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Unsafe Probabilities and Risk Contours for Stochastic Processes using Convex Optimization

This paper proposes an algorithm to calculate the maximal probability of unsafety with respect to trajectories of a stochastic process and a hazard set. The unsafe probability estimation problem is cast as a primal-dual pair of infinite-dimensional linear programs in occupation measures and continuous functions. This convex relaxation is nonconservative (to the true probability of unsafety) under compactness and regularity conditions in dynamics. The continuous-function linear program is linked to existing probability-certifying barrier certificates of safety. Risk contours for initial conditions of the stochastic process may be generated by suitably modifying the objective of the continuous-function program, forming an interpretable and visual representation of stochastic safety for test initial conditions. All infinite-dimensional linear programs are truncated to finite dimension by the Moment-Sum-of-Squares hierarchy of semidefinite programs. Unsafe-probability estimation and risk contours are generated for example stochastic processes.

Introduction

This work performs risk analysis of stochastic processes by computing the probability that trajectories will reach an unsafe set X u . Trajectories evolve over a maximal time horizon of T in a state space X ⊆ R n , beginning in an initial set X 0 ⊆ X and possibly entering the unsafe set X u ⊆ X. We consider stochastic processes described by a generator L (e.g., a Stochastic Differential Equation (SDE)), for which X t is the time-dependent state probability distribution of the process starting from X 0 and terminating upon exit from X (with exit time distribution τ X = inf{t : X t ∈ ∂X}). The worst-case probability of unsafety for L-trajectories starting at a point x 0 ∈ X within a time horizon of [t 0 , T ] is:

P * (t 0 , x 0 ) = sup t * ∈[t0,T ] Prob X t * [x ∈ X u ] (1a) 
x(t) follows L ∀t ∈ [t 0 , min(t * , τ X )] (1b)

x(0) = x 0 . (1c) 
The stopping time min(t * , τ X ) in (1b) also ensures that trajectories x(t) remain in X for all relevant t. The worst-case probability of unsafety for L-trajectories over an initial set X 0 ⊆ X is:

P * (t 0 , X 0 ) = sup x0∈X0 P * (t 0 , x 0 ) (2a) = sup t * ∈[0,T ], x0∈X0 Prob X t * [x ∈ X u ] (2b) 
x(t) follows L ∀t ∈ [t 0 , min(t * , τ X )] (2c)

x(0) = x 0 . (2d) 
2 Preliminaries

Notation

The subset of natural numbers between a and b is a..b ⊂ N. The minimum of two quantities will be denoted as a ∧ b = min(a, b). The set of polynomials with real-valued coefficients in an indeterminate x ∈ R n is R[x]. Every polynomial c ∈ R[x] may be uniquely described by a finite sum over multi-indices α ∈ N n by c(x) = α c α x α . The degree of a polynomial deg c is equal to the largest exponent-sum n i=1 α i such that c α ̸ = 0. The set of polynomials in x with degree at most 2k is R[x] ≤2k .

The set of continuous functions over a set S is C(S). Its subcone of nonnegative continuous functions is C + (S). Given a product set S × H, the set of functions that are once-continuously differentiable in the first variable s and are twice-continuously differentiable in the second variable h is C 1,2 (S × H). The set of signed Borel measures supported in S is M(S), and its subset of nonnegative Borel measures supported in S is M + (S). The support of a measure µ ∈ M + (R n ) is the smallest closed set of points s such that every open neighborhood N ϵ (s) has positive measure µ(N ϵ (s)) > 0. The sets C + (S) and M + (S) are in topological duality when S is compact, and they admit a duality pairing ⟨•, •⟩ by Lebesgue integration: ∀f ∈ C + (S), µ ∈ M + (S) : ⟨f, µ⟩ = S f (s)dµ(s). This duality pairing will be extended into a bilinear pairing between C(S) and M + (S). The µ-measure of a set A ⊆ S may also be expressed as the pairing of µ with the indicator function

I A : µ(A) = ⟨I A , µ⟩ = inf{⟨w, µ⟩ | w ∈ C(S), w ≥ I A }.
The mass of µ is µ(S) = ⟨1, µ⟩, and µ is a probability distribution if this mass is 1. A vital example of a probability distribution is the Dirac delta δ s ′ supported only at s ′ , obeying the point-evaluation pairing rule ∀f ∈ C(S) : ⟨f,

δ s ′ ⟩ = f (s ′ ). The Lebesgue (volume) distribution over a space S is λ S with ∀f ∈ C(S) : ⟨f, λ S ⟩ = S f (s)ds. The product measure between µ ∈ M + (S 1 ) and ν ∈ M + (S 2 ) is the unique measure µ ⊗ ν satisfying ∀A 1 × A 2 ⊆ S 1 × S 2 : µ ⊗ ν(A 1 × A 2 ) = µ(A 1 )ν(A 2 ).

Stochastic Processes

A stochastic process is a time-indexed set of random variables {X t } that are related together through system dynamics [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF] (pushforward of an initial distribution along flow maps). Properties of the stochastic process will be analyzed in terms of test functions in an appropriate set C (such as C = C([0, T ]×X). The expectation of a test function v(s, x) at the time t according to the distribution

X t is E[v(t, x) | X t ].
Letting ∆t > 0 be a time step, the generator L of a stochastic process satisfies (for all appropriate test functions v ∈ domL)

L ∆t v(t, x) = lim ∆t ′ →∆t E[v(t + ∆t ′ , x) | X t+∆t ′ ] -v(t, x) ∆t ′ . (3) 
We will express the domain of L as C = domL, such that C is a subset of the preimage of continuous functions under L. The generator for a discrete-time stochastic process is L ∆t with ∆t > 0, which is defined w.r.t. the test function class C = C([0, T ] × X). For a discrete-time law following x t+∆t = f (t, x t , λ t ) in which the time-varying parameter λ t ∈ Λ has a probability distribution of ξ(λ t ), the associated generator satisfies

L ∆t v(t, x) = (∆t -1 ) Λ v (t + ∆t, f (t, x, λ)) dξ(λ) -v(t, x). (4) 
The generator for a continuous-time (Feller) stochastic process is L ∆t=0 for the class C = C 1,2 ([0, T ]×X) [START_REF] Rogers | Diffusions, Markov Processes, and Martingales[END_REF].

The dynamical behavior of an Itô SDE has a description

dx = f (t, x)dt + g(t, x)dW, (5) 
in which W is the Wiener process. The generator of the SDE in ( 5) is

L 0 v(t, x) =∂ t v(t, x) + f (t, x) • ∇ x v(t, x) + g(t, x) T ∇ 2 xx v(t, x)g(t, x)/2. (6) 
A sequence of random variables [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF] (in the sense of generalized conditional expectation). The generator L solves a martingale problem for all possible time steps s > 0 and test functions v ∈ C [START_REF] Williams | Probability with Martingales[END_REF]. The martingale problem in discrete-time (with s ∈ N) is

{Y t } is a martingale if E[Y t+δt | {Y t ′ } t ′ ≤t ] = Y t
0 = E[v(t + s, x) | X t+s ] -E[v(t, x) | X t ] (7) 
-

t+s s ′ =t E[L ∆t v(t, x) | X s ′ ], and in continuous time (with s ∈ R ≥0 ) is 0 = E[v(t + s, x) | X t+s ] -E[v(t, x) | X t ] (8) 
-

t+s s ′ =t E[L 0 v(t, x) | X s ′ ].
For the rest of this paper, we will refer to the generator L interchangeably with its stochastic process.

The martingale problem can be described using the theory of occupation measures. Given an initial condition (point) x 0 ∈ X 0 ⊆ X and a time t ∈ [0, T ], we refer to x(t | x 0 ) as the trajectory of {X t } with generator L starting at the initial distribution δ x=x0 . The occupation measure µ ∈ M + ([0, T ] × X) and terminal measure µ τ ∈ M + ([0, T ] × X) of the stochastic process {X t } from a starting time t 0 up to a stopping time t * satisfies ∀A ⊆ [t 0 , T ], B ⊆ X:

µ(A × B) = X0 t * t=t0 I A×B (t, x(t | x 0 )) dt dµ 0 (x 0 ) (9a) µ τ (A × B) = X0 I A×B (t * , x(t * | x 0 )) dµ 0 (x 0 ). ( 9b 
)
The measures in (9) may also be defined with respect to a probability distribution of stopping times 2 obeys the martingale relations [START_REF] Abate | Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems[END_REF] or (8) of the stochastic process with generator

t * ∈ M + ([0, T ]). A tuple of measures (µ 0 , µ, µ τ ) ∈ M + (X 0 ) × M + ([0, T ] × X)
L ∀v ∈ C : ⟨v, µ τ ⟩ = ⟨v(t 0 , •), µ 0 ⟩ + ⟨Lv, µ⟩. (10) 
Relation ( 10) is called Liouville equation for Ordinary Differential Equations (ODEs) and is referred to as Dynkin's equation in the context of SDEs. We will also equivalently express [START_REF] Prajna | Stochastic Safety Verification Using Barrier Certificates[END_REF] in a shorthand form by

µ τ = δ t0 ⊗ µ 0 + L † µ. ( 11 
)

Sum-of-Squares Methods

Let c ∈ R[x] ≤2k be a polynomial. The polynomial c is nonnegative if ∀x ∈ R n : c(x) ≥ 0. Verification of polynomial nonnegativity is generically an NP-hard task. One tractable method to construct nonnegative polynomials is through SOS representations. The polynomial c is SOS if there exists N polynomials q j ∈ R[x] such that c(x) = N j=1 q 2 j (x). The cone of SOS polynomials is Σ[x], and its subset of SOS polynomials with degree ≤ 2k is Σ[x] ≤2k . The set of SOS polynomials equals the cone of nonnegative polynomials only when n = 1, 2k = 2, or (n = 2, 2k = 4) [START_REF] Hilbert | Über die Darstellung definiter Formen als Summe von Formenquadraten[END_REF]. SOS polynomials become vanishingly small in the set of nonnegative polynomials as n and d rise [START_REF] Blekherman | There are Significantly More Nonnegative Polynomials than Sums of Squares[END_REF].

SOS representations up to fixed degree can be conducted by formulating SDPs. To each polynomial c ∈ R[x] ≤2k , there exists a (typically nonunique) associated polynomial vector [START_REF] Choi | Sums of squares of real polynomials[END_REF].

v k (x) ∈ (R[x] ≤d ) s and a symmetric Gram matrix Q ∈ S s such that c(x) = v k (x) T Qv k (x). One such choice of vectors v k (x) is the set of monomials in x between degrees 0..k, in which case s = n+k k . A polynomial c is SOS if its Gram matrix Q is also Positive Semidefinite (PSD)
A Basic Semialgebraic (BSA) set K is a set described by a finite number of bounded-degree polynomial inequality (N g ) and equality constraints (N h ):

K = {x ∈ R n | g i (x) ≥ 0, h j (x) = 0, ∀i ∈ 1..N g , j ∈ 1..N h }. ( 12 
)
The class of Weighted Sum of Squares (WSOS) polynomials over K in [START_REF] Salamati | Data-driven safety verification of stochastic systems via barrier certificates[END_REF] is the set Σ[K] of polynomials c that admit a description of

c(x) =σ 0 (x) + i σ i (x)g i (x) + j ϕ j (x)h j (x) (13a) σ 0 , σ i ∈ Σ[x], ϕ j ∈ R[x]. (13b) 
The set K is compact if there exists a finite

R > 0 such that {x | ∥x∥ 2 2 ≤ R} ⊇ K. The set is additionally Archimedean if R -∥x∥ 2 2 ∈ Σ[K].
Not every compact set is Archimedean [START_REF] Cimprič | Closures of quadratic modules[END_REF], but if an R verifying compactness of K is known, then the constraint R -∥x∥ 2 2 ≥ 0 can be added to the description of K to render K Archimedian. Every compact polytope and ellipsoid is also Archimedean [START_REF] Lasserre | Moments, Positive Polynomials And Their Applications[END_REF].

The Putinar Positivestellensatz states that every positive polynomial over K is also a member of Σ[K] when K is Archimedean [START_REF] Putinar | Positive Polynomials on Compact Semi-algebraic Sets[END_REF]. However, the polynomial degrees of the multipliers (σ, ϕ) needed to certify nonnegativity of such a positive c could be exponential in n and k [START_REF] Nie | On the complexity of Putinar's Positivstellensatz[END_REF].

Unsafe Linear Programs

This section will present LPs to analyze safety of a stochastic process with generator L.

Assumptions

We will posit the following assumptions throughout this paper: A1 The state-sets X 0 , X u , X are all compact.

A2 The time interval [t 0 , T ] is compact.

A3 Trajectories stop upon the first exit from X (τ X ∧ T ).

A4 The test function set

C = dom(L) satisfies C ⊆ C([t 0 , T ] × X) with 1 ∈ C and L1 = 0.
A5 The set C separates points and is multiplicatively closed.

A6 There exists a countable set {v

k } ∈ C such that ∀v ∈ C : (v, Lv) is contained in the bounded pointwise closure of the linear span of {(v k , Lv k )}.
Assumptions A4-A6 are the same as in Condition 1 of [START_REF] Cho | Linear Programming Formulation for Optimal Stopping Problems[END_REF]. We note that generators for Markov, SDE, and Lévy processes evolving in a compact set satisfy A1-A6.

Measure Program

We will pose a convex but infinite-dimensional LP in order to upper-bound program [START_REF] Esfahani | The stochastic reach-avoid problem and set characterization for diffusions[END_REF]. Such an LP will be posed in terms of a relaxed occupation measure (µ 0 , µ τ , µ).

Theorem 3.1. The following LP will upper-bound (2) with p * (t 0 , X 0 ) ≥ P * (t 0 , X 0 ) for each X 0 ⊆ X p * (t 0 , X 0 ) = sup ⟨I Xu , µ τ ⟩ (14a)

µ τ = δ t0 ⊗ µ 0 + L † µ (14b) ⟨1, µ 0 ⟩ = 1 (14c) µ 0 ∈ M + (X 0 ) (14d) µ, µ τ ∈ M + ([t 0 , T ] × X). (14e) 
Proof. Let x 0 ∈ X 0 be an initial condition and t * ∈ [t 0 , T ] be a stopping time. A set of measures (µ 0 , µ, µ τ ) may be constructed to fulfill constraints (14b)-(14e). To begin, the initial measure µ 0 may be chosen as the Dirac delta δ x=x0 . The measure µ can be set to the occupation measure of the stochastic trajectory x(t | x 0 ) between the initial time of t 0 and the stopping time of t * ∧ τ X . The terminal measure µ τ (t, x) may then be picked as the the time-state distribution at time t * (in which trajectories are stopped according to t * ∧ τ X ).

Because there exists a mapping from every feasible point (t * , x 0 ) of (2) to a set of measures in (16b)-(16f), it holds that p * τ (t 0 , X 0 ) ≥ P * (t 0 , X 0 ).

The function I Xu (x) in the objective (14a) is a discontinuous function of x. We can reformulate ( 14) as an LP where all terms are continuous in (t, x) (under A1-A6) through the use of the following restriction lemma: Lemma 3.2 (Theorem 3.1 of [START_REF] Henrion | Approximate Volume and Integration for Basic Semialgebraic Sets[END_REF]). Let S 1 , S 2 be spaces with S 1 ⊆ S 2 , and let ξ ∈ M + (S 2 ) be a measure. The restriction of ξ to S 1 is uniquely given by the measure ν * solving the following optimization problem

Q * = sup ν,ν ⟨1, ν⟩ (15a) 
ξ = ν + ν (15b) ν ∈ M + (S 1 ) (15c) ν ∈ M + (S 2 ). ( 15d 
)
The objective Q * will satisfy Q * = ⟨1, ν * ⟩ = ⟨I S1 , ξ⟩. The measure ν * will be supported on closure(S 2 \ S 1 ).

We will define a peak measure µ p ∈ M + ([t 0 , T ]×X u ) and a complement measure µ c ∈ M + ([t 0 , T ]×X) in order to split the terminal measure µ τ as µ τ = µ p + µ c . This decomposition (through Lemma 3.2) will allow for the definition of an LP with continuous coefficients in (t, x). This continuity provides strong duality (under A1-A6) and convergence of the moment-SOS hierarchy to P * (t 0 , X 0 ) from (2) (under A1-A6 and assumptions on polynomial structure). The LP in which µ τ is decomposed as µ p + µ c is:

Theorem 3.3.
The following LP has the same objective value p * (t 0 , X 0 ) as in (2):

p * (t 0 , X 0 ) = sup ⟨1, µ p ⟩ (16a) µ p + µ c = δ t0 ⊗ µ 0 + L † µ (16b) ⟨1, µ 0 ⟩ = 1 (16c) µ 0 ∈ M + (X 0 ) (16d) µ, µ c ∈ M + ([t 0 , T ] × X) (16e) 
µ p ∈ M + ([t 0 , T ] × X u ). (16f) 
Proof. 1) Let (µ 0 , µ p , µ c , µ) be a feasible point to (16b)-(16f). Then (µ 0 , µ p + µ c , µ) is a feasible point to (14b)-(14e).

2) Let (µ 0 , µ τ , µ) be a feasible point to the constraints (14b)-(14e). Unique measures µ p , µ c may be defined according to the restriction Lemma 3.2 with S 1 = [t 0 , T ] × X u and S 2 = [t 0 , T ] × X by solving sup ⟨1, µ τ ⟩ (17a)

µ τ = µ p + µ c (17b) 
µ c ∈ M + ([t 0 , T ] × X) (17c) 
µ p ∈ M + ([t 0 , T ] × X u ), (17d) 
with ⟨I Xu , µ τ ⟩ = ⟨1, µ p ⟩.

There exists a mapping relating each feasible point of ( 14) to ( 16) and vice versa while keeping the same objective, which proves that the two objectives are equal. Theorem 3.4. Under assumptions A1-A6, the objectives of ( 16) and (1b) are equal (p * (t 0 , X 0 ) = P * (t 0 , X 0 )).

Proof. By Theorem 3.1 of [START_REF] Cho | Linear Programming Formulation for Optimal Stopping Problems[END_REF] (and under Assumptions A1-A6), every tuple (µ 0 , µ, µ τ ) with µ 0 ∈ M + ([t 0 , T ]× X) (with ⟨1, µ 0 ⟩ = 1) and µ, µ τ ∈ M + ([t 0 , T ] × X) satisfying a Martingale relation [START_REF] Clark | Control barrier functions for stochastic systems[END_REF] is supported on the graph of a stochastic process (1b).

The tuple (µ 0 , µ, µ p + µ c ) from the Martingale relation ( 11) is supported on the graph of a stochastic process. The measures µ p and µ c can be separated according to Lemma 3.2. This concludes the no-relaxationgap proof.

Function Program

Theorem 3.5. An LP in terms of an auxiliary function v that forms a weak dual (p * (t 0 , X 0 ) ≥ d * (t 0 , X 0 )) to ( 16) is

d * (t 0 , X 0 ) = inf γ∈R γ (18a) γ ≥ v(t 0 , x) ∀x ∈ X 0 (18b) Lv(t, x) ≤ 0 ∀(t, x) ∈ [t 0 , T ] × X (18c) v(t, x) ≥ 0 ∀(t, x) ∈ [t 0 , T ] × X (18d) v(t, x) ≥ 1 ∀(t, x) ∈ [t 0 , T ] × X u (18e) v ∈ C. ( 18f 
)
Strong duality (p * (t 0 , X 0 ) = d * (t 0 , X 0 )) will hold under assumptions A1-A4.

Proof. See Appendix A.

Remark 1. Constraints (18b)-(18f) have the same form as a stochastic (time-dependent) barrier function at a fixed probability level γ (from [START_REF] Prajna | A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates[END_REF]). Our work involves application of γ as an optimization variable, as well as a proof of no relaxation gap in Theorem 3.4 under A1-A6.

Risk Contour Linear Programs

The LPs in ( 16) and (18) determine the worst-case probability of unsafety among stochastic trajectories starting from an initial set X 0 . The optimal value of ( 16) and ( 18) is therefore equal to 1 when X 0 = X and X u is nonempty (because then ∅ ̸ = X u ⊂ X 0 and there exists trajectories starting in the unsafe set). This section will form a continuous-function LP similar to [START_REF] Ahbe | Region of attraction analysis of nonlinear stochastic systems using polynomial chaos expansion[END_REF], whose function values evaluated at a given initial point X 0 form a upper-bound on the probability of unsafety when starting at x 0 . These upper-bounds will be proven to converge in an L 1 sense over X to the true risk function P * . Such upper-bounds on unsafety allow for interpretation of risk when performing path planning tasks. Let µ 0 ∈ M + (X) be a fixed probability distribution (⟨1, µ 0 ⟩ = 1). The µ 0 -averaged probability of unsafety is

M * (t 0 , µ 0 ) = X P * (t 0 , x 0 ) dµ 0 (x 0 ). ( 19 
)
One specific case we will focus on in the examples is where µ 0 is the the uniform distribution over X (µ 0 = λ X /vol(X)).

Measure Program

Corollary 1. An LP to upper-bound (2) with m * (t 0 , µ 0 ) ≥ M * (t 0 , µ 0 ) in general, and m

* (t 0 , µ 0 ) = M * (t 0 , µ 0 ) under A1-A6, is m * (t 0 , µ 0 ) = sup ⟨1, µ p ⟩ (20a) µ p + µ c = δ t0 ⊗ µ 0 + L † µ (20b) µ, µ c ∈ M + ([t 0 , T ] × X) (20c) 
µ p ∈ M + ([t 0 , T ] × X u ). ( 20d 
)
Proof. These optimality properties follow from arguments used in Theorem 3.3 (upper-bound by a measure construction starting from the distribution µ 0 ) and Theorem 3.4 (restriction measures). The measures (µ, µ p + µ c ) are supported on the graph of the stochastic process L starting from µ 0 for every feasible (µ, µ p , µ c ).

Function Program

For given v ∈ C and µ 0 ∈ M + (X), let v(t 0 , •) be shorthand notation for the function x → v(t 0 , x) such that ⟨v(t 0 , •), µ 0 ⟩ = ⟨v(t 0 , x), µ 0 (x)⟩. We will modify terms (18a)-(18b) in order to form an LP penalized over the whole space X with an objective integrating against the weighting distribution µ 0 :

J * (t 0 , µ 0 ) = inf⟨v(t 0 , •), µ 0 ⟩ (21a) Lv(t, x) ≤ 0 ∀(t, x) ∈ [t 0 , T ] × X (21b) v(t, x) ≥ 0 ∀(t, x) ∈ [t 0 , T ] × X (21c) v(t, x) ≥ 1 ∀(t, x) ∈ [t 0 , T ] × X u (21d) v ∈ C. (21e) 
Lemma 4.1. The objective (21a) from ( 21) is upper-bounded by J * (t 0 , µ 0 ) ≤ 1.

Proof. The function v(t, x) = 1 is feasible for all constraints (21b)-(21e). Given that µ 0 is a probability measure, the objective in (21a) will satisfy J * ≤ ⟨1, µ 0 ⟩ = 1.

We now show that any solution of (21b)-(21e) returns an upper-bound of the probability of unsafety.

Theorem 4.2. Let v be feasible for (21b)-(21e) and let assumptions A1-A6 hold. Then

v(t 0 , x 0 ) ≥ P (t 0 , x 0 ) ( 22 
)
for every initial condition x 0 ∈ X.

Proof. See Appendix B.

Remark 2. Level sets of any v(t, x) solving (21b)-(21e) can therefore be used to upper-bound the risk of stochastic execution for L when starting at any (t,

x 0 ) ∈ [t 0 , T ] × X.
The notation p(t 0 , x 0 ) will be subsequently used to denote the function obtained by solving ( 16) as x 0 → p(t 0 , X 0 = {x 0 }). 

(t 0 , •), µ 0 ⟩ → J * (t 0 , µ 0 ) (under A1-A6). Then v k converges in L 1 (µ 0 ) to p * as in X v k (t 0 , x 0 ) -p * (t 0 , x 0 ) dµ 0 (x 0 ) -→ k→∞ 0. ( 23 
)
Proof. See Appendix C.

Unsafe Semidefinite Programs

We will approximate programs ( 18) and ( 21) through the moment-SOS hierarchy of SDPs, as reviewed in Section 2.3. In order to apply SOS methods towards convergent approximation, we require additional assumptions:

A7 The sets X 0 , X u , X are all Archimedean BSA sets.

A8 The generator L is closed under polynomials (v(t,

x) ∈ R[t, x] =⇒ Lv(t, x) ∈ R[t, x]).
Given a degree k and a generator L obeying Assumption A8, we define the dynamics degree k as

k = ⌈ max v∈R ≤2k [t,x] deg(Lv(t, x))/2⌉. ( 24 
)

Unsafe-Probability SDP

The degree-k SOS tightening of program ( 18) is

d * k (t 0 , X 0 ) = inf γ∈R γ (25a) γ -v(t 0 , x) ∈ Σ[X 0 ] ≤2k (25b) -Lv(t, x) ∈ Σ[[0, T ] × X] ≤2 k (25c) v(t, x) ∈ Σ[[0, T ] × X] ≤2k (25d) v(t, x) -1 ∈ Σ[[0, T ] × X u ] ≤2k . ( 25e 
) Remark 3. Constraint (25d) absorbs the polynomial restriction of v ∈ R[t, x] ≤2k .
We require the following Lemma to ensure convergence of ( 25) to [START_REF] Ahbe | Region of attraction analysis of nonlinear stochastic systems using polynomial chaos expansion[END_REF] as k → ∞.

Lemma 5.1. Under Assumptions A1-A6, all feasible measures µ = (µ 0 , µ, µ c , µ τ ) in ( 16) are bounded.

Proof. Boundedness of nonnegative measures will be proven by the sufficient condition of compact support and finite mass. Compact support of measures in µ is ensured by A1. The initial measure µ 0 is a probability distribution (⟨1, µ 0 ⟩ = 1) by constraint (16c). The sum µ c +µ τ likewise has mass 1 by the Liouville constraint (16b), when passing in the test function v = 1. Given that µ c and µ τ are each nonnegative measures, it holds that they both have finite mass (upper-bounded by 1). Lastly, assignment of v = t to (16b) with Lt = 1 results in ⟨1, µ⟩ = ⟨t, µ c + µ τ ⟩ ≤ T . All measures have bounded masses and compact supports, and therefore are bounded.

Theorem 5.2. Under assumptions A1-A8, program (25) will converge to [START_REF] Ahbe | Region of attraction analysis of nonlinear stochastic systems using polynomial chaos expansion[END_REF] 

with lim k→∞ d * k (t 0 , X 0 ) = d * (t 0 , X 0 ).
Proof. This convergence will hold by Corollary 8 of [START_REF] Tacchi | Convergence of Lasserre's hierarchy: the general case[END_REF], because all sets are Archimedean (A7), dynamics are polynomial (A8), measures are bounded (Lemma 5.1), and the objective value of ( 25) is finite (bounded below by 0).

Risk SDP

The degree-k SOS tightening for the risk-contour program in [START_REF] Chen | Safety Verification of Nonlinear Polynomial System via Occupation Measures[END_REF] is

J * k (t 0 , µ 0 ) = inf X v(t 0 , x)dµ 0 (x) (26a) -Lv(t, x) ∈ Σ[[0, T ] × X] ≤2 k (26b) v(t, x) ∈ Σ[[0, T ] × X] ≤2k (26c) v(t, x) -1 ∈ Σ[[0, T ] × X u ] ≤2k . (26d) 
Remark 4. The function v(t, x) = 1 is feasible for constraints (26b)-(26d) at every degree k ∈ N. As a result, the objective in ( 26) is always upper-bounded by J * k (t 0 , µ 0 ) ≤ 1. Theorem 5.3. Under assumptions A1-A8, the risk contour program (26) will converge to [START_REF] Chen | Safety Verification of Nonlinear Polynomial System via Occupation Measures[END_REF] with [START_REF] Ahbe | Region of attraction analysis of nonlinear stochastic systems using polynomial chaos expansion[END_REF] with lim k→∞ J * k = J * . Proof. The proof of this theorem follows the same steps as in Theorem 5.2 with respect to the measure program in [START_REF] Henrion | Moment-SOS hierarchy and exit time of stochastic processes[END_REF].

Let v k (t, x) ∈ Σ[[0, T ]×X] ≤2k be the solution to [START_REF] Jasour | Risk Contours Map for Risk Bounded Motion Planning under Perception Uncertainties[END_REF] at degree-k, and let I u be the 0/1 indicator function on the unsafe set X u . Then the probability of unsafety when starting at a point x 0 ∈ X is upper-bounded by

q 1:k (x) = min(1, min k ′ ∈1..k v k ′ (t 0 , x)). (27) 
Corollary 2. The sequence of functions q 1:k (x) in increasing k will converge in measure µ 0 to v(t 0 , x).

Proof. This corollary follows from Theorem 4.4, in which the sequence {v k ′ } is used to approximate v * . The minimization among all k ′ in ( 27) further sharpens the estimate of v * .

Computational Complexity

We will quantify computational complexity of the degree-k tightenings of ( 25) and ( 26) by the size of the maximal Gram matrices involved in their SOS program. In the typical case where k > k (only violated under A1-A8 when L maps every polynomial to a constant), the largest Gram matrix will occur in the Lie constraints (25c) and (26b). The Lie constraints each have n + 1 variables (t, x), so the Gram matrix size when using the monomial basis is n+1+ k k

. All other constraints have a lower degree (k rather than k), or are posed only over the n variables x. The complexity of using an interior-point method to solve the SOS programs will therefore scale based on O((n + 1) 6d ) for fixed d or O(d (n+1) ) for fixed n [START_REF] Lasserre | Moments, Positive Polynomials And Their Applications[END_REF][START_REF] Miller | Data-Driven Superstabilizing Control of Error-in-Variables Discrete-Time Linear Systems[END_REF].

Numerical Examples

MATLAB (2021a) code to reproduce all examples is available at https://github.com/jarmill/prob_ unsafe. All programs are modeled using YALMIP [START_REF] Lofberg | YALMIP : a toolbox for modeling and optimization in MATLAB[END_REF] and solved using Mosek 10 [41]. All examples will involve an initial time of t 0 = 0.

Two-Dimensional Cubic SDE

Our first demonstration analyzes safety of a cubic polynomial SDE from Example 1 of [START_REF] Prajna | Stochastic Safety Verification Using Barrier Certificates[END_REF]:

dx = x 2 -x 1 -x 2 -1 2 x 3 1 dt + 0 0.1 dW. ( 28 
)
Safety of ( 28) is evaluated within the state space of X = [-2, 2] 2 until a time horizon of T = 5. The unsafe set is a moon-shaped region

X u = {x ∈ R 2 | 0.9083 2 ≤ (x 1 +0.5006) 2 +(x 2 +0.2902) 2 , 0.5 2 ≥ (x 1 -0.2) 2 +x 2
2 }. The initial set X 0 is a circle of radius R 0 and center [0.85; -0.75]. Figure 2a plots trajectories of (28) starting from X 0 (magenta region with R 0 = 0.2). Note how some sampled trajectories touch the right corner of the red half-circle X u (and are therefore unsafe). 2a plots the unsafety upper-bounding function min(1, v(0, x)) at T = 5 acquired by solving [START_REF] Sloth | Safety Analysis of Stochastic Dynamical Systems[END_REF] at order k =6 with R 0 = 0.2. The unsafe set X u is the red moon. The magenta circle is the boundary of the initial set X 0 . Note how the probability estimate is sharper in the region surrounding X 0 , as compared to the sea of Prob = 1 saturation away from X 0 .

In contrast, Figure 2b solves the order-6 SOS tightening of program [START_REF] Chen | Safety Verification of Nonlinear Polynomial System via Occupation Measures[END_REF] to produce a risk map v valid in X = [-2, 2] 2 . This risk map results in v(0, [0.85; -0.75]) = 0.4366, which is looser than the order-6 probability bound of 0.3696 from Table 1. However, Figure 2b produces an interpretable visualization of risk across the entire set X.

(a) solution of [START_REF] Sloth | Safety Analysis of Stochastic Dynamical Systems[END_REF] (b) solution of ( 26)

Figure 2: Risk levels of the unsafety upper-bound function v(0, x) at t = T = 5 and order k =6 for SDE [START_REF] Rogers | Diffusions, Markov Processes, and Martingales[END_REF] initialized in a disk X 0 (purple boundary) with unsafe region X u (red moon).

Adjustment of Time Horizons

In the second experiment, we consider a linear SDE with dynamics

dx = [-x 2 ; x 1 ]dt + [0; 0.1]dW (29) 
The unsafe set for this example is a half-circular region with X u = {x | 0.5 2 ≥ (x + 0.5) 2 + (x 2 + 0.75) 2 , x 2 ≥ -0.75}. The plots in Figure 3 are obtained by solving (26) at order k = 6 for time horizons of T ∈ {1, 3, 5} and a state set of X = [-2, 2] 2 . As the time horizon T increases, so too does the area of X with high probabilities of unsafety. The growth of the high-probability regions occurs approximately in a clockwise pattern from X u , matching the interpretation of (29) as simple harmonic motion perturbed by diffusion in the vertical coordinate. 

Discrete-time example

This subsection will focus on a discrete-time stochastic process involving a time-step of τ = 1. The law of this stochastic process with parameter λ ∈ R is

x + = -0.3x 1 + 0.8x 2 + x 1 x 2 λ/4 -0.9x 1 --0.1x 2 -0.2x 2 1 + λ/40 , (30) 
in which λ is i.i.d. sampled according to a unit-normal distribution at each time (λ t ∼ N (0, 1)).

We evaluate the safety of (30) with respect to the state set X = [-1.5, 1.5] 2 , the time horizon of T = 10, and the half-circle unsafe set of [START_REF] Hilbert | Über die Darstellung definiter Formen als Summe von Formenquadraten[END_REF] evolve starting at an circular initial set with radius R 0 and center [-1; 0]. Figure 4 plots 5,000 sampled trajectories (blue dots) with respect to the magenta circular initial set and the red half-circle unsafe set. Some of the sampled trajectory points fall inside the red half-circle, corresponding to unsafety when beginning in X 0 .

X u = {x | 0.4 2 ≥ (x 1 -0.8) 2 + (x 2 -0.2) 2 , x 1 + x 2 ≥ 1}. Stochastic trajectories of
Table 2 reports probabilities of unsafety for (30) found by solving (25) at initial radii R 0 = 0 and R 0 = 0.4. To improve numerical conditioning, we normalize the time-steps from (τ, T ) = (1, 10) to (τ, T ) = (0.1, 1) without affecting the autonomous dynamics in [START_REF] Hilbert | Über die Darstellung definiter Formen als Summe von Formenquadraten[END_REF].

Figure 5a plots risk contours found by solving (25) at order 6 for R 0 = 0.4. Figure 5b plots risk contours v(0, x) acquired from (26) at degree k =6 and time t = T = 10. The returned risk map has an evaluation of v(0, [-1; 0]) = 0.4915, as compared to the (25) estimate of 7.052 × 10 -4 at R 0 = 0. 

Conclusion

This paper presents a method to analyze the probability of unsafety for stochastic processes by forming LPs in occupation measures. These LPs are upper-bounded by the moment-SOS hierarchy of SDPs, yielding a convergent sequence of bounds to the true probability of unsafety. Modification of the objective leads to the development of visually interpretable risk contours for use in analysis and motion planning. The presented method can be used for any stochastic process satisfying assumptions A1-A8 (compactness, described by generators, having a polynomial description). Future work involves finding redundant constraints to refine and improve the unsafe-probability bounds. Other work includes extension to Conditional Value-at-Risk-minimizing stochastic control methods.

C Risk Contour Convergence

This appendix will provide a proof of Theorem 4.4.

We first notice that 0 ≤ p * (t 0 , x 0 ) = sup{⟨1, µ p ⟩ | µ p + µ c = δ (t0,x0) + L † µ} = inf{v(t 0 , x 0 ) | Lv ≤ 0 ; v ≥ I Xu } by applying Theorem 4.2 (using A1-A6) to the case where µ 0 = δ x0 (to have strong duality and thus access the function interpretation of the problem). We remark that our v k is feasible for the dual problem on functions [START_REF] Chen | Safety Verification of Nonlinear Polynomial System via Occupation Measures[END_REF], so by optimality of p * (t 0 , x 0 ) for each x 0 ∈ X 0 , one has v k (t 0 , x 0 ) ≥ p * (t 0 , x 0 ). Moreover, as J * (t 0 , µ 0 ) ≤ 1 < ∞ by Lemma 4.1, each v k (t 0 , •) is µ 0 -integrable, and thus the function v ⋆ (t 0 , •) is µ 0 -integrable as well. It remains to prove that their difference v k (t 0 , •) -p * (t 0 , •) ultimately vanishes in a µ 0 -sense. This vanishing difference is proven by contradiction: suppose that there exists a η > 0 such that for all k ∈ N, there is a φ(k) ≥ k with ⟨v φ(k) (t 0 , •) -p * (t 0 , •), µ 0 ⟩ ≥ η (which is the negation of ( 23)). Then, one has ⟨p * (t 0 , •), µ 0 ⟩ ≤ ⟨v φ(k) (t 0 , •), µ 0 ⟩ -η -→ k→∞ J * (t 0 , µ 0 ) -η.

However, as we already noticed, p * (t 0 , x 0 ) is feasible for [START_REF] Chen | Safety Verification of Nonlinear Polynomial System via Occupation Measures[END_REF], so this is a contradiction with optimality of the value J * (t 0 , µ 0 ) (given that J * -η < J * ). Such a contradiction proves [START_REF] Miller | Bounding the Distance to Unsafe Sets with Convex Optimization[END_REF], and therefore proves Theorem 4.4.

Theorem 4 . 3 .Theorem 4 . 4 .

 4344 Programs (20) and[START_REF] Chen | Safety Verification of Nonlinear Polynomial System via Occupation Measures[END_REF] obey strong duality m * (t 0 , µ 0 ) = J * (t 0 , µ 0 ) under A1-A6.Proof. This strong duality holds by slight modification of the method used in Theorem 3.5 and Appendix A. Let {v k } k≥1 be a sequence of solutions to (21b)-(21e) with ⟨v k
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 1 Figure 1: Trajectories of SDE (28) (cyan) initialized in a disk X 0 (purple boundary), hitting an unsafe region X u (red moon).

Figure 3 :

 3 Figure 3: Risk contours for the linear SDE in (29) in increasing time horizon T w.r.t. unsafe region X u (red half-disk)

Figure 4 :

 4 Figure 4: Trajectories of discrete-time (30) (cyan) initialized in a disk X 0 (purple boundary), hitting an unsafe region X u (red half disk).

Table 2 :

 2 Unsafe probability upper-bounds for system (30) 1.00 0.1569 0.0103 1.871e-3 7.052e-4 R 0 = 0.4 1.00 1.00 0.9801 0.7054 0.5225 0.4017 (a) solution of (25) (b) solution of[START_REF] Jasour | Risk Contours Map for Risk Bounded Motion Planning under Perception Uncertainties[END_REF] 

Figure 5 :

 5 Figure 5: Risk levels of unsafety upper-bound function v(0, x) at t = T = 10 and order k =6 for SDE (30) initialized in a disk X 0 (purple boundary) with unsafe region X u (red moon).

Table 1

 1 reports the probability of unsafety computed by program (25) for a circular initial set of radius R 0 .

Table 1 :

 1 Unsafe probability upper-bounds for system[START_REF] Rogers | Diffusions, Markov Processes, and Martingales[END_REF] 

	order	1	2	3	4	5	6
	R 0 = 0	1 0.9442 0.6072 0.4805 0.4068 0.3696
	R 0 = 0.2 1 0.9736 0.7943 0.7091 0.6390 0.6132
	Figure						

Acknowledgements

The authors would like to thank Roy S. Smith, Niklas Schmid, and the Automatic Control Laboratory at ETH Zürich for their advice and support.

J. Miller and M. Sznaier were partially supported by NSF grants CNS-1646121, ECCS-1808381 and CNS-2038493, AFOSR grant FA9550-19-1-0005, and ONR grant N00014-21-1-2431. J. Miller was partially supported by the Swiss National Science Foundation under NCCR Automation, grant agreement 51NF40 180545.

1

A Strong Duality

This appendix will prove strong duality between ( 16) and ( 18) by using arguments from Theorem 2.6 of [START_REF] Tacchi | Moment-sos hierarchy for large scale set approximation. application to power systems transient stability analysis[END_REF].

We collect the variables in ( 16) and ( 18) respectively into,

Variable spaces related to µ are,

with nonnegative subcones of

Corresponding spaces to ℓ are

Following the notation of [START_REF] Tacchi | Moment-sos hierarchy for large scale set approximation. application to power systems transient stability analysis[END_REF], we write that Y + = {0 Y } and Y ′ + = Y ′ . We note the containments of µ ∈ X + , ℓ ∈ Y ′ , and also that (X , X ′ ) form a pair of topological dual spaces under Assumption A1. The topologies for the spaces X and Y ′ are the weak-* topology and sup-norm-bounded weak topology respectively.

An adjoint pair of affine maps A and A ′ may be defined as

with vectors describing the cost and constraint terms as

Pairings with the vectors in (37) satisfy

⟨ℓ, b⟩ = γ.

Problem ( 16) may be expressed as

Similarly, the function LP in [START_REF] Ahbe | Region of attraction analysis of nonlinear stochastic systems using polynomial chaos expansion[END_REF] can be expressed as

Sufficient conditions to prove strong duality between ( 39) and (40) (by Theorem 2.6 of [START_REF] Tacchi | Moment-sos hierarchy for large scale set approximation. application to power systems transient stability analysis[END_REF]) are:

B Superlevel Approximation of Risk Map

This appendix provides the proof of Theorem 4.2.

B.1 Supermartingale Property

We first introduce the notion of supermartingales, and then note that any feasible v for (21b)-( 21e) is a supermartingale.

Proposition B.1. Any v that satisfies (21b) and (21e) is a supermartingale for the process L [START_REF] Rogers | Diffusions, Markov Processes, and Martingales[END_REF].

Proof. Let {X t } be the state-dependent distribution for a trajectory of the stochastic process L in (1b), respecting exit time t * ∧ τ X . This set of probability distributions satisfies the Martingale property of (7) (discrete-time) or ( 8) (continuous-time) as appropriate. Given that Lv ≤ 0 from ( 21), it holds that

The following lemma uses the previous supermartingale criterion from Proposition B.1 in combination with Doob's supermartingale inequality to provide a probability bound on v. Lemma B.2 (based on Lemma 6 of [START_REF] Prajna | Stochastic Safety Verification Using Barrier Certificates[END_REF]). Let v(t, x) ∈ C be a nonnegative function over [t 0 , T ] × X and also form a supermartingale with respect to L and X t . For a value λ ≥ 0, an initial point x 0 ∈ X, and a L-trajectory x(t) starting from x 0 at time t 0 , the following inequality holds:

Lemma B.2 modifies Lemma 6 of [START_REF] Prajna | Stochastic Safety Verification Using Barrier Certificates[END_REF] by stopping at time T and allowing for time-dependent functions v(t, x).

B.2 Superlevel Property

Theorem 4.2 can now be proven based on arguments from Theorem 7 of [START_REF] Prajna | Stochastic Safety Verification Using Barrier Certificates[END_REF]. By constraint (21d), the unsafe set X u is inside the 1-superlevel set of v(t, x) at every time t ∈ [t 0 , T ]. This superlevel relation implies that