that
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Ac Bc

C c Dc

hc

k c k′ c

h′ c

is a pushout in Set, hence by the Gluing Condition (see, e.g., [6, Definition 3.9]) the identification points
x and x′ should be gluing points, i.e., elements of Imhc, a contradiction.

4 SPO Rules and Transformations

4.1 Pushouts of partial morphisms

Definition 4.1 (category C̃ ). The category of partial presheaf morphisms on C , denoted C̃ , has the
same objects as Ĉ , its morphisms are Ĉ -spans (i,h) : A→ B where i : A′ ↪→ A and h : A′ → B. Their
composition is defined by ( j,k)◦ (i,h) := (i◦h− j,k ◦ (h � j)), and the identities are (1A,1A).

A h− j C

A′ B′

B

i k
h � j

h j

The pushouts in C̃ can be constructed in three steps as defined below.
Definition 4.2 (construction of K, R and D). Let (S,r) : L→ T and (L′,m) : L→ G be a span in C̃ , and
let

1. K := t{J v SuL′ | r−(r+ J) = J and m−(m+ J) = J},
2. R := t{J v T | r− J v K} and D := t{J v G | m− J v K},
3. n : R→ H, g : D→ H a pushout of the span r �R : K→ R, m �D : K→ D in Ĉ .

L S T

L′ K R

G D H

r

r �R

m m �D n

g

Note that r+ K ∈ {J v T | r− J v K} by definition of K, hence r+ K v R by definition of R, so that
K = r−(r+ K)v r−Rv K and hence K = r−R, which explains why the upper right square is a pullback.
Similarly K = m−D, the lower left square is a pullback and therefore (r �R, m �D) is a Ĉ -span.

It is proven in [9, Section 2] (see also the proof in [1, Section 7]) that the cospan (R,n) : T → H,
(D,g) : G→ H given in Definition 4.2 is a pushout of (S,r) : L→ T , (L′,m) : L→ G in C̃ . This justifies
the definition of direct SPO-transformations in Definition 4.3 below, though in the sequel we do not need
to know that these are pushouts in C̃ .
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4.2 SPO transformations and subsumptions

In the SPO approach to algebraic rewriting, a rule is any C̃ -morphism (S,r) : L→ T , a matching of this
rule in a C̃ -object G is a C̃ -morphism (1L,m) : L→ G and a direct transformation is a pushout of the
two. However, in order to define in a simple and intuitive way subsumption morphisms between SPO
rules and transformations, they will be treated as diagrams in Ĉ .

Definition 4.3 (SPO Rewriting Environment R1
R1←− D1

P1−→ (Ĉ )pt). An SPO-rule ρ in Ĉ is a span
diagram

L S T
i r

in Ĉ , where i ∈ I . (Diagrams are functors from an index category to Ĉ , and it will sometimes be
convenient to refer to the objects and morphisms of this index category; they will be denoted by the
corresponding roman letters, here ρL = L, ρr = r, etc.)

A subsumption morphism σ : ρ → ρ ′ is a triple σ = (σ1,σ2,σ3) of Ĉ -monomorphisms such that

L S T

L′ S′ T ′

i r

i′ r′

σ1 σ2 σ3

(where L′ = ρ ′L etc.) commutes and both squares are pushouts. Composition is componentwise σ ′ ◦
σ := (σ ′1 ◦σ1, σ ′2 ◦σ2, σ ′3 ◦σ3) and the obvious identities are 1ρ := (1L, 1S, 1T ) (this is a subcategory of
Ĉ ·←·→·). The category of SPO-rules and subsumption morphisms is denoted R1. The functor L : R1→C
is defined by Lρ := ρL and Lσ := σ1.

A direct SPO-transformation δ is a diagram

S T

L K R

G D H

i

r

r �R

m m �D n

g

in Ĉ such that K, R, D, n and g are defined as in Definition 4.2 (with L′ = L).
A subsumption morphism (σ ,ν) : δ → δ ′ is a pair of triples of Ĉ -monomorphisms such that

D′

D
G′

G

L′

L

S′

S

T ′

T

K′

K

K′

K

R′

R

i

=

ν1

=m �D

=m′ �D′

r �R

r′ �R′

r

r′

m

m′

σ1 σ2 σ3

ν2 ν3

i′ (3)
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commutes, ν1 ∈ I and the two rightmost top squares are pushouts. Composition is componentwise
(σ ′,ν ′)◦(σ ,ν) := (σ ′ ◦σ , ν ′ ◦ν) where ν ′ ◦ν := (ν1 ◦ν ′1, ν ′2 ◦ν2, ν ′3 ◦ν3) and the identities are obvious.
The category of direct SPO-transformations and their subsumption morphisms is denoted D1.

Let R1 be the obvious functor from D1 to R1, i.e., such that (R1 δ )L := δL etc. and R1(σ ,ν) := σ .
Let P1 be the obvious functor from D1 to (Ĉ )pt, i.e., such that (P1 δ )G := δG etc., and P1(σ ,ν) := ν .

The span of functors R1
R1←−D1

P1−→ (Ĉ )pt is the SPO Rewriting Environment.

We now prove the main result of this paper, namely that the SPO Rewriting Environment satisfies the
Correctness Condition.

Theorem 4.4. For all δ ,δ ′ ∈ D1, all σ : R1 δ → R1 δ ′ such that m = m′ ◦Lσ (with m and m′ from the
diagrams δ and δ ′), there exists a unique ν such that (σ ,ν) : δ → δ ′.

Proof. To prove the existence and unicity of ν2, by Lemma 3.3 we need only prove that σ
+
2 K v K′.

Let J′ := m′−(m+ K), we first see that

J′ v m′− ◦m′+ J′ = m′− ◦m′+ ◦m′− ◦m+ K v m′− ◦m+ K = J′

hence m′−(m′+ J′) = J′. Next, we have J′ v L′ = S′ t Imσ1 by Lemma 3.8. Since m = m′ ◦σ1 then
σ
−
1 J′ = m−(m+ K) = K by construction of K (Definition 4.2), hence σ

+
1 K = σ

+
1 (σ−1 J′) = J′ u Imσ1

and therefore
J′ = J′uL′ = J′u (S′t Imσ1) = (J′uS′)tσ

+
1 K.

But σ
+
1 K = i′ ◦σ

+
2 K v i′, hence J′ v S′. We also have Imσ1 = i′ ◦ Imσ2, hence by identifying now J′ to

its inclusion in S′ we get σ
+
2 K = J′u Imσ2. We now consider the rightmost back and top squares, i.e.,

the diagram

K S S′

R T T ′

σ2

σ3

r �R r r′

The left square is a pullback by construction of K and R. The right square is a pushout along a
monomorphism, and since Ĉ is adhesive by [8, Corollary 3.6] then it is also a pullback by [8, Lemma
4.3]. By pullback composition we deduce that the outer square is a pullback, and by Lemma 3.6 that
r′−(σ+

3 R) = σ
+
2 K. Hence

σ
+
2 K v r′− ◦r′+ ◦σ

+
2 K = r′− ◦σ

+
3 ◦r′+ K v r′− ◦σ

+
3 R = σ

+
2 K

since r′+ K v R, hence r′−(r′+ J′u Imσ2) = J′u Imσ2. We can therefore apply Lemma 3.9 to the right
square, yielding r′−(r′+ J′) = J′.

By the properties of J′ w.r.t. r′ and m′ and by the construction of K′ we get J′ v K′, and since
σ
+
2 K v J′ we are done with ν2.

To prove the existence and unicity of ν3 we need only prove that σ
+
3 R v R′. We have proved that

r′−(σ+
3 R) = σ

+
2 K v K′, hence by construction of R′ we get σ

+
3 Rv R′ and we are done with ν3.

We now prove the existence of ν1 ∈ I , i.e., that D′ v D. Let J := σ
−
2 K′. It is obvious that J v S.

We next see that
σ
+
3 ◦r+ J = r′+ ◦σ

+
2 J = r′+(σ+

2 ◦σ
−
2 K′)v r′+ K′
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and hence by Lemma 3.5 we have r+ J v σ
−
3 ◦r′+ K′, so that

J v r−(r+ J)v r− ◦σ
−
3 ◦r′+ K′ = σ

−
2 ◦r′− ◦r′+ K′ = σ

−
2 K′ = J

since r′− ◦r′+ K′ = K′ by construction of K′. Hence we have r−(r+ J) = J.
Let us consider the diagram

J S L

K′ S′ L′

i

i′

σ2 �K′ σ2 σ1

where the left square is a pullback by definition of J and the right one is a pulation square as above.
Hence the outer square is a pullback, and by Lemma 3.6 we have σ

−
1 K′ = J. We deduce that m+ J =

m′+ ◦σ
+
1 ◦σ

−
1 K′ v m′+ K′, hence

J v m− ◦m+ J v σ
−
1 ◦m′− ◦m′+ K′ = σ

−
1 K′ = J

since m′− ◦m′+ K′ = K′ by construction of K′, so that m−(m+ J) = J.
By the properties of J w.r.t. r and m and by the construction of K we therefore have J v K. But then

we have
m−D′ = σ

−
1 ◦m′−D′ = σ

−
1 K′ = J v K

since m′−D′ = K′ by construction of D′. We thus obtain D′ v D by the construction of D.
There remains to establish the commuting properties. Let j : D ↪→ G and j′ : R′ ↪→ T ′, one easily get

j ◦ν1 ◦m′ �D′ ◦ν2 = j ◦m �D and j′ ◦ r′ �R′ν2 = j′ ◦ν3 ◦ r �R by diagram chasing, and since j and j′ are
monomorphisms then the bottom faces of (3) commute, so that (σ ,ν) : δ → δ ′.

It is easy to find examples showing that this property fails if in Definition 4.3 of subsumption mor-
phisms between SPO-rules, either square is not a pushout, or either of σ1, σ3 is not a monomorphism.

5 Comparison with DPO subsumptions

Definition 5.1. A DPO-rule ρ in Ĉ is a span diagram

L K R
l r

in Ĉ , where l is a monomorphism.
A subsumption morphism σ : ρ → ρ ′ is a triple σ = (σ1,σ2,σ3) of Ĉ -monomorphisms such that

L K R

L′ K′ R′

l r

l′ r′

σ1 σ2 σ3

(where L′ = ρ ′L etc.) commutes and the left square is a pullback. Composition is componentwise. The
category of DPO-rules and subsumption morphisms is denoted R2.

A direct DPO-transformation δ in Ĉ is a diagram
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L K R

G D H

l r

f g

m k n

in Ĉ such that l is a monomorphism and the two squares are pushouts.

A subsumption morphism µ : δ → δ ′ is a 4-tuple (µ1,µ2,µ3,µ4) of Ĉ -morphisms such that the
following diagram

G

G′

L

L′

K

K′

D

D′

R

R′

=

µ1
µ2

µ4

l

m

m′ f

f ′

k
l′

k′

r

µ3
r′

(4)

commutes and the top left square is a pullback, with componentwise composition. Let R2 be the obvious
functor from D2 to R2 (such that (R2 δ )L = δ L, etc.) and P2 be the obvious functor from D2 to Cpt, the

DPO Rewriting Environment is R2
R2←−D2

P2−→ Cpt.

Compared to DDPO in [2, Definition 3.8] we assume in D2 that f ∈ I (and since I is stable by
decomposition this entails that µ4 ∈I too). The reason is that we work in adhesive categories Ĉ where
we know that f is a monomorphism (since these are stable by pushouts [9, Lemma 4.2]), and among the
isomorphic copies of D we can always pick one such that Dv G. Thus we only miss isomorphic copies
of direct DPO-transformations, so that D2 is equivalent to DDPO.

The DPO Rewriting Environment has been shown to satisfy the Correctness Condition in all adhesive
categories, see [2, Proposition 6.4], hence it also holds in Ĉ .

Since every inclusion is a monomorphism then SPO-rules can be seen as DPO-rules. Besides, in Ĉ
every pushout along a monomorphism is a pullback (by [8]), hence R1-morphisms can also be seen as
R2-morphisms.

Definition 5.2. Let J1 be the obvious embedding of R1 in R2 (with (J1 ρ)K = ρ S, (J1 ρ)R = ρ T etc.)
and let J2 : D ↪→

2 →D2 be the inverse image of J1 along R2.

D ↪→
2 is the subcategory of D2 that contains all direct DPO-transformations of SPO rules, with mor-

phisms corresponding to morphisms of SPO rules, i.e., in Diagram 4 we have l, l′ ∈ I , µ1, µ2, µ3 are
monomorphisms and the two top squares are pushouts.

We also know that D2-objects can be seen as D1-objects. We establish this correspondence solely
with the results of Section 3, and extend it to subsumption morphisms through a full embedding.
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Theorem 5.3. There exists a unique full embedding J1
2 : D ↪→

2 � D1 such that

R2 D2

D ↪→
2

D1

R1

R1

Cpt

Cpt

R2 P2

R1 P1

=

=
R2
′

J1 J2

J1
2

(5)

commutes.

Proof. Let δ be a direct DPO-transformation as in Definition 5.1, the only possibility to define a direct
SPO-transformation J1

2 δ so that (5) commutes is as the diagram

K R

L K R

G D H

l
= =

f

r

r

m k n

g

(a)

This proves the unicity of J1
2 on objects, if indeed it exists. We first prove that J1

2 δ is a direct SPO-
transformation. Let K′ := t{J v K | r−(r+ J) = J and m−(m+ J) = J}, R′ := t{J v R | r− J v K′} and
D′ := t{J v G | m− J v K′}, we must prove that K′ = K, R′ = R, D′ = D and k = m �D (that r = r �R is
obvious).

We see that K′ v K. Conversely, we have r−(r+ K) = K since the domain of r is K. By Lemma 3.3
we have m+ K v D. Square (a) is a pushout along a monomorphism hence it is a pullback, hence by
Lemma 3.6 we have m−D = m− Im f = Im l = K, so that K v m−(m+ K)v m−D = K. This proves that
K vK′ and therefore that K′ = K. Then we have R′ =t{J v R | r− J vK} v R, and obviously r−RvK,
hence R′ = R.

We also have D′ = t{J vG |m− J v K}, hence we get DvD′. Conversely, for any J vG such that
m− J v K, we have Ju Imm = m+(m− J)v m+ K v D and G = Dt Imm by Lemma 3.8, so that

J = JuG = Ju (Dt Imm) = (JuD)t (Ju Imm)v D,

hence D′ vD and therefore D = D′. Finally, since (a) is the unique bullback of m and f ∈I with l ∈I ,
then K = m−D and k = m �D, and we have proved that J1

2 δ is a direct SPO-transformation. Besides, it
is obvious that J1

2 is injective on objects.
Similarly, given a D ↪→

2 -morphism µ : δ → δ ′, by the required commutation of (5) we must define
J1

2 µ as (σ ,ν) : J1
2 δ → J1

2 δ ′ with σ := (µ1,µ2,µ3) and ν := (µ4,µ2,µ3), and it is obvious that each of µ

and J1
2 µ is uniquely defined by the other, hence J1

2 thus defined is a unique full embedding such that (5)
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commutes, if it is indeed a functor. But it is again obvious that J1
2 1δ = 1J1

2 δ
and that, for any µ ′ : δ ′→ δ ′′,

J1
2(µ

′ ◦µ) = J1
2(µ

′
1 ◦µ1,µ

′
2 ◦µ2,µ

′
3 ◦µ3,µ4 ◦µ

′
4)

= ((µ ′1 ◦µ1,µ
′
2 ◦µ2,µ

′
3 ◦µ3),(µ4 ◦µ

′
4,µ

′
2 ◦µ2,µ

′
3 ◦µ3))

= ((µ ′1,µ
′
2,µ

′
3)◦ (µ1,µ2,µ3),(µ

′
4,µ

′
2,µ

′
3)◦ (µ4,µ2,µ3))

= (J1
2 µ
′)◦ (J1

2 µ).

6 Conclusion

The Correctness Condition is much more difficult to obtain in the SPO approach than in the other alge-
braic approaches, but this is related to the elaborate construction of pushouts in the category C̃ of partial
morphisms of presheaves. The definition of SPO-subsumptions is remarkably simple and requires only
very basic algebraic constructions (monomorphisms and pushouts in Ĉ ), as is the case in the other ap-
proaches. Theorem 5.3 also yields a simple diagrammatic expression of the relationship between DPO
and SPO direct transformations and the corresponding subsumptions.

The proof of Theorem 4.4 uses only well-known facts in Category Theory, some results on adhesive
categories and the properties obtained in Section 3. It it were to be attempted in a different class of
categories where the SPO approach can be developed, as in [7], the most challenging problem would
probably be to prove Lemma 3.9, that relies heavily on the fact that morphisms in Ĉ can be decomposed
as functions.
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