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Abstract

In [2] a Global Coherent Transformation is defined, that applies simultaneously algebraic rewriting
rules to an input object. The expressiveness of this transformation is enhanced by enabling the
use of subsumption morphisms between rules, as in Global Transformations [8]. However, it is
not committed to a particular approach to algebraic rewriting, and is therefore formalized in a
general representation of such approaches, called a Rewriting Environment. It was shown that
suitable environments exist for the Double Pushout, the Sesqui-Pushout and the Pullback-Pushout
approaches. In the present paper an environment is exhibited for the Single-Pushout (SPO) approach
in categories of presheaves, and it is shown that it enjoys the same property linking subsumptions
between SPO rules and subsumptions between direct SPO transformations.

1 Introduction

An “approach” to algebraic rewriting is characterized by a particular notion of rules in a category C,
whose objects are those we wish to rewrite (generally graph-like data structures), together with a notion
of direct transformations that defines how a rule transforms an input object G.

It is generally expected that such transformations proceed by local replacement of a part of G by
something else, as in term rewriting. However, the Pullback-Pushout (PBPO) approach enables non local
modifications of G. This replacement is usually decomposed as the deletion of a part of G followed by the
addition of a new part. However, the deletion step may involve some duplications in the Sesqui-Pushout
(SqPO) and the PBPO approaches.

All in all there is no general agreement on what is an algebraic rewrite rule and how it should
be applied. A closer look reveals that the disagreement concerns the deletion/duplication step, while
all approaches agree that the addition step is a pushout, though in the SPO approach both steps are
performed by a pushout in a category of partial morphisms, see [6].

This diversity of approaches makes it difficult to design a general definition of algebraic rewriting,
let alone of rule subsumption. Informally, a rule is subsumed by another rule if it performs fewer
modifications to G; that is both fewer deletions/duplications and fewer additions. It is not based on
a comparison of the results of applying both rules to G, and it cannot be: earning less and spending
less can make one either poorer or richer in the end. More importantly, we will view subsumptions as
(composable) morphisms between rules, and also between direct transformations. This will result in
categories R of rules and D of direct transformations.

But for now R and D are only abstract categories, which leaves us free to understand, say, graph
morphisms as subsumtions. We need more than this. One thing we know is that to every direct
transformation corresponds a rule, and that to subsuming transformations must correspond subsuming
rules, i.e., that there is a functor R : D → R. It is important to notice that, since subsuming rules
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can be applied at unrelated locations in G, the corresponding transformations may not be related by
subsumption, hence that R is generally not full.

But the notion of subsumption can only be made precise by separating the deletion/duplication step
from the pushout step. In [2] this is done by defining a partial transformation τ as a diagram

G D K R
f k r

in C, where G is the input object, D is generally known as the context, K as the interface and R as the
right-hand side. The transformation is partial in the sense that D is supposed to be obtained from G
by applying the deletion/duplication step, and it is assumed that the result of the transformation is the

pushout of the C-span D
k←− K r−→ R, not yet performed.

We understand easily that if τ deletes less than a partial transformation τ ′, then the context D′ of τ ′

should be smaller than D. Or more precisely, there should be a monomorphism from D′ to D. Similarly,
if D is obtained from G by making fewer duplications than D′, then there is a morphism from D′ to D.
Hence a subsumption morphism ν : τ → τ ′ is a triple (ν1, ν2, ν3) such that

G D K R

G′ D′ K ′ R′

f k r

f ′ k′ r′

= ν1 ν2 ν3

commutes in C. The obvious composition (ν′1, ν
′
2, ν

′
3) ◦ (ν1, ν2, ν3) := (ν1 ◦ ν′1, ν′2 ◦ ν2, ν′3 ◦ ν3) yields the

category Cpt.
Now we can admit that a direct transformation (an object of D) is anything from which a partial

transformation can be obtained, and similarly for their subsumptions. In other words, there should be

a functor P : D → Cpt. The span of functors R
R←− D

P−→ Cpt is what have been called a Rewriting
Environment (RE) in [2]. This is an abstract representation of an approach to algebraic rewriting in C,
with subsumption morphisms between rules and between direct transformations.

However, this representation is too weak in one respect: it allows the category D to be discrete even if
R is not. More precisely, it does not impose any constraints on the morphisms in D w.r.t. the morphisms
in R, so that subsumptions between rules may not be reflected as subsumptions between (suitable) direct
transformations using these rules. This is why in [2] the REs defined for the Double-Pushout (DPO), the
SqPO and the PBPO approaches all come with a property1 that fills the gap between the corresponding
R and D , namely Propositions 6.4, 6.6 and 6.9.

The purpose of the present paper is therefore to design a RE for the SPO approach, with subsumption
morphisms that support a property similar to those obtained in [2]. We slightly generalize the construc-
tions of [6] from graph structures to categories of presheaves, which avoids any reference to Σ-algebras.
The necessary tools are developed in Section 2.

One difficulty is that SPO transformations are designed in [6] as pushouts in a category of partial
morphisms, and not as pushouts in C as we have assumed. However, these transformations can be
understood as diagrams in C, where the result is indeed obtained as a pushout of a C-span. The difficulty
lies in the construction of this span, given explicitly in Section 3 where it is used to obtain the required
property on SPO subsumptions as Theorem 3.5. Some prospects are presented in Section 4.

1In a forthcoming paper it will be shown that this property is equivalent to a specific functor being fully faithful.
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2 Relevant Properties of Presheaves

The category-theoretic notions and notations are compatible with [7]. For any category C, we write
G ∈ C to indicate that G is a C-object. The slice category C \G has as objects C-morphisms of codomain
G, and as morphisms h : f → g C-morphisms such that g ◦ h = f .

2.1 Direct images

Definition 2.1 (categories Ĉ, I, order v, Imh, functor h�). For any small category C, the category of

presheaves on C, denoted Ĉ, is the functor category SetC
op

. Notations are as follows: for every A ∈ Ĉ
and f : c→ c′ in C, Af is a function from Ac′ to Ac, and for every h : A→ B in Ĉ the diagram

Ac′ Bc′

Ac Bc

hc′

Af Bf

hc

commutes in Set (h is a natural transformation).

An inclusion is a Ĉ-morphism i : A → B such that (ic)(x) = x for all c ∈ C and all x ∈ Ac; these
morphisms will be indicated by hooked arrows. Since identities are inclusions and the composition of
two inclusions is an inclusion, there is a subcategory I of all inclusions of Ĉ, and it is obviously a partial
order. We write A v B if there exists an inclusion (necessarily unique) i : A ↪→ B. When B can be
deduced from the context, the inclusion i may be written A, so that the slice category I \ B can be
identified to a (small) subcategory of I.

For any Ĉ-morphism h : A → B, let Imh be the presheaf defined by (Imh)c := {h(x) | x ∈ Ac}
for all c ∈ C. The functor h� : I \ A → I \ B is defined by h�A′ := Im(h ◦ A′) for all A′ v A. Let
h �A′ : A′ → h�A′ be the unique epimorphism such that

A B

h�A′A′

h

h �A′

commutes.

We see that (k ◦ h)� = k� ◦h� for all k : B → C, and if h ∈ I then h�A′ = h ◦A′ for all A′ v A.

Lemma 2.2. For all h : A→ B, A′ v A and B′ v B, we have h�A′ v B′ iff there is a unique h′ such
that

A B

B′A′

h

h′
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commutes.

Proof. If i : h�A′ ↪→ B′ then h′ = i ◦ (h � A′). Conversely, if h′ exists but h�A′ 6v B′ then there exists
c ∈ C and x ∈ A′c such that hc(x) 6∈ B′c, though hc(c) = h′c(x) ∈ B′c, a contradiction.

It is well known that Ĉ is complete and cocomplete, and that its limits and colimits can be computed
objectwise, i.e., for any diagram F : J → Ĉ we have (lim←−F)c ' lim←−Fc and (lim−→F)c ' lim−→Fc for all c ∈ C,
where Fcj := (Fj)c for all J -morphism or object j.

2.2 Inverse images

In particular, we know that for any h : A → B in Set and any B′ ⊆ B, the inclusion A′ := {x ∈ A |
h(x) ∈ B′} ⊆ A together with the restriction of h to A′ and B′ is a pullback of h and the inclusion

B′ ⊆ B, hence the same holds in Ĉ: not all pullbacks along an inclusion are inclusions, but at least
one is. In fact, since I is closed under decomposition (if i ◦ h ∈ I and i ∈ I then h ∈ I) and the only
isomorphisms in I are the identities, there is exactly one such pullback.

Definition 2.3 (functor h�). For any Ĉ-morphism h : A→ B, the functor h� : I \B → I \A is defined

by, for all B′ v B, let h�B′ be the unique Ĉ-object and h �B′ the unique Ĉ-morphism such that there is
a pullback square

A B

B′h�B′

h

h �B′

By pullback composition we easily see that (k ◦ h)� = h� ◦ k�. We also see that h� is right adjoint to
h�.

Lemma 2.4. For all h : a→ B, we have h� a h�.

Proof. For all A′ v A and B′ v B, we consider the diagram

A B

h�B′ B′

A′ h�A′

h

h �B′

h �A′

i

u

If h�A′ v B′ then i exists and the diagram (without u) commutes, hence by the pullback there exists
a unique u : A′ → h�B′ such that the whole diagram commutes, so that u ∈ I, hence A′ v h�B′.
Conversely, if A′ v h�B′ then u ∈ I exists and the diagram (without i) commutes, hence by Lemma 2.2
we have h�A′ v B′.

There obviously follows that A′ v h�(h�A′) and h�(h�B′) v B′.
The standard notion of inverse image (pullback of monomorphism) can be related to h� in the following

way.
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Lemma 2.5. If

A B

B′A′

h

h′

m n

commutes, where m and n are monomorphisms, then this square is a pullback iff h� Imn = Imm.

Proof. Let i : Imm ↪→ A and j : Imn ↪→ B, since i ◦m � A′ = m and j ◦ n � B′ = n then m � A′ and
n �B′ are bimorphisms, and since Ĉ is balanced they are isomorphisms.

If h� Imn = Imm we have two pullback squares

A B

ImnImm

A′ B′

h

h � Imn

i j

h′

m �A′ n �B′

and we conclude by pullback composition.
Conversely, if the square is a pullback then

A B

A′ B′

h� Imn Imn

h

h′

m n

h �B′

(n �B′)−1
u

j

commutes (without u), hence there exists a unique u : h� Imn→ A′ such that the whole diagram com-
mutes. Since the diagonal face is also a pullback, then so is the bottom face by pullback decomposition,
hence u is an isomorphism. We see that i ◦ (m � A′) ◦ u ∈ I hence (m � A′) ◦ u ∈ I, and since this is an
isomorphism it must be an identity, so that h� Imn = Imm.

2.3 The lattice structure of I
Definition 2.6 (meet u, join t). For any A ∈ Ĉ, the partial order v in I \ A is a complete lattice,
where the meet of a set J of objects is uJ (with (uJ )c := ∩{Jc | J ∈ J } for all c ∈ C) and its join is
tJ (with (tJ )c := ∪{Jc | J ∈ J } for all c ∈ C).

We leave to the reader the proof of the following properties for every h : A→ B:

• for all A′ v A and A′′ v A, h�(A′ tA′′) = (h�A′) t (h�A′′).
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• for all B′ v B and B′′ v B, h�(B′ tB′′) = (h�B′) t (h�B′′) and h�(h�B′) = B′ u Imh.

We can use the lattice structure of I to prove that

Lemma 2.7. If

A B

C D

h

k k′

h′

is a pushout square in Ĉ then D = Imh′ t Im k′.

Proof. Let i : Imh′ ↪→ D and j : Im k′ ↪→ D, so that h′ = i ◦ (h′ � C) and k′ = j ◦ (k′ � B). Let
i′ : Imh′ ↪→ Imh′ t Im k′, j′ : Im k′ ↪→ Imh′ t Im k′ and e : Imh′ t Im k′ ↪→ D, so that i = e ◦ i′ and
j = e ◦ j′.

A B

C D

Im k′

Imh′

Imh′ t Im k′

h

k

k′ �B

h′ � C

i

j

i′

j′

u

Since
e ◦ i′ ◦ (h′ � C) ◦ k = h′ ◦ k = k′ ◦ h = e ◦ j′ ◦ (k′ � C) ◦ h

and e is a monomorphism then i′ ◦ (h′ � C) ◦ k = j′ ◦ (k′ � B) ◦ h, hence there exists a unique u : D →
Imh′ t Im k′ such that i′ ◦ (h′ � C) = u ◦ h′ = u ◦ i ◦ (h′ � C) and j′ ◦ (k′ � B) = u ◦ k′ = u ◦ j ◦ (k′ � B).
Since h′ � C and K ′ �B are epimorphisms then i′ = u ◦ i and j′ = u ◦ j, so that e ◦ u ◦ i = e ◦ i′ = i and
e ◦ u ◦ j = e ◦ j′ = j, hence{

e ◦ u ◦ h′ = e ◦ u ◦ i ◦ (h′ � C) = i ◦ (h′ � C) = h′

e ◦ u ◦ k′ = e ◦ u ◦ j ◦ (k′ �B) = j ◦ (k′ �B) = k′.

Since (h′, k′) is an epi-sink then e ◦ u = 1D ∈ I hence u ∈ I and we obtain D = Imh′ t Im k′.

We will also need the following key lemma, for which we only give a purely set-theoretic proof.

Lemma 2.8. If

A B

C D

h

k k′

h′
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is a pushout square in Ĉ and J v B such that k′�(k′� J u Imh) = J u Imh then k′�(k′� J) = J .

Proof. We need only prove k′�(k′� J) v J . Suppose this is not true, then there exists a c ∈ C and an
x ∈ Jc such that k′c�(k′c�(x)) 6⊆ Jc. By hypothesis we must therefore have x 6∈ Imhc. Besides, this also
entails the existence of an x′ ∈ Bc such that k′c(x′) = k′c(x) and x′ 6∈ Jc, i.e., x 6= x′. But we know that

Ac Bc

Cc Dc

hc

kc k′c

h′c

is a pushout in Set, hence by the Gluing Condition (see, e.g., [3, Definition 3.9]) the identification points
x and x′ should be gluing points, i.e., elements of Imhc, a contradiction.

3 SPO Rules and Transformations

3.1 Pushouts of partial morphisms

Definition 3.1 (category C̃). The category of partial presheaf morphisms on C, denoted C̃, has the same

objects as Ĉ, its morphisms are Ĉ-spans (i, h) : A → B where i : A′ ↪→ A and h : A′ → B. Their
composition is defined by (j, k) ◦ (i, h) := (i ◦ h� j, k ◦ (h � j)), and the identities are (1A, 1A).

A h� j C

A′ B′

B

i k

h � j

h j

The pushouts in C̃ can be constructed in three steps as defined below.

Definition 3.2 (construction of K, R and D). Let (S, r) : L→ T and (L′,m) : L→ G be a span in C̃,
and let

1. K := t{J v S u L′ | r�(r� J) = J and m�(m� J) = J},

2. R := t{J v T | r� J v K} and D := t{J v G | m� J v K},

3. n : R→ H, g : D → H a pushout of the span r �R : K → R, m �D : K → D in Ĉ.

L S T

L′ K R

G D H

r

r �R

m m �D n

g
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Note that r�K ∈ {J v T | r� J v K} by definition of K, hence r�K v R by definition of R, so that
K = r�(r�K) v r�R v K and hence K = r�R, which explains why the upper right square is a pullback.

Similarly K = m�D, the lower left square is a pullback and therefore (r �R, m �D) is a Ĉ-span.

Theorem 3.3. In Definition 3.2 the cospan (R,n) : T → H, (D, g) : G → H is a pushout of (S, r) :

L→ T , (L′,m) : L→ G in C̃.

The proof is similar to the proof in [6, Section 2] or in [1, Section 7]. Note that the categories in
[6] are isomorphic to categories of presheaves. Indeed, a many-sorted signature Σ with unary operator
symbols only (a graph structure) can be identified to a graph, where the sorts are vertices and the unary
operators are edges. If we let C be the category freely generated by this graph (the category whose

morphisms are the paths in this graph), then is is easy to see that Ĉop is isomorphic to the category of
Σ-algebras.

3.2 SPO transformations and subsumptions

In the SPO approach to algebraic rewriting, a rule is any C̃-morphism (S, r) : L→ T , a matching of this

rule in a C̃-object G is a C̃-morphism (1L,m) : L → G and a direct transformation is a pushout of the
two. However, in order to define in a simple and intuitive way subsumption morphisms between SPO
rules and transformations, they will be treated as diagrams in Ĉ.

Definition 3.4 (RE RSPO
RSPO←−−− DSPO

PSPO−−−→ (Ĉ)pt). An SPO-rule ρ in Ĉ is a span diagram

L S T
i r

in Ĉ, where i ∈ I. (Diagrams are functors from an index category to Ĉ, and it will sometimes be
convenient to refer to the objects and morphisms of this index category; they will be denoted by the
corresponding roman letters, here ρL = L, ρr = r, etc.)

A subsumption morphism σ : ρ→ ρ′ is a triple σ = (σ1, σ2, σ3) of Ĉ-monomorphisms such that

L S T

L′ S′ T ′

i r

i′ r′

σ1 σ2 σ3

(where L′ = ρ′L etc.) commutes and both squares are pushouts. Composition is componentwise σ′ ◦σ :=
(σ′1 ◦ σ1, σ′2 ◦ σ2, σ′3 ◦ σ3) and the obvious identities are 1ρ := (1L, 1S , 1T ) (this is a subcategory of

Ĉ·←·→·). The category of SPO-rules and subsumption morphisms is denoted RSPO.
A direct SPO-transformation δ is a diagram

S T

L K R

G D H

i

r

r �R

m m �D n

g
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in Ĉ such that K, R, D, n and g are defined as in Definition 3.2 (with L′ = L).

A subsumption morphism (σ, ν) : δ → δ′ is a pair of triples of Ĉ-monomorphisms such that

D′

D

G′

G

L′

L

S′

S

T ′

T

K ′

K

K ′

K

R′

R

i

=

ν1

=m �D

=m′ �D′

r �R

r′ �R′

r

r′

m

m′

σ1 σ2 σ3

ν2 ν3

i′
(1)

commutes, ν1 ∈ I and the two rightmost top squares are pushouts. Composition is componentwise
(σ′, ν′) ◦ (σ, ν) := (σ′ ◦ σ, ν′ ◦ ν) where ν′ ◦ ν := (ν1 ◦ ν′1, ν′2 ◦ ν2, ν′3 ◦ ν3) and the identities are obvious.
The category of direct SPO-transformations and their subsumption morphisms is denoted DSPO.

Let RSPO be the obvious functor from DSPO to RSPO, i.e., such that (RSPO δ)L := δL etc. and

RSPO(σ, ν) := σ. Let PSPO be the obvious functor from DSPO to (Ĉ)pt, i.e., such that (PSPO δ)G := δG

etc., and PSPO(σ, ν) := ν. The span of functors RSPO
RSPO←−−− DSPO

PSPO−−−→ (Ĉ)pt is the SPO Rewriting
Environment.

We now prove the main result of this paper, a property that is a simple translation to the SPO RE,
and restriction to categories of presheaves, of [2, Proposition 6.4].

Theorem 3.5. For all δ, δ′ ∈ DSPO, all σ : RSPO δ → RSPO δ
′ such that m = m′ ◦ σ1 (with m and m′

from the diagrams δ and δ′), there exists a unique ν such that (σ, ν) : δ → δ′.

Proof. To prove the existence and unicity of ν2, by Lemma 2.2 we need only prove that σ�
2 K v K ′.

Let J ′ := m′�(m�K), we first see that

J ′ v m′� ◦m′� J ′ = m′� ◦m′� ◦m′� ◦m�K v m′� ◦m�K = J ′

hence m′�(m′� J ′) = J ′. Next, we have J ′ v L′ = S′ t Imσ1 by Lemma 2.7. Since m = m′ ◦ σ1 then
σ�
1 J
′ = m�(m�K) = K by construction of K (Definition 3.2), hence σ�

1 K = σ�
1(σ�

1 J
′) = J ′ u Imσ1 and

therefore
J ′ = J ′ u L′ = J ′ u (S′ t Imσ1) = (J ′ u S′) t σ�

1 K.

But σ�
1 K = i′ ◦ σ�

2 K v i′, hence J ′ v S′. We also have Imσ1 = i′ ◦ Imσ2, hence by identifying now J ′

to its inclusion in S′ we get σ�
2 K = J ′ u Imσ2. We now consider the rightmost back and top squares,

i.e., the diagram

K S S′

R T T ′

σ2

σ3

r �R r r′

The left square is a pullback by construction of K and R. The right square is a pushout along a
monomorphism, and since Ĉ is adhesive by [5, Corollary 3.6] then it is also a pullback by [5, Lemma
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4.3]. By pullback composition we deduce that the outer square is a pullback, and by Lemma 2.5 that
r′�(σ�

3 R) = σ�
2 K. Hence

σ�
2 K v r′� ◦ r′� ◦σ

�
2 K = r′� ◦σ�

3 ◦ r′�K v r′� ◦σ
�
3 R = σ�

2 K

since r′�K v R, hence r′�(r′� J ′ u Imσ2) = J ′ u Imσ2. We can therefore apply Lemma 2.8 to the right
square, yielding r′�(r′� J ′) = J ′.

By the properties of J ′ w.r.t. r′ and m′ and by the construction of K ′ we get J ′ v K ′, and since
σ�
2 K v J ′ we are done with ν2.

To prove the existence and unicity of ν3 we need only prove that σ�
3 R v R′. We have proved that

r′�(σ�
3 R) = σ�

2 K v K ′, hence by construction of R′ we get σ�
3 R v R′ and we are done with ν3.

We now prove the existence of ν1 ∈ I, i.e., that D′ v D. Let J := σ�
2 K
′. It is obvious that J v S.

We next see that
σ�
3 ◦ r� J = r′� ◦σ�

2 J = r′�(σ�
2 ◦σ

�
2 K
′) v r′�K ′

and hence by Lemma 2.4 we have r� J v σ�
3 ◦ r′�K ′, so that

J v r�(r� J) v r� ◦σ�
3 ◦ r′�K ′ = σ�

2 ◦ r′� ◦ r′�K ′ = σ�
2 K
′ = J

since r′� ◦ r′�K ′ = K ′ by construction of K ′. Hence we have r�(r� J) = J .
Let us consider the diagram

J S L

K ′ S′ L′

i

i′

σ2 �K′ σ2 σ1

where the left square is a pullback by definition of J and the right one is a pulation square as above.
Hence the outer square is a pullback, and by Lemma 2.5 we have σ�

1 K
′ = J . We deduce that m� J =

m′� ◦σ�
1 ◦σ

�
1 K
′ v m′�K ′, hence

J v m� ◦m� J v σ�
1 ◦m′� ◦m′�K ′ = σ�

1 K
′ = J

since m′� ◦m′�K ′ = K ′ by construction of K ′, so that m�(m� J) = J .
By the properties of J w.r.t. r and m and by the construction of K we therefore have J v K. But

then we have
m�D′ = σ�

1 ◦m′�D′ = σ�
1 K
′ = J v K

since m′�D′ = K ′ by construction of D′. We thus obtain D′ v D by the construction of D.
There remains to establish the commuting properties. Let j : D ↪→ G and j′ : R′ ↪→ T ′, one easily

get j ◦ ν1 ◦m′ �D′ ◦ ν2 = j ◦m �D and j′ ◦ r′ �R′ν2 = j′ ◦ ν3 ◦ r �R by diagram chasing, and since j and
j′ are monomorphisms then the bottom faces of (1) commute, so that (σ, ν) : δ → δ′.

It is easy to find examples showing that this property fails if in Definition 3.4 of subsumption mor-
phisms between SPO-rules, either square is not a pushout, or either of σ1, σ3 is not a monomorphism.
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4 Conclusion

.
The proof of Theorem 3.5 uses only well-known facts in Category Theory, some results on adhesive

categories and the properties obtained in Section 2. It it were to be attempted in a different class of
categories where the SPO approach can be developed, as in [4], the most challenging problem would

probably be to prove Lemma 2.8, that relies heavily on the fact that morphisms in Ĉ can be decomposed
as functions.

An interesting fact is that subsumption morphisms between SPO-rules are also subsumption mor-
phisms between DPO-rules, as defined in [2, Definition 3.3], so that there is an obvious embedding of
RSPO into RDPO. This extends the well-known fact that DPO-transformations are nothing else than
SPO-transformations where the gluing condition holds. Hence there should be an equivalence from
DGC

SPO, the full subcategory of DSPO objects that satisfy the gluing condition, to the category of DPO-
transformations, and it should commute with the previous embedding through the corresponding R
functors.
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