
HAL Id: hal-04324797
https://hal.univ-grenoble-alpes.fr/hal-04324797

Preprint submitted on 5 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LP-generated Control Lyapunov Functions with
application to multicopter control

Huu-Thinh Do, Franco Blanchini, Stefano Miani, Ionela Prodan

To cite this version:
Huu-Thinh Do, Franco Blanchini, Stefano Miani, Ionela Prodan. LP-generated Control Lyapunov
Functions with application to multicopter control. 2023. �hal-04324797�

https://hal.univ-grenoble-alpes.fr/hal-04324797
https://hal.archives-ouvertes.fr


1

LP-generated Control Lyapunov Functions
with application to multicopter control

Huu-Thinh Do∗, Franco Blanchini∗∗, Stefano Miani∗∗, Ionela Prodan∗

Abstract—In this work, we study a technique of exploit-
ing open-loop generated trajectories for a constrained control
problem, using them to shape suitable non-quadratic Control
Lyapunov Functions. These trajectories, generated off-line, allow
detecting a suitable domain of attraction in which a candidate
Lyapunov function has a negative derivative. Given a suitably
constructed basis function, our working machinery is based on
linear programming, hence, the technique can be applied to
problems of non-trivial size in terms of the number of basis
functions and points in the state space. For linear systems,
we seek convex Lyapunov functions, which are homogeneous
polynomials. Simulation and experimental results for drone
control are given.

Index Terms—Constrained control, Lyapunov function, open
loop trajectories, linear programming, homogeneous polynomials.

I. INTRODUCTION

The Control Lyapunov Function (CLF) notion has proven
fundamental in control design, especially when uncertainty and
constraints come into play. Determining a CLF is a pivotal
step, after which a controller can be immediately deduced us-
ing Sontag’s universal formula [1]. In view of applications with
input constraints, several explicit control laws are proposed,
depending on the constraint’s characterization (e.g. Minkowski
balls [2], their direct products [3] or recently, polytopes [4],
[5]). Furthermore, via a Quadratic or Linear Program, implicit
continuous control can be introduced with different objectives
(min-norm [6] or max-rate [7] control).

However, proposing a CLF a priori to the controller syn-
thesis is not a trivial task, especially when its stabilizing
condition (negative time derivative) has to be proven feasible
under operating constraints. This task is usually handled
on a case-by-case basis, with specific numerical tools and
some restrictions on the number of states and inputs. For
example, with sum-of-square methods, CLF for polynomial
systems can be achieved with some relaxation via semidefinite
programming (SDP) [8], [9]. In [10], a composite quadratic
function was developed as the CLF for linear systems subject
to saturation and state constraints, resulting in the domain of
attraction described by a convex hull of ellipsoids. The study
for linear piecewise affine systems is conducted in [11]. More
generally for nonlinear systems, yet at the price of high com-
putational burden with respect to the dimensionality problem,
procedures to numerically compute a continuous piecewise
affine CLF were developed in [12], [13] via state space
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triangulation. In [14], under a known assumed approximation
error bound, a neural network structure was proposed to
learn the dynamics, the Lyapunov function, and the controller
simultaneously. Online synthesis of state-dependent CLF as
well as the corresponding control is proposed for discrete
systems [15], [16]. For certain low-dimensional systems, the
Hamilton-Jacobi-Bellman partial differential equation can be
solved to incorporate the notion of optimality [17], [18]. For a
more detailed survey of computational CLF synthesis methods,
we refer to the review [19].

Meanwhile, one effective strategy to sidestep the a priori
design of either the controller in closed form or a CLF is the
Model Predictive Control (MPC) approach. In the standard set-
ting, for example, a proper choice of terminal ingredients (cost
and constraints) will result in a stabilizing implicit controller,
and a cost function that can be interpreted as a piecewise CLF
[20]. But then, the real-time implementation will become more
time-consuming due to the solving of an online optimization
problem. Furthermore, for controllers with limited hardware
power, this difficulty may lead to computational unfeasibility
or instability due to the so-called early termination [21] (i.e.,
the search for the optimal control is interrupted due to the
limited execution time).

With those pros and cons of both CLF-based control and
MPC strategy, our objective is to exploit the systematically
designed MPC law to seek a corresponding CLF during the
offline synthesis. More specifically, in this work, we propose
a synthesis procedure for a CLF by parameterizing it as linear
combinations of certain candidate CLFs. The idea includes
collecting admissible state-input pairs generated by a stabi-
lizing MPC software, then a parameterization is constructed
by a linear program. The advantages of the technique are
the simplicity of the offline synthesis and the reduction in
computational overhead during the online implementation,
allowing applications to high-dimensional systems. Then, to
validate its applicability and emphasize the computational
advantages, the method is experimentally examined over a
challenging and timely application, the quadcopter position
stabilization. It is well known that it requires small sam-
pling time, online feasibility, and constraint satisfaction. The
computational requirements become even more stringent when
considering a team of drones. Summarily, in this work, we:

• propose an offline procedure to construct a CLF based
on linear programming, exploiting the admissible control
generated by an MPC law;

• validate the proposed process for a drone stabilizing
problem through experimental tests. The video for the
experiment can be found at https://youtu.be/
XPyZAJoN2Ps.

https://youtu.be/XPyZAJoN2Ps
https://youtu.be/XPyZAJoN2Ps
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The remainder of the paper is structured as follows. Section
II presents the preliminaries and the main principles for the
CLF construction. Therein, via a linear program (LP), a CLF
is constructed with stabilizing conditions imposed at points in
the state-input space. Section III presents the formulation for
the acquisition of admissible points shaping the desired CLF
from an MPC-based admissible point generator. Section IV
particularizes the proposed technique for a quadcopter position
control problem. The resulted CLF and the associated control
will be validated in Section V with various experimental tests.
Finally, Section VI concludes and discusses future directions.

Notation: Bold lower-case letters denote vectors. With x =
[x1, x2, ..., xn]

⊤ ∈ Rn, ∇V (x) = [∂V (x)
∂x1

, ∂V (x)
∂x2

, ..., ∂V (x)
∂xn

]
denotes the gradient of the value function V (x). The standard
norms for a vector x are denoted as ∥x∥2 ≜

√
x⊤x, ∥x∥P ≜√

x⊤Px. ∥ · ∥∞ is the infinity norm. 0 denotes the origin of
the vector space with the appropriate dimension. The letter k
denotes the discrete step, while t represents the time variable.
N (n, a, b) represents a finite set of n evenly spaced real
numbers over the interval [a, b]. co{·} denotes the convex hull.
diag(·) returns a matrix with its entries diagonally arranged.

II. MAIN IDEA AND MACHINERY

Consider the following nonlinear control affine system:
ẋ = f(x) + g(x)u, (1)

with a convex and compact constraint set:
u ∈ U , (2)

where x ∈ Rn denotes the state vector, and u ∈ Rm is the
input vector constrained in U .

Assumption 1: Assume the pair x = 0 and u = 0 is a
steady state, i.e., U includes 0 in its interior and f(0) = 0. □

Assume that we have an open-loop constrained trajectory
software tool, capable of driving the system to 0. Then we
could just use the software in an MPC fashion for control. Still,
for systems with a small sampling time or limited hardware
resources, such MPC implementation could be challenging.

The underlying idea is that of adopting this open-loop tra-
jectory generator to simply determine candidate state control-
pair optimal trajectories. These state control pairs are then
used to generate suitable constraints for finding a CLF, within
a linearly parameterized family, through linear programming.
These generated trajectories will eventually be disregarded,
and only the CLF will be retained for actual control. To this
aim, some standard definitions are recalled in the following.

Definition 1 (Control Lyapunov Function): A positive def-
inite smooth Lyapunov function, V (x), is a CLF for (1) if
there exists a function u = Ξ(x) with values in U and

dV (x)/dt = ∇V (x)[f(x) + g(x)Ξ(x)] ≤ −βV (x), (3)
for some β > 0. □

Definition 2: The state-control pair (x,u) for (1), u ∈ U is
admissible for V (x) if it satisfies (3). □

Definition 3 (Domain of Attraction): D ⊆ Rn is a domain of
attraction (DOA) of system (1) if there exist u(t) = Ξ(x(t)),
such that any trajectory x(t) with x(0) ∈ D, satisfies:

x(t) ∈ D,u(t) ∈ U , and lim
t→∞

x(t) = 0. (4)

□

Next, in the offline control synthesis, adopting the available
software, we generate several admissible pairs and then, for-
mulate the CLF based on these points. This is a simple idea to
generate, under appropriate conditions, points that are inside
the domain of attraction D, eliminating all points outside, for
which, no constrained control can bring the state to 0.

Let us assume that the open-loop trajectory generator
ensures the existence of constrained trajectories x(t),u(t),
from which we can sample M pairs (xj ,uj), uj ∈ U , j ∈
{1, ...,M}. Consider the following candidate CLF:

V (x) =

N∑
i=0

αiVi(x), αi ≥ 0, (5)

where Vi(x) are smooth positive definite Lyapunov functions.
Next, consider the following linear programming problem

with N variables, and M inequality constraints formulated
from M state-input pairs collected previously:

min
αi

N∑
i=1

ℓiαi (6a)

N∑
i=1

αi [∇Vi(xj) [f(xj) + g(xj)uj ] + βVi(xj)] ≤ 0, (6b)

N∑
i=1

αi = 1, αi ≥ 0, j ∈ {1, ...,M}, (6c)

where ℓi are weights. These weights give freedom of choice
in the computation. As an example, if V1(x) is a “privileged”
function, for instance a quadratic function associated with
a local control optimizing cost, then ℓ1 can be adjusted to
influence the function dominance within the parameterization
(5). Then, as a result of (6), we achieve a parameterized
CLF established as a linear combination of Vi(x) with the
coefficients αi. An illustration on how the Lyapunov function
V (x) is shaped by the stabilizing constraint (6b) at each
sampled data pairs is given in Fig. 1.

Remark 1: With the intuition of parameterizing the function
V (x) via the set of Vi(x), it is essential to provide a suitable
choice for such candidates. This, indeed, can be done via an
iterative process where, after one solution of (6), the function
Vi(x) with αi ≈ 0 can be discarded and a new set of functions
can be adapted. Note that, this can be accomplished thanks to
the simplicity of the LP (6). A discussion on the choice of
Vi(x) will be given later in the illustrative example. □

Forming the CLF in this manner has some pros and cons:

• by employing an LP, it is possible to use a consider-
ably large number of points and basis functions Vi(x),
ensuring the existence of αi for some β in (6), even in
high-dimensional systems;

• although the number of generating data pairs (xj ,uj)
can be huge, we are still working on a finite set.

To address a preliminary answer to the second point, let us
consider the following propositions. For the set U , denote by
ΨU (w) its support functional:

ΨU (w) ≜ max
u∈U

w⊤u. (7)
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X

V (x)

∇V (xj)
⊤

f(xj) + g(xj)uj

(xj ,uj)

CLF constraint (6b)
∇V (xj)(f(xj) + g(xj)uj) ≤ −βV (xj)

1

Collect
admissible pairs

•(xj ,uj)

Impose the constraints
& solve the program (6) for
V (x) =

∑N
i=0 αiVi(x)

2 3- 4

Verify the condition (8)

Fig. 1. Geometric interpretation of how the stabilizing condition (6b) is
imposed from the sampled pairs (red points) (xj ,uj) to the surface of V (x).

Note that ΨU (0) = 0 and that, in view of Assumption 1,
ΨU (w) is positive definite and positively homogeneous of
degree one: ΨU (λw) = λΨU (w),∀λ > 0.

Proposition 1: The function V (x) is a CLF on a given
domain X containing 0 in its interior iff it satisfies the
following inequality on X :

∇V (x)f(x)−ΨU (g(x)
⊤∇V (x)⊤) + βV (x) ≤ 0, (8)

for some β > 0 on X . □
Proof: By Definition 1, V (x) is a CLF iff ∀x ∈ X ,∃u ∈

U such that:

∇V (x)[f(x) + g(x)u] + βV (x) ≤ 0, (9)

or, equivalently:

min
u∈U

∇V (x)[f(x) + g(x)u] + βV (x) ≤ 0. (10)

Condition (10) then can be rewritten as:

max
u∈U

∇V (x)f(x)−∇V (x)g(x)u+ βV (x) ≤ 0. (11)

Then, by the support function definition in (7), one gets to
Proposition 1.

Remark 2: It is worth noticing that (1) does not refer to
a specific control action u = Ξ(x) but depends only on the
shape of U . For instance, if, as often assumed in the literature,
U is the unit ball ∥u∥2 ≤ 1, then equation (8) becomes:

∇V (x)f(x)− ∥g(x)⊤∇V (x)⊤∥2 + βV (x) ≤ 0 (12)

□
For a domain of interest X , the proposition is useful since

it allows testing the generated function V (x) in (6), by dense
gridding and verifying the condition (8) in X . To recap, we
propose the following procedure to determine V (x).

Procedure 1 Offline CLF generation
1: Collect M admissible pairs (xj ,uj) from a stabilizing

controller for system (1). This can be sampled pairs
from the system’s trajectories with several random initial
conditions (see also Fig. 1);

2: Fix a basis function Vi(x) as in (5), i = 1, ..., N of
positive definite functions, and β > 0 as in (3);

3: Formulate and solve the linear program (6);
4: If the problem (6) is feasible, then grid the state space

within a region of interest and check (8) for all points in
the grid.

Aligning with the common CLF setup, the aforementioned
considerations are formalized in the following proposition.

Proposition 2: Suppose that Procedure 1 is successful and
that there exists κ > 0 for which inequality (8) is verified in
the sublevel set Dκ = {x : V (x) ≤ κ}, then V (x) is a CLF
for the problem (1) with the DOA Dκ. □

Besides intensely gridding the state space inside Dκ to
verify (8), one can also achieve an inner estimation as follows.

Proposition 3: Consider an ellipsoid inscribed in the input
constraint set U in (2), which has the form:

E = {u = Ew, ∥w∥2 ≤ 1} and E ⊂ U . (13)

Let Φ(κe) be defined as:

Φ(κe) ≜ max
V (x)≤κe

(
∇V (x)f(x)− ∥Eg(x)⊤∇V (x)⊤∥2

+ βV (x)
) (14)

then, for κe > 0, if Φ(κe) ≤ 0, Dκe is a DOA. □
Proof: From the convexity and compactness of E and U ,

one can state [22]:

E ⊂ U ⇒ ΨE(v) ≤ ΨU (v),∀v ∈ Rm. (15)

Thus,

∇V (x)f(x)−ΨU (g(x)
⊤∇V (x)⊤) + βV (x)

≤ ∇V (x)f(x)−ΨE(g(x)
⊤∇V (x)⊤) + βV (x)

= ∇V (x)f(x)− ∥Eg(x)⊤∇V (x)⊤∥2 + βV (x).

(16)

Consequently, if for κe > 0, Φ(κe) ≤ 0, then, by Proposition
1, Dκe

is a DOA. With this method, we iteratively seek also
for the largest κe that satisfies Φ(κe) ≤ 0. The trade-off for
this is the conservative employment of an ellipsoidal subset E
instead of the original constraint set U .

To complete the synthesis, the remaining discussion resides
on how to formulate the generator of admissible pairs (xj ,uj)
for (6). Moreover, with the established CLF, the choice of the
associated control law is an important question as well. These
two issues will be addressed in the next section.

III. ADMISSIBLE PAIR GENERATOR AND CONTROL
IMPLEMENTATION

In this part, the collection of admissible pairs at step 1 in
Procedure 1 is first discussed. Next, the online control policy
employed with the generated CLF will be introduced.
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A. Admissible pair generation

As mentioned before, we aim to employ an MPC solver to
achieve stabilizing trajectories from which admissible pairs
are sampled. However, the MPC strategy commonly needs
to be implemented in a discretized manner. With such a
discretization, the generated pairs do not necessarily imply the
stability property or the accurate evolution of the continuous
system (1). For this reason, we employ the Euler Auxiliary
System (EAS) [23]:

x(k + 1) = x(k) + τ [f(x(k)) + g(x)u(k)] , (17)

where τ > 0 is the discretization constant parameter. Then,
with this setup and a CLF generated with (17), we have the
following result.

Theorem 1: Any convex function V (x) which is a CLF for
the EAS in (17) is also a CLF for the associated continuous
time system in (1) . □

Proof: The convexity of V (x) implies that the difference
quotient function is non-decreasing with regard to h ∈ R+

and the Dini derivative yields [24]:
d

dt
V (x) = lim

h→0+
sup

V (x+ h[f(x) + g(x)u])− V (x)

h

≤ V (x+ τ [f(x) + g(x)u])− V (x)

τ
, for τ ≥ h.

(18)
Meanwhile, being a CLF of the EAS implies, ∃βd > 0:

V (x+ τ [f(x) + g(x)u])− V (x) ≤ −βdV (x). (19)

Thus, from (18), (19) and Definition 1, one can state that :
d

dt
V (x) ≤ −βd

τ
V (x), (20)

which completes the proof.
Therefore, for the offline admissible pair generator in Pro-

cedure 1, step 1, we employ the following MPC strategy:

argmin
u(·)

Np∑
k=0

(
∥x(k)∥2Q + ∥u(k)∥2R

)
+ ∥x(Np)∥2P (21a)

s.t

{
x(k + 1) = x(k) + τ [f(x(k)) + g(x)u(k)] ,

u(k) ∈ U ,x(k) ∈ X ,x(Np) ∈ Xf ,

(21b)

where Q,R is the user-defined weightings penalizing the
tracking and input, respectively. P and Xf denote the weight-
ing for the terminal cost and its terminal set, which are asso-
ciated with a locally optimal control uopt(x). This standard
penalization and constraints guarantee the recursive feasibility
and stability of the system [25]. Then, for a sampled state
vector, xj , the admissible control uj is taken as the first
component of the minimizing sequence of (21b) with x(k =
0) = xj . This formulation hence completes the proposed
procedure to collect admissible pairs.

B. Associated nonlinear control law

Prior to this point, the ingredients for the offline generation
of the CLF have been presented. Yet, a further question is how
one can impose a desired performance over such a CLF during

online implementation. Following the continuous stabilizer in
[26], consider the controller:

u = argmin
u

∥u− ud(x)∥22 (22a)

s.t

{
u ∈ U
∇V (x) [f(x) + g(x)u] ≤ −βV (x).

(22b)

Namely, the constrained control ensures that the time deriva-
tive of V (x) is negative, while the objective function mini-
mizes the deviation of u from the desired one, ud(x). The
above optimization is convex due to the convexity of U in (2)
and the linear constraint in (22b). From a practical viewpoint,
the role of V (x) is to ensure stability, while choosing ud(x)
is also important for performance. This control is typically
selected as the locally optimal one.

Remark 3: Suppose that there exists a DOA Dκ = {x :
V (x) ≤ κ} deduced from the generated Lyapunov function
V (x). It follows directly from the differential inequality (3)
that the control (22) ensures the exponential convergence with
the decay constant β inside Dκ. Moreover, note that we can
always ensure that such a κ exists if we insert among the basis
function a locally optimal quadratic function associated with
the standard LQ control.

Next, to demonstrate and highlight the applicability of the
procedure, let us proceed with a case study of the quadcopter
position control problem (a.k.a. outer loop or high level
control) in the next section.

IV. APPLICATION ON QUADCOPTER POSITION CONTROL

In this section, via a feedback linearization law, two dif-
ferent representations of the quadcopter’s constrained position
control problem are presented. Then, the constructions of the
CLF for each representation will follow.

A. Problem formulation for quadcopter position control

Let us provide the outer-loop model for a miniature quad-
copter as commonly used in the literature [27]:

ξ̈ = TRE − ge3, (23)

where ξ = [x, y, z]⊤ ∈ R3 collects the drone’s position. In
the Euler angles representation, ϕ, θ, ψ respectively denote the
roll, pitch and yaw angles. RE denotes the rotation matrix
from the body to the global frame, which is computed as:

RE =

cosϕ sin θ cosψ + sinϕ sinψ
cosϕ sin θ sinψ − sinϕ cosψ

cosϕ cos θ

. g is the gravitational

acceleration and e3 = [0, 0, 1]⊤ is the standard basis vector
pointing along the altitude z axis. T denotes the normalized
thrust provided by the four propellers. In a quasi-stationary
flight settings, we assume that the aerodynamic forces are
always in the direction of the z axis. Centrifugal force and
disturbance (e.g., drag) are neglected. As the outer loop (see
Fig. 9), the control objective for system (23) is to design
the position-stabilizing ϕ, θ angles and thrust T . These three
signals are regarded as the input for this control layer, which
then will be actuated by the low-level controller with a proper
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feedback scheme and rotor configuration [28]. In this setup,
the input constraint set for [T, ϕ, θ]⊤ is described as:

C = {0 ≤ T ≤ Tmax, |ϕ| ≤ ϕmax, |θ| ≤ θmax} (24)

where Tmax > g, (ϕmax, θmax) ∈ (0;π/2)2 are the inputs’
constant bounds. It is well known that system (23) is feedback
linearizable. Indeed, consider the input transformation:

T =
√
u2x + u2y + (uz + g)2, (25a)

ϕ = arcsin ((ux sinψ − uy cosψ)/T ), (25b)
θ = arctan ((ux cosψ + uy sinψ)/(uz + g)), (25c)

then, under the condition uz ≥ −g, the new dynamics can be
exactly linearized as a system of three double integrators:

ṗq = A2Dpq +B2Duq, q ∈ {x, y, z}, (26)

where pq = [q, q̇]⊤; A2D = [ 0 1
0 0 ], B2D = [0 1]⊤. Besides,

the image of the constraint (24) via (25) can be characterized
as a convex set of upos ≜ [ux, uy, uz]

⊤ ∈ R3 as in [29]:

upos ∈ Upos ≜
{
upos : ∥upos + ge3∥22 ≤ T 2

max;√
u2x + u2y ≤ (uz + g) tan ϵmax

}
. (27)

with ϵmax ≜ min(ϕmax, θmax). The set Upos is convex
since it is the intersection of two convex sets: a ball of
radius Tmax centered at −ge3 and a convex cone defined
with ϵmax and g. A detailed characterization of Upos as in
(27) can be found in [29]. With the dynamics (26), one can
consider this linearized system as either three independent
double integrators in R2 tangled by the constraint (27) or one
system in R6 and the input constraint upos ∈ Upos. Next, we
investigate the dynamics from both points of view with the
proposed procedure. To this aim, we consider two common
inner approximations of Upos as in the following.

Case 1: A box-type subset: Since Upos includes 0 as an
interior point, there always exist ūi > 0 such that:

Ub ≜ {upos ∈ R3 : |uq| ≤ ūq, q ∈ {x, y, z}} ⊂ Upos. (28)

In this setting, system (26) is decoupled as three linear
subsystems associated with three input constraints |uq| ≤ ūq .
The maximum volume Ub can be found by solving a convex
optimization problem, maximizing its volume while constrain-
ing all the vertices inside Upos.

Case 2: A polytopic subset: In a less conservative manner,
by parameterizing the boundary of Upos, we can obtain a
polytopic approximation as:

Up ≜ co

{
[0, 0,−g]⊤, [R∗ cos γ,R∗ sin γ, u∗z]

⊤

[r cos γ, r sin γ,
√
T 2
max − r2 − g]⊤

}
(29)

with R∗ = Tmax sin ϵmax, u∗z = Tmax cos ϵmax − g and
for some large integers S1, S2 > 2, γ ∈ N (S1, 0, 2π), r ∈
N (S2, 0, R

∗). For this scenario, we arrange system (26) as:

ζ̇ = A6Dζ +B6Dupos, (30)

where ζ ≜
[ px
py
pz

]
∈ R6 and upos denote the state and the input

vector as in (27), respectively. upos ∈ Up as in (29), A6D =
diag(A2D,A2D,A2D) and B6D = diag(B2D,B2D,B2D).

in (27) in (28) in (29)

Fig. 2. The inner approximations of Upos as in (27).

TABLE I
NUMERICAL PARAMETERS

Symbols Values
Tmax as in (27) 1.45g ≈ 14.22 m/s2

θmax = ϕmax = ϵmax as in (24),(27) 0.1745 rad
ūx, ūy , ūz as in (28) 0.8154, 0.8154, 3.27
S1, S2 as in (29) 7, 3

An illustration and numerical parameters of the abovemen-
tioned sets are depicted in Fig. 2 and TABLE I, respectively.

Remark 4: It is undoubted that, Procedure 1 can be imme-
diately applied for the system (30) in Case 2. However, we
believe that exploiting the decoupled representation in Case 1,
i.e. examining each double integrator at a time, provides not
only illustrative understanding but also fundamental insights
for the choice of the basis functions Vi(·) as in (6). Thus,
in the sequel, we proceed by investigating first the decoupled
representation in Case 1 (or (26)), then the procedure will be
extended to Case 2 with the concatenated dynamics (30). □

B. CLF construction

In this subsection, the formulation of the CLFs for (26) and
(30) subject to (28) and (29), respectively, will be discussed.
With these functions come two ways of controlling the drone,
as the following. In the former, three CLFs will be generated
for each axis q ∈ {x, y, z}. These functions then will be
separately combined with the setup (22) to compute the
controller uq . In the latter, one CLF will be generated for the
concatenated dynamics (30) with the polytopic constraint (29).
Then, the controller upos = [ux, uy, uz]

⊤ will be computed
similarly with (22) and the generated function. In both cases,
the controller [ux, uy, uz]

⊤ will be transformed back to the
inputs T, ϕ, θ by means of (25), then applied to the vehicle.

For Case 1: The idea is to apply Procedure 1 to three
subsystems in (26) with |uq| ≤ ūq, q ∈ {x, y, z} and to
create one CLF for each double integrator. For simplicity, we
use V q(·) to denote the generated CLF for the q axis (e.g.,
V x(p),p ∈ R2, is the CLF for the first double integrator in
(26), or q = x). Then, the same procedure is carried out for
all three subsystems as follows.

First, the general admissible pair generator (21) will be
adapted with the weighting as in TABLE II. The corresponding
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TABLE II
PARAMETERS FOR POINT GENERATOR (21) WITH τ = 0.1s, AND THE LP (6), q ∈ {x, y, z}.

Representation Variables x,u Q R P Constraints X ,U for (21) Np β ℓi

Case 1
px, ux

Q2D R2D P 2D

0.1275 ℓ1 = 0.05

ℓi ̸=1 = 0.1
py , uy |pq | ≤ 1.5, |uq | ≤ ūq 50 0.1275
pz , uz 2.65

Case 2 ζ,upos Q6D R6D P 6D |ζ| ≤ 1.5,upos ∈ Upos 50 0.15
ℓ1 = 0.2

ℓi ̸=1 = 1

terminal cost adopts the weighting P 2D from the discrete
Riccati equation for the EAS of (26) (τ = 0.1s) with
the penalty weighting Q2D,R2D, while the local controller
uses the standard infinite-horizon unconstrained control. The
terminal region Xf is the maximal positive invariant (MPI)
set computed with such a local control and input constraint
|uq| ≤ ūq for each subsystem. Numerical details are given as
Q2D = [ 50 0

0 5 ],R2D = 5, P 2D = [ 479.6118 181.0469
181.0469 155.5598 ], K2D =

−[2.7617 2.6491]. The domain of interest for each double
integrator is chosen as Xq = {|pq| ≤ 1.5}, q ∈ {x, y, z}.

The next step resides on how to choose a collection basis
functions Vi(·) as in (5). On one hand, encoding the optimality,
at least locally near the origin, is important. For this reason,
we select the first basis as the quadratic function:

V1(p) = ∥p∥2
P lqr

2D

,p ∈ R2. (31)

where P lqr
2D denotes the result of the continuous Riccati

equation, with the state and input penalty abusively taken from
Q2D and R2D. On the other hand, it is necessary that the basis
functions are sufficiently rich so that (6) is feasible. At the
same time, it was proposed that a suitable Lyapunov function
for constrained stabilization is the 2p-norm ∥Gp∥2p2p where for
p ∈ Rn, G ∈ Rn×r is a full row rank matrix [30]. Thus, the
remaining members of the collection of Vi(p) are particularly
populated with the following polynomials:

V2≤i≤100(p) ∈
{
∥ηFp∥44, η ∈ ls(33, 0.4, 2.0)

F ∈
{[
1 0

]
,
[
0 1

]
,
[
1 1

]}}
.

(32)

Remark 5: In (32), η plays a role of increasingly enriching
the basis with different value scale, while F is responsible for
the “orientation” of the surfaces Vi(·). The 2D case of the first
double integrator is depicted in Fig. 3. The feasibility of (6)
can be managed by meticulously collecting more value of η
and vector F . □

Fig. 3. The surface of Vi(·) with different η and F (Case 1).

Then, by partitioning the domain Xq by a 25× 25 grid and
collecting the control uq given by (21) at those points (See

Fig. 6), we achieved the three following CLFs from (6) with
the basis (31) and (32):

• For q ∈ {x, y} in (26):
V q(pq) = 0.016∥pq∥2P lqr

2D

+ 0.2293(2[1 0]pq)
4

+0.5406(2[0 1]pq)
4 + 0.2141(2[1 1]pq)

4.
(33)

• For the z axis in (26):
V z(pz) = 0.0119∥pz∥2P lqr

2D

+ 0.3862(2[1 0]pz)
4

+0.6019(2[1 1]pz)
4

(34)

V
x
(p

x
)

as
in

(3
3)

Fig. 4. Generated Lyapunov functions and its DOA for the first subsystem
of (26) (q = x).
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Fig. 5. Set-point tracking simulation with the first subsystem of (26) (q =
x). The green-dashed line represents the DOA provided by the MPC point
generator (21). The red solid curve depicts the sublevel set DOA given by the
generated Lyapunov function.

The computation of αi in (6) is carried out with MATLAB
2021b and its linprog solver, while the pair generator (21) and
the online controller (22) is computed with quadprog solver
for the simulation. The illustration for (33) is in Fig. 4. The
DOA can be estimated by verifying the state-space with the
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Fig. 6. Comparison between the control sampled from (21) (blue points) and
the control (22) (pink surface) for Case 1, q = x.

condition (8), which, in this case, is given as the sublevel set
V x(px) ≤ 23.04. The positive invariance of the DOA can also
be confirmed via the simulated trajectories and vector field
depicted in Fig. 5. Therein, it can be seen again that there
always exists |ux| ≤ ūx rendering V x(px) decreasing and
V̇ x(px) + βV x(px) ≤ 0. A comparison between the control
policy of the MPC (21) and (22) is given in Fig. 6 .

For Case 2: Similarly, we use the setting (21) as the point
generator with the concatenated state ζ as in (30) and the pa-
rameters computed as Q6D = diag(Q2D,Q2D,Q2D), R6D =
diag(R2D,R2D,R2D), P 6D = diag(P 2D,P 2D,P 2D) and
consequently, K6D = diag(K2D,K2D,K2D). Parameters’
details are given in TABLE II.

Different from the previous case, for the admissible point
collection, random initial conditions in {ζ ∈ R6 : |ζ| ≤ 1.5}.
The toolbox given in [31] is employed to provide a randomly
distributed initial conditions. Then, for each feasible initial
condition, we sample along its trajectory to collect state-
control pairs since the recursive feasibility of (21) ensures the
existence of admissible pairs propagated from that initial state.
The projections of those states are provided in Fig. 7.

Fig. 7. Admissible pairs (red) collected for Case 2 (projected to each position-
velocity axis).

Then the new set of basis functions for this setup is
reselected as follows: The first basis function remains as the
LQR-based quadratic function in the same choice from (31):

V1(ζ) = ∥ζ∥2
P lqr

6D

, ζ ∈ R6. (35)

Moreover, taking advantage of the successfully generated
CLFs for each subspace in (33) and (34), we adopt their basis
by augmenting the vector F in (32), for q ∈ {x, y, z}, with

TABLE III
SPECIFICATIONS OF THE LP (6) FOR THE TWO CASES

Case 1 Case 2
V x(px) V y(py) V z(pz) V (ζ)

No. basis functions N 100 100 100 10
No. admissible pairs M 625 625 625 6330
Computation time of (6) 0.03 (s) 0.03 (s) 0.05 (s) 0.11 (s)

the extended value assigned as 0. For example, for q = x,
[1 1] becomes [1 1 0 0 0 0].

For the tuning of ℓi, as suggested before, it is essential
to include the LQR-based quadratic Lyapunov function in
the parameterized CLF in order to attain local optimality.
Therefore, in both cases, the weighting ℓ1 associated with the
function is progressively decreased so that its corresponding
coefficient computed from (6) is non-zero.

With the pairs sampled and the choice of basis functions
given, the LP (6) provides the CLF as:

V (ζ) = 0.0244∥ζ∥2
P lqr

6D

+ 0.4508([0 1 0 0 0 0]ζ)4

+ 0.0674([1 1 0 0 0 0]ζ)4 + 0.1631([0 0 1 0 0 0]ζ)4

+ 0.1841([0 0 1 1 0 0]ζ)4 + 0.1103([0 0 0 0 0 1]ζ)4,
(36)

with V (ζ) denoting the generated Lyapunov function for the
six-dimensional system (30). The computational details of the
procedure are provided in TABLE III. Therein, as expected,
it is noticeable that the computation time for the LP (6) is
relatively small in both cases, confirming the low complexity
of the technique.

To this end, the CLFs were generated for the control
problem and examined via simulation tests. In the next section,
we verify the constructed CLFs via experimental validation,
showing their applicability in practice.

V. EXPERIMENTAL VALIDATION

Herein, the results from the previous section are validated
via experimental tests over nano-drone platforms.

Motion capture cameras

Active markers

Fig. 8. The Crazyflie’s motion restored with a system of cameras capturing
the infrared lights from the active markers.
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A. Experiment setup

In this section, the open-source quadcopter, Crazyflie 2.1, is
used, since it allows customizing the position control within
its hierarchical structure (See Fig. 9). We further assume that
the integrated inner loop (the green block) is capable of sus-
taining the rotational dynamics in a properly high bandwidth
compared to that of the outer loop, thereby ensuring that the
roll and pitch angle commands from the outer loop are tracked
with sufficient speed. A detailed description of this layer can
be found in [32]. For the outer loop, we substitute our position
control, which is designed for system (26) (or equivalently
(30)) into the blue block to track the reference position ξref .
The control action upos then transformed back to the inputs
T, ϕ and θ by means of (25). Note that the normalized thrust
T needs to be converted into the corresponding value in the
digital scale of the nanodrone, ranging from 0 to 65535.
The conversion is done via an interpolated curve identified
experimentally (see Chapter 3, [33]). These signals are then
packed with the value of the desired yaw rate, ψ̇ref ≜ 0.
These calculations are carried out in a station computer and
and sent to the onboard inner loop via a USB radio dongle. The
sampling time is fixed at ts = 100 ms. For all the optimization
problems employed in the experiments, the IPOPT solver is
used within the Casadi optimization framework in Python
3.8.8, Intel Core, i5-10300H CPU @ 2.50GHz and 16GB
RAM. The description of the test cases is given as follows.

On one hand, we use the controller (22) with the two
setups Case 1 and Case 2 in the previous section with
the same tuning given in TABLE II. The desired control
ud(·) is chosen as ud(pq) = −[kp, kd]pq and ud(ζ) =
−diag([kp, kd], [kp, kd], [kp, kd])ζ for Case 1 and 2, respec-
tively, and kp = 1, kd = 1.45. Then, for comparison,
we stabilize the tracking error dynamics by employing the
following optimization problem in a receding horizon fashion.

min

N∗
p∑

k=0

(
∥ζ(k)− ζref (k)∥2Q6D

+ ∥upos(k)∥2R6D

)
+ ∥ζ(N∗

p )− ζref (N∗
p )∥2P 6D

(37a)


ζ(k + 1) = (A6D + tsI)ζ(k) + tsB6Dupos(k),

upos(k) ∈ Upos as in (29),
ζ(k)− ζref (k) ∈ Z, ζ(N∗

p )− ζref (N∗
p ) ∈ Zf ,

(37b)

where A6D,B6D,P 6D,Q6D,R6D are given in Section IV-A,
ζref (k) denotes the reference for ζ(k) to follow. Z = {ζ :
∥ζ∥∞ ≤ 1.5} is the state constraint corresponding to that of
the admissible pair generator in Case 1 and 2. Zf is the MPI
set (as the terminal constraint) associated with the full-state
gain K6D given therein. For our setup, the largest prediction
horizon N∗

p for (37) is 20, so that the online computation time
does not exceed the sampling time ts.

On the other hand, for the position reference, the examined
controllers will first track a set-point ξref = [0.6, 0.6, 0.8]⊤

(m), noted as Scenario 1 (Sce. 1). Then, to further emphasize
the computational advantage, we apply the same control laws
for three Crazyflies in a centralized manner. The control then

PWM
signalsRotor

configuration

desired torques

T

ψ̇ref

ϕ

θ

Crazyflie
quadcopter

ξ

Attitude
controller

rotational feedback

ψ

Inner loop

Outer loop

ξref

Input
transformation

(25)

upos Position
controller

(22)

Fig. 9. Hierarchical control architecture of the Crazyflie quadcopter.

will be sent to each drone via the Swarm Python interface [34].
With this Scenario 2 (Sce. 2), a position swapping reference
was given to the three drones, which is depicted Fig. 12.

B. Experimental results and discussions

The result of the first scenario (Sce. 1) is shown in Fig.
10. It can be seen that, the proposed schemes’ tracking
performances (Case 1 and 2) are commensurate with the MPC
while respecting all the input constraints in (24). However, it
is noted from TABLE IV and Fig. 14 that the computation
time (CT) of the proposed laws is 5 to 7 times lower than
that of the MPC (37). This advantage directly comes from the
simple QP formulation of (22) compared to (37) with regard
to the complexity of both the cost and constraints.
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Fig. 10. Left: Set-point reference tracking experimented with the three
scenarios. Right: The corresponding real input signals and their amplitude
bound (dashed-dotted line).

In Sce. 2, the proposed schemes are also successfully
validated. It is noticeable that in this scenario, a centralized
MPC for three quadcopters could not be performed since
the required calculation time exceeds the sampling time ts.
Meanwhile, even with three quadcopters, the tracking was
possible for both Case 1 and 2 with the Avg. CT around
20ms. Fig. 11 depicts the value of the CLF in both cases
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Fig. 12. Position swapping with three Crazyflies using Case 2 controller.

and their monotonicity. This shows that the discussed tech-
nique generates effective CLF and is applicable in real-life
implementation.

VI. CONCLUSION

In this work, an offline synthesis procedure for CLF (Con-
trol Lyapunov Function) was proposed via linear program-
ming. The idea relied on the stabilizing MPC (Model Pre-
dictive Control)-based software to generate admissible control
in the state-space and parameterizing a collection of candidate
CLFs. The generated CLF’s advantage was then validated via
quadcopter stabilization experiments. The result showed that
the offline calculation of the CLF can be implemented via a
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Fig. 13. The outer loop’s input signals of the three quadcopters in Sce. 2
with the Case 2 controller.
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Fig. 14. Computation time in Scenario 1.

TABLE IV
EXPERIMENT RESULTS

Controller RMS tracking error (cm) Avg. CT

Sce. 1
Case 1 14.11 7.02 ms
Case 2 11.39 10.74 ms
MPC 11.48 54.70 ms

Sce. 2

Drone 1 Drone 2 Drone 3
Case 1 24.09 22.20 21.33 24.09 ms
Case 2 19.14 18.57 18.71 20.51 ms
MPC × × × ×

linear program, thereby allowing CLF construction for systems
with nontrivial dimensions. With the experimental results, the
generated non-quadratic CLF, can be employed to reduce the
online computational demand while maintaining stability. The
future work will investigate how to efficiently choose the sam-
pled data from MPC, hence, providing theoretical guarantees
over a finite set of constraints, and allowing scalability.
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