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In this work, we study a technique of exploiting open-loop generated trajectories for a constrained control problem, using them to shape suitable non-quadratic Control Lyapunov Functions. These trajectories, generated off-line, allow detecting a suitable domain of attraction in which a candidate Lyapunov function has a negative derivative. Given a suitably constructed basis function, our working machinery is based on linear programming, hence, the technique can be applied to problems of non-trivial size in terms of the number of basis functions and points in the state space. For linear systems, we seek convex Lyapunov functions, which are homogeneous polynomials. Simulation and experimental results for drone control are given.

I. INTRODUCTION

The Control Lyapunov Function (CLF) notion has proven fundamental in control design, especially when uncertainty and constraints come into play. Determining a CLF is a pivotal step, after which a controller can be immediately deduced using Sontag's universal formula [START_REF] Sontag | A 'universal'construction of Artstein's theorem on nonlinear stabilization[END_REF]. In view of applications with input constraints, several explicit control laws are proposed, depending on the constraint's characterization (e.g. Minkowski balls [START_REF] Malisoff | Universal formulas for feedback stabilization with respect to minkowski balls[END_REF], their direct products [START_REF] Kidane | Controller design for a nonlinear system with inputs restricted to a direct product of minkowski balls[END_REF] or recently, polytopes [START_REF] Yamashita | Asymptotic stabilization of nonlinear systems with convex-polytope input constraints by continuous input[END_REF], [START_REF] Leyva | Stabilization of affine systems with polytopic control value sets[END_REF]). Furthermore, via a Quadratic or Linear Program, implicit continuous control can be introduced with different objectives (min-norm [START_REF] Freeman | Inverse optimality in robust stabilization[END_REF] or max-rate [START_REF] Suarez | Global clf stabilization for systems with compact convex control value sets[END_REF] 

control).

However, proposing a CLF a priori to the controller synthesis is not a trivial task, especially when its stabilizing condition (negative time derivative) has to be proven feasible under operating constraints. This task is usually handled on a case-by-case basis, with specific numerical tools and some restrictions on the number of states and inputs. For example, with sum-of-square methods, CLF for polynomial systems can be achieved with some relaxation via semidefinite programming (SDP) [START_REF] Prajna | Nonlinear control synthesis by sum of squares optimization: A lyapunov-based approach[END_REF], [START_REF] Chesi | LMI techniques for optimization over polynomials in control: a survey[END_REF]. In [START_REF] Hu | Composite quadratic lyapunov functions for constrained control systems[END_REF], a composite quadratic function was developed as the CLF for linear systems subject to saturation and state constraints, resulting in the domain of attraction described by a convex hull of ellipsoids. The study for linear piecewise affine systems is conducted in [START_REF] Lazar | On infinity norms as lyapunov functions for piecewise affine systems[END_REF]. More generally for nonlinear systems, yet at the price of high computational burden with respect to the dimensionality problem, procedures to numerically compute a continuous piecewise affine CLF were developed in [START_REF] Lavaei | Systematic, lyapunov-based, safe and stabilizing controller synthesis for constrained nonlinear systems[END_REF], [START_REF] Steentjes | Construction of continuous and piecewise affine feedback stabilizers for nonlinear systems[END_REF] via state space triangulation. In [START_REF] Min | Data-driven control with inherent lyapunov stability[END_REF], under a known assumed approximation error bound, a neural network structure was proposed to learn the dynamics, the Lyapunov function, and the controller simultaneously. Online synthesis of state-dependent CLF as well as the corresponding control is proposed for discrete systems [START_REF] Lazar | Synthesis of trajectory-dependent control Lyapunov functions by a single linear program[END_REF], [START_REF] Lazar | Flexible control lyapunov functions[END_REF]. For certain low-dimensional systems, the Hamilton-Jacobi-Bellman partial differential equation can be solved to incorporate the notion of optimality [START_REF] Beard | Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation[END_REF], [START_REF] Aguilar | Numerical solutions to the Bellman equation of optimal control[END_REF]. For a more detailed survey of computational CLF synthesis methods, we refer to the review [START_REF] Giesl | Review on computational methods for lyapunov functions[END_REF].

Meanwhile, one effective strategy to sidestep the a priori design of either the controller in closed form or a CLF is the Model Predictive Control (MPC) approach. In the standard setting, for example, a proper choice of terminal ingredients (cost and constraints) will result in a stabilizing implicit controller, and a cost function that can be interpreted as a piecewise CLF [START_REF] Bayer | A tube-based approach to nonlinear explicit mpc[END_REF]. But then, the real-time implementation will become more time-consuming due to the solving of an online optimization problem. Furthermore, for controllers with limited hardware power, this difficulty may lead to computational unfeasibility or instability due to the so-called early termination [START_REF] Hosseinzadeh | Robust to early termination model predictive control[END_REF] (i.e., the search for the optimal control is interrupted due to the limited execution time).

With those pros and cons of both CLF-based control and MPC strategy, our objective is to exploit the systematically designed MPC law to seek a corresponding CLF during the offline synthesis. More specifically, in this work, we propose a synthesis procedure for a CLF by parameterizing it as linear combinations of certain candidate CLFs. The idea includes collecting admissible state-input pairs generated by a stabilizing MPC software, then a parameterization is constructed by a linear program. The advantages of the technique are the simplicity of the offline synthesis and the reduction in computational overhead during the online implementation, allowing applications to high-dimensional systems. Then, to validate its applicability and emphasize the computational advantages, the method is experimentally examined over a challenging and timely application, the quadcopter position stabilization. It is well known that it requires small sampling time, online feasibility, and constraint satisfaction. The computational requirements become even more stringent when considering a team of drones. Summarily, in this work, we:

• propose an offline procedure to construct a CLF based on linear programming, exploiting the admissible control generated by an MPC law; • validate the proposed process for a drone stabilizing problem through experimental tests. The video for the experiment can be found at https://youtu.be/ XPyZAJoN2Ps.

The remainder of the paper is structured as follows. Section II presents the preliminaries and the main principles for the CLF construction. Therein, via a linear program (LP), a CLF is constructed with stabilizing conditions imposed at points in the state-input space. Section III presents the formulation for the acquisition of admissible points shaping the desired CLF from an MPC-based admissible point generator. Section IV particularizes the proposed technique for a quadcopter position control problem. The resulted CLF and the associated control will be validated in Section V with various experimental tests. Finally, Section VI concludes and discusses future directions.

Notation: Bold lower-case letters denote vectors. With

x = [x 1 , x 2 , ..., x n ] ⊤ ∈ R n , ∇V (x) = [ ∂V (x)
∂x1 , ∂V (x) ∂x2 , ..., ∂V (x) ∂xn ] denotes the gradient of the value function V (x). The standard norms for a vector x are denoted as ∥x∥ 2 ≜

√

x ⊤ x, ∥x∥ P ≜ √

x ⊤ P x. ∥ • ∥ ∞ is the infinity norm. 0 denotes the origin of the vector space with the appropriate dimension. The letter k denotes the discrete step, while t represents the time variable. N (n, a, b) represents a finite set of n evenly spaced real numbers over the interval [a, b]. co{•} denotes the convex hull. diag(•) returns a matrix with its entries diagonally arranged.

II. MAIN IDEA AND MACHINERY

Consider the following nonlinear control affine system:

ẋ = f (x) + g(x)u, (1) 
with a convex and compact constraint set:

u ∈ U, (2) 
where x ∈ R n denotes the state vector, and u ∈ R m is the input vector constrained in U.

Assumption 1: Assume the pair x = 0 and u = 0 is a steady state, i.e., U includes 0 in its interior and f (0) = 0. □ Assume that we have an open-loop constrained trajectory software tool, capable of driving the system to 0. Then we could just use the software in an MPC fashion for control. Still, for systems with a small sampling time or limited hardware resources, such MPC implementation could be challenging.

The underlying idea is that of adopting this open-loop trajectory generator to simply determine candidate state controlpair optimal trajectories. These state control pairs are then used to generate suitable constraints for finding a CLF, within a linearly parameterized family, through linear programming. These generated trajectories will eventually be disregarded, and only the CLF will be retained for actual control. To this aim, some standard definitions are recalled in the following.

Definition 1 (Control Lyapunov Function): A positive definite smooth Lyapunov function, V (x), is a CLF for (1) if there exists a function u = Ξ(x) with values in U and dV (x)/dt = ∇V (x)[f (x) + g(x)Ξ(x)] ≤ -βV (x), (3) for some β > 0.

□ Definition 2: The state-control pair (x, u) for (1), u ∈ U is admissible for V (x) if it satisfies [START_REF] Kidane | Controller design for a nonlinear system with inputs restricted to a direct product of minkowski balls[END_REF]. □ Definition 3 (Domain of Attraction): D ⊆ R n is a domain of attraction (DOA) of system (1) if there exist u(t) = Ξ(x(t)), such that any trajectory x(t) with x(0) ∈ D, satisfies:

x(t) ∈ D, u(t) ∈ U, and lim

t→∞ x(t) = 0. (4) 

□

Next, in the offline control synthesis, adopting the available software, we generate several admissible pairs and then, formulate the CLF based on these points. This is a simple idea to generate, under appropriate conditions, points that are inside the domain of attraction D, eliminating all points outside, for which, no constrained control can bring the state to 0.

Let us assume that the open-loop trajectory generator ensures the existence of constrained trajectories x(t), u(t), from which we can sample M pairs (x j , u j ), u j ∈ U, j ∈ {1, ..., M }. Consider the following candidate CLF:

V (x) = N i=0 α i V i (x), α i ≥ 0, (5) 
where V i (x) are smooth positive definite Lyapunov functions. Next, consider the following linear programming problem with N variables, and M inequality constraints formulated from M state-input pairs collected previously:

min αi N i=1 ℓ i α i (6a) N i=1 α i [∇V i (x j ) [f (x j ) + g(x j )u j ] + βV i (x j )] ≤ 0, (6b) N i=1 α i = 1, α i ≥ 0, j ∈ {1, ..., M }, (6c) 
where ℓ i are weights. These weights give freedom of choice in the computation. As an example, if V 1 (x) is a "privileged" function, for instance a quadratic function associated with a local control optimizing cost, then ℓ 1 can be adjusted to influence the function dominance within the parameterization [START_REF] Leyva | Stabilization of affine systems with polytopic control value sets[END_REF]. Then, as a result of (6), we achieve a parameterized CLF established as a linear combination of V i (x) with the coefficients α i . An illustration on how the Lyapunov function V (x) is shaped by the stabilizing constraint (6b) at each sampled data pairs is given in Fig. 1. Remark 1: With the intuition of parameterizing the function V (x) via the set of V i (x), it is essential to provide a suitable choice for such candidates. This, indeed, can be done via an iterative process where, after one solution of (6), the function V i (x) with α i ≈ 0 can be discarded and a new set of functions can be adapted. Note that, this can be accomplished thanks to the simplicity of the LP [START_REF] Freeman | Inverse optimality in robust stabilization[END_REF]. A discussion on the choice of V i (x) will be given later in the illustrative example.

□ Forming the CLF in this manner has some pros and cons:

• by employing an LP, it is possible to use a considerably large number of points and basis functions V i (x), ensuring the existence of α i for some β in [START_REF] Freeman | Inverse optimality in robust stabilization[END_REF], even in high-dimensional systems; • although the number of generating data pairs (x j , u j ) can be huge, we are still working on a finite set.

To address a preliminary answer to the second point, let us consider the following propositions. For the set U, denote by Ψ U (w) its support functional:

Ψ U (w) ≜ max u∈U w ⊤ u. ( 7 
) X V (x) ∇V (x j ) ⊤ f (xj) + g(xj)uj (xj, uj) CLF constraint (6b) ∇V (xj)(f (xj) + g(xj)uj) ≤ -βV (xj) 1 Collect admissible pairs •(xj, uj)
Impose the constraints & solve the program (6) for

V (x) = N i=0 αiVi(x) 2 3 - 4 
Verify the condition ( 8)

Fig. 1. Geometric interpretation of how the stabilizing condition (6b) is imposed from the sampled pairs (red points) (x j , u j ) to the surface of V (x).

Note that Ψ U (0) = 0 and that, in view of Assumption 1, Ψ U (w) is positive definite and positively homogeneous of degree one:

Ψ U (λw) = λΨ U (w), ∀ λ > 0.
Proposition 1: The function V (x) is a CLF on a given domain X containing 0 in its interior iff it satisfies the following inequality on X :

∇V (x)f (x) -Ψ U (g(x) ⊤ ∇V (x) ⊤ ) + βV (x) ≤ 0, (8) 
for some β > 0 on X . □ Proof: By Definition 1, V (x) is a CLF iff ∀x ∈ X , ∃u ∈ U such that:

∇V (x)[f (x) + g(x)u] + βV (x) ≤ 0, (9) 
or, equivalently:

min u∈U ∇V (x)[f (x) + g(x)u] + βV (x) ≤ 0. (10) 
Condition [START_REF] Hu | Composite quadratic lyapunov functions for constrained control systems[END_REF] then can be rewritten as:

max u∈U ∇V (x)f (x) -∇V (x)g(x)u + βV (x) ≤ 0. (11) 
Then, by the support function definition in [START_REF] Suarez | Global clf stabilization for systems with compact convex control value sets[END_REF], one gets to Proposition 1. Remark 2: It is worth noticing that (1) does not refer to a specific control action u = Ξ(x) but depends only on the shape of U. For instance, if, as often assumed in the literature, U is the unit ball ∥u∥ 2 ≤ 1, then equation ( 8) becomes:

∇V (x)f (x) -∥g(x) ⊤ ∇V (x) ⊤ ∥ 2 + βV (x) ≤ 0 (12) 
□ For a domain of interest X , the proposition is useful since it allows testing the generated function V (x) in ( 6), by dense gridding and verifying the condition (8) in X . To recap, we propose the following procedure to determine V (x).

Procedure 1 Offline CLF generation 1: Collect M admissible pairs (x j , u j ) from a stabilizing controller for system (1). This can be sampled pairs from the system's trajectories with several random initial conditions (see also Fig. 1); 2: Fix a basis function V i (x) as in ( 5), i = 1, ..., N of positive definite functions, and β > 0 as in (3); 3: Formulate and solve the linear program (6); 4: If the problem ( 6) is feasible, then grid the state space within a region of interest and check ( 8) for all points in the grid.

Aligning with the common CLF setup, the aforementioned considerations are formalized in the following proposition.

Proposition 2: Suppose that Procedure 1 is successful and that there exists κ > 0 for which inequality ( 8) is verified in the sublevel set D κ = {x : V (x) ≤ κ}, then V (x) is a CLF for the problem (1) with the DOA D κ . □ Besides intensely gridding the state space inside D κ to verify [START_REF] Prajna | Nonlinear control synthesis by sum of squares optimization: A lyapunov-based approach[END_REF], one can also achieve an inner estimation as follows.

Proposition 3: Consider an ellipsoid inscribed in the input constraint set U in ( 2), which has the form:

E = {u = Ew, ∥w∥ 2 ≤ 1} and E ⊂ U. (13) 
Let Φ(κ e ) be defined as:

Φ(κ e ) ≜ max V (x)≤κe ∇V (x)f (x) -∥Eg(x) ⊤ ∇V (x) ⊤ ∥ 2 + βV (x) (14) 
then, for κ e > 0, if Φ(κ e ) ≤ 0, D κe is a DOA. □ Proof: From the convexity and compactness of E and U, one can state [START_REF] Vitale | Lp metrics for compact, convex sets[END_REF]:

E ⊂ U ⇒ Ψ E (v) ≤ Ψ U (v), ∀v ∈ R m . ( 15 
)
Thus,

∇V (x)f (x) -Ψ U (g(x) ⊤ ∇V (x) ⊤ ) + βV (x) ≤ ∇V (x)f (x) -Ψ E (g(x) ⊤ ∇V (x) ⊤ ) + βV (x) = ∇V (x)f (x) -∥Eg(x) ⊤ ∇V (x) ⊤ ∥ 2 + βV (x). (16) 
Consequently, if for κ e > 0, Φ(κ e ) ≤ 0, then, by Proposition 1, D κe is a DOA. With this method, we iteratively seek also for the largest κ e that satisfies Φ(κ e ) ≤ 0. The trade-off for this is the conservative employment of an ellipsoidal subset E instead of the original constraint set U.

To complete the synthesis, the remaining discussion resides on how to formulate the generator of admissible pairs (x j , u j ) for [START_REF] Freeman | Inverse optimality in robust stabilization[END_REF]. Moreover, with the established CLF, the choice of the associated control law is an important question as well. These two issues will be addressed in the next section.

III. ADMISSIBLE PAIR GENERATOR AND CONTROL

IMPLEMENTATION

In this part, the collection of admissible pairs at step 1 in Procedure 1 is first discussed. Next, the online control policy employed with the generated CLF will be introduced.

A. Admissible pair generation

As mentioned before, we aim to employ an MPC solver to achieve stabilizing trajectories from which admissible pairs are sampled. However, the MPC strategy commonly needs to be implemented in a discretized manner. With such a discretization, the generated pairs do not necessarily imply the stability property or the accurate evolution of the continuous system [START_REF] Sontag | A 'universal'construction of Artstein's theorem on nonlinear stabilization[END_REF]. For this reason, we employ the Euler Auxiliary System (EAS) [START_REF] Blanchini | Suboptimal receding horizon control for continuous-time systems[END_REF]:

x(k + 1) = x(k) + τ [f (x(k)) + g(x)u(k)] , (17) 
where τ > 0 is the discretization constant parameter. Then, with this setup and a CLF generated with [START_REF] Beard | Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation[END_REF], we have the following result. Theorem 1: Any convex function V (x) which is a CLF for the EAS in ( 17) is also a CLF for the associated continuous time system in [START_REF] Sontag | A 'universal'construction of Artstein's theorem on nonlinear stabilization[END_REF] .

□ Proof: The convexity of V (x) implies that the difference quotient function is non-decreasing with regard to h ∈ R + and the Dini derivative yields [START_REF] Rockafellar | Convex analysis[END_REF]:

d dt V (x) = lim h→0 + sup V (x + h[f (x) + g(x)u]) -V (x) h ≤ V (x + τ [f (x) + g(x)u]) -V (x) τ , for τ ≥ h. (18) 
Meanwhile, being a CLF of the EAS implies, ∃β d > 0:

V (x + τ [f (x) + g(x)u]) -V (x) ≤ -β d V (x). (19) 
Thus, from [START_REF] Aguilar | Numerical solutions to the Bellman equation of optimal control[END_REF], [START_REF] Giesl | Review on computational methods for lyapunov functions[END_REF] and Definition 1, one can state that :

d dt V (x) ≤ - β d τ V (x), (20) 
which completes the proof. Therefore, for the offline admissible pair generator in Procedure 1, step 1, we employ the following MPC strategy:

arg min u(•) Np k=0 ∥x(k)∥ 2 Q + ∥u(k)∥ 2 R + ∥x(N p )∥ 2 P (21a) s.t x(k + 1) = x(k) + τ [f (x(k)) + g(x)u(k)] , u(k) ∈ U, x(k) ∈ X , x(N p ) ∈ X f , (21b) 
where Q, R is the user-defined weightings penalizing the tracking and input, respectively. P and X f denote the weighting for the terminal cost and its terminal set, which are associated with a locally optimal control u opt (x). This standard penalization and constraints guarantee the recursive feasibility and stability of the system [START_REF] Mayne | Constrained model predictive control: Stability and optimality[END_REF]. Then, for a sampled state vector, x j , the admissible control u j is taken as the first component of the minimizing sequence of (21b) with x(k = 0) = x j . This formulation hence completes the proposed procedure to collect admissible pairs.

B. Associated nonlinear control law

Prior to this point, the ingredients for the offline generation of the CLF have been presented. Yet, a further question is how one can impose a desired performance over such a CLF during online implementation. Following the continuous stabilizer in [START_REF] Grammatico | Control-sharing and merging control lyapunov functions[END_REF], consider the controller:

u = arg min u ∥u -u d (x)∥ 2 2 (22a) s.t u ∈ U ∇V (x) [f (x) + g(x)u] ≤ -βV (x). (22b) 
Namely, the constrained control ensures that the time derivative of V (x) is negative, while the objective function minimizes the deviation of u from the desired one, u d (x). The above optimization is convex due to the convexity of U in (2) and the linear constraint in (22b). From a practical viewpoint, the role of V (x) is to ensure stability, while choosing u d (x) is also important for performance. This control is typically selected as the locally optimal one. Remark 3: Suppose that there exists a DOA D κ = {x : V (x) ≤ κ} deduced from the generated Lyapunov function V (x). It follows directly from the differential inequality (3) that the control [START_REF] Vitale | Lp metrics for compact, convex sets[END_REF] ensures the exponential convergence with the decay constant β inside D κ . Moreover, note that we can always ensure that such a κ exists if we insert among the basis function a locally optimal quadratic function associated with the standard LQ control.

Next, to demonstrate and highlight the applicability of the procedure, let us proceed with a case study of the quadcopter position control problem (a.k.a. outer loop or high level control) in the next section.

IV. APPLICATION ON QUADCOPTER POSITION CONTROL

In this section, via a feedback linearization law, two different representations of the quadcopter's constrained position control problem are presented. Then, the constructions of the CLF for each representation will follow.

A. Problem formulation for quadcopter position control

Let us provide the outer-loop model for a miniature quadcopter as commonly used in the literature [START_REF] Kim | Accurate modeling and robust hovering control for a quad-rotor vtol aircraft[END_REF]:

ξ = T R E -ge 3 , (23) 
where ξ = [x, y, z] ⊤ ∈ R 3 collects the drone's position. In the Euler angles representation, ϕ, θ, ψ respectively denote the roll, pitch and yaw angles. R E denotes the rotation matrix from the body to the global frame, which is computed as:

R E =   cos ϕ sin θ cos ψ + sin ϕ sin ψ cos ϕ sin θ sin ψ -sin ϕ cos ψ cos ϕ cos θ   . g is the gravitational
acceleration and e 3 = [0, 0, 1] ⊤ is the standard basis vector pointing along the altitude z axis. T denotes the normalized thrust provided by the four propellers. In a quasi-stationary flight settings, we assume that the aerodynamic forces are always in the direction of the z axis. Centrifugal force and disturbance (e.g., drag) are neglected. As the outer loop (see Fig. 9), the control objective for system [START_REF] Blanchini | Suboptimal receding horizon control for continuous-time systems[END_REF] is to design the position-stabilizing ϕ, θ angles and thrust T . These three signals are regarded as the input for this control layer, which then will be actuated by the low-level controller with a proper feedback scheme and rotor configuration [START_REF] Nguyen | Flat trajectory design and tracking with saturation guarantees: a nano-drone application[END_REF]. In this setup, the input constraint set for [T, ϕ, θ] ⊤ is described as:

C = {0 ≤ T ≤ T max , |ϕ| ≤ ϕ max , |θ| ≤ θ max } (24) 
where T max > g, (ϕ max , θ max ) ∈ (0; π/2) 2 are the inputs' constant bounds. It is well known that system ( 23) is feedback linearizable. Indeed, consider the input transformation:

T = u 2 x + u 2 y + (u z + g) 2 , (25a) 
ϕ = arcsin ((u x sin ψ -u y cos ψ)/T ), (25b) θ = arctan ((u x cos ψ + u y sin ψ)/(u z + g)),

(25c) then, under the condition u z ≥ -g, the new dynamics can be exactly linearized as a system of three double integrators:

ṗq = A 2D p q + B 2D u q , q ∈ {x, y, z}, (26) 
where

p q = [q, q] ⊤ ; A 2D = [ 0 1 0 0 ], B 2D = [0 1] ⊤ .
Besides, the image of the constraint ( 24) via ( 25) can be characterized as a convex set of u pos ≜ [u x , u y , u z ] ⊤ ∈ R 3 as in [START_REF] Do | Indoor experimental validation of mpc-based trajectory tracking for a quadcopter via a flat mapping approach[END_REF]:

u pos ∈ U pos ≜ u pos : ∥u pos + ge 3 ∥ 2 2 ≤ T 2 max ; u 2 x + u 2 y ≤ (u z + g) tan ϵ max . (27) 
with ϵ max ≜ min(ϕ max , θ max ). The set U pos is convex since it is the intersection of two convex sets: a ball of radius T max centered at -ge 3 and a convex cone defined with ϵ max and g. A detailed characterization of U pos as in ( 27) can be found in [START_REF] Do | Indoor experimental validation of mpc-based trajectory tracking for a quadcopter via a flat mapping approach[END_REF]. With the dynamics [START_REF] Grammatico | Control-sharing and merging control lyapunov functions[END_REF], one can consider this linearized system as either three independent double integrators in R 2 tangled by the constraint [START_REF] Kim | Accurate modeling and robust hovering control for a quad-rotor vtol aircraft[END_REF] or one system in R 6 and the input constraint u pos ∈ U pos . Next, we investigate the dynamics from both points of view with the proposed procedure. To this aim, we consider two common inner approximations of U pos as in the following. Case 1: A box-type subset: Since U pos includes 0 as an interior point, there always exist ūi > 0 such that:

U b ≜ {u pos ∈ R 3 : |u q | ≤ ūq , q ∈ {x, y, z}} ⊂ U pos . (28)
In this setting, system (26) is decoupled as three linear subsystems associated with three input constraints |u q | ≤ ūq . The maximum volume U b can be found by solving a convex optimization problem, maximizing its volume while constraining all the vertices inside U pos .

Case 2: A polytopic subset: In a less conservative manner, by parameterizing the boundary of U pos , we can obtain a polytopic approximation as:

U p ≜ co [0, 0, -g] ⊤ , [R * cos γ, R * sin γ, u * z ] ⊤ [r cos γ, r sin γ, T 2 max -r 2 -g] ⊤ (29) 
with R * = T max sin ϵ max , u * z = T max cos ϵ max -g and for some large integers S 1 , S 2 > 2, γ ∈ N (S 1 , 0, 2π), r ∈ N (S 2 , 0, R * ). For this scenario, we arrange system [START_REF] Grammatico | Control-sharing and merging control lyapunov functions[END_REF] as:

ζ = A 6D ζ + B 6D u pos , (30) 
where ζ ≜ p x p y p z ∈ R 6 and u pos denote the state and the input vector as in [START_REF] Kim | Accurate modeling and robust hovering control for a quad-rotor vtol aircraft[END_REF], respectively. u pos ∈ U p as in [START_REF] Do | Indoor experimental validation of mpc-based trajectory tracking for a quadcopter via a flat mapping approach[END_REF],

A 6D = diag(A 2D , A 2D , A 2D ) and B 6D = diag(B 2D , B 2D , B 2D ).
in [START_REF] Kim | Accurate modeling and robust hovering control for a quad-rotor vtol aircraft[END_REF] in ( 28) in ( 29) Fig. 2. The inner approximations of Upos as in [START_REF] Kim | Accurate modeling and robust hovering control for a quad-rotor vtol aircraft[END_REF].

TABLE I NUMERICAL PARAMETERS

Symbols

Values Tmax as in [START_REF] Kim | Accurate modeling and robust hovering control for a quad-rotor vtol aircraft[END_REF] 1.45g ≈ 14.22 m/s 2 θmax = ϕmax = ϵmax as in ( 24), [START_REF] Kim | Accurate modeling and robust hovering control for a quad-rotor vtol aircraft[END_REF] 0.1745 rad ūx, ūy, ūz as in [START_REF] Nguyen | Flat trajectory design and tracking with saturation guarantees: a nano-drone application[END_REF] 0.8154, 0.8154, 3.27 S 1 , S 2 as in [START_REF] Do | Indoor experimental validation of mpc-based trajectory tracking for a quadcopter via a flat mapping approach[END_REF] 7, 3

An illustration and numerical parameters of the abovementioned sets are depicted in Fig. 2 and TABLE I, respectively.

Remark 4: It is undoubted that, Procedure 1 can be immediately applied for the system (30) in Case 2. However, we believe that exploiting the decoupled representation in Case 1, i.e. examining each double integrator at a time, provides not only illustrative understanding but also fundamental insights for the choice of the basis functions V i (•) as in [START_REF] Freeman | Inverse optimality in robust stabilization[END_REF]. Thus, in the sequel, we proceed by investigating first the decoupled representation in Case 1 (or ( 26)), then the procedure will be extended to Case 2 with the concatenated dynamics [START_REF] Blanchini | A new class of universal Lyapunov functions for the control of uncertain linear systems[END_REF]. □

B. CLF construction

In this subsection, the formulation of the CLFs for ( 26) and [START_REF] Blanchini | A new class of universal Lyapunov functions for the control of uncertain linear systems[END_REF] subject to [START_REF] Nguyen | Flat trajectory design and tracking with saturation guarantees: a nano-drone application[END_REF] and [START_REF] Do | Indoor experimental validation of mpc-based trajectory tracking for a quadcopter via a flat mapping approach[END_REF], respectively, will be discussed. With these functions come two ways of controlling the drone, as the following. In the former, three CLFs will be generated for each axis q ∈ {x, y, z}. These functions then will be separately combined with the setup [START_REF] Vitale | Lp metrics for compact, convex sets[END_REF] to compute the controller u q . In the latter, one CLF will be generated for the concatenated dynamics [START_REF] Blanchini | A new class of universal Lyapunov functions for the control of uncertain linear systems[END_REF] with the polytopic constraint [START_REF] Do | Indoor experimental validation of mpc-based trajectory tracking for a quadcopter via a flat mapping approach[END_REF]. Then, the controller u pos = [u x , u y , u z ] ⊤ will be computed similarly with [START_REF] Vitale | Lp metrics for compact, convex sets[END_REF] and the generated function. In both cases, the controller [u x , u y , u z ] ⊤ will be transformed back to the inputs T, ϕ, θ by means of [START_REF] Mayne | Constrained model predictive control: Stability and optimality[END_REF], then applied to the vehicle.

For Case 1: The idea is to apply Procedure 1 to three subsystems in [START_REF] Grammatico | Control-sharing and merging control lyapunov functions[END_REF] with |u q | ≤ ūq , q ∈ {x, y, z} and to create one CLF for each double integrator. For simplicity, we use V q (•) to denote the generated CLF for the q axis (e.g., V x (p), p ∈ R 2 , is the CLF for the first double integrator in [START_REF] Grammatico | Control-sharing and merging control lyapunov functions[END_REF], or q = x). Then, the same procedure is carried out for all three subsystems as follows.

First, the general admissible pair generator ( 21) will be adapted with the weighting as in The domain of interest for each double integrator is chosen as X q = {|p q | ≤ 1.5}, q ∈ {x, y, z}.

The next step resides on how to choose a collection basis functions V i (•) as in [START_REF] Leyva | Stabilization of affine systems with polytopic control value sets[END_REF]. On one hand, encoding the optimality, at least locally near the origin, is important. For this reason, we select the first basis as the quadratic function:

V 1 (p) = ∥p∥ 2 P lqr 2D , p ∈ R 2 . ( 31 
)
where P lqr 2D denotes the result of the continuous Riccati equation, with the state and input penalty abusively taken from Q 2D and R . On the other hand, it is necessary that the basis functions are sufficiently rich so that ( 6) is feasible. At the same time, it was proposed that a suitable Lyapunov function for constrained stabilization is the 2p-norm ∥Gp∥ 2p 2p where for p ∈ R n , G ∈ R n×r is a full row rank matrix [START_REF] Blanchini | A new class of universal Lyapunov functions for the control of uncertain linear systems[END_REF]. Thus, the remaining members of the collection of V i (p) are particularly populated with the following polynomials:

V 2≤i≤100 (p) ∈ ∥ηF p∥ 4 4 , η ∈ ls(33, 0.4, 2.0)

F ∈ 1 0 , 0 1 , 1 1 . ( 32 
)
Remark 5: In (32), η plays a role of increasingly enriching the basis with different value scale, while F is responsible for the "orientation" of the surfaces V i (•). The 2D case of the first double integrator is depicted in Fig. 3. The feasibility of ( 6) can be managed by meticulously collecting more value of η and vector F . □ Then, by partitioning the domain X q by a 25 × 25 grid and collecting the control u q given by ( 21) at those points (See Fig. 6), we achieved the three following CLFs from [START_REF] Freeman | Inverse optimality in robust stabilization[END_REF] with the basis ( 31) and (32):

• For q ∈ {x, y} in (26):

V q (p q ) = 0.016∥p q ∥ 2

P lqr 2D + 0.2293(2[1 0]p q ) 4 +0.5406(2[0 1]p q ) 4 + 0.2141(2[1 1]p q ) 4 . (33) 
• For the z axis in ( 26):

V z (p z ) = 0.0119∥p z ∥ 2 P lqr 2D + 0.3862(2[1 0]p z ) 4 +0.6019(2[1 1]p z ) 4 (34) 
V x (p x )
as in [START_REF] Förster | System identification of the crazyflie 2.0 nano quadrocopter[END_REF] Fig. 4. Generated Lyapunov functions and its DOA for the first subsystem of (26) (q = x).
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Fig. 5. Set-point tracking simulation with the first subsystem of (26) (q = x). The green-dashed line represents the DOA provided by the MPC point generator [START_REF] Hosseinzadeh | Robust to early termination model predictive control[END_REF]. The red solid curve depicts the sublevel set DOA given by the generated Lyapunov function.

The computation of α i in ( 6) is carried out with MATLAB 2021b and its linprog solver, while the pair generator [START_REF] Hosseinzadeh | Robust to early termination model predictive control[END_REF] and the online controller ( 22) is computed with quadprog solver for the simulation. The illustration for ( 33) is in Fig. 4. The DOA can be estimated by verifying the state-space with the Fig. 6. Comparison between the control sampled from (21) (blue points) and the control ( 22) (pink surface) for Case 1, q = x. condition [START_REF] Prajna | Nonlinear control synthesis by sum of squares optimization: A lyapunov-based approach[END_REF], which, in this case, is given as the sublevel set V x (p x ) ≤ 23.04. The positive invariance of the DOA can also be confirmed via the simulated trajectories and vector field depicted in Fig. 5. Therein, it can be seen again that there always exists |u x | ≤ ūx rendering V x (p x ) decreasing and V x (p x ) + βV x (p x ) ≤ 0. A comparison between the control policy of the MPC ( 21) and ( 22) is given in Fig. 6 .

For Case 2: Similarly, we use the setting [START_REF] Hosseinzadeh | Robust to early termination model predictive control[END_REF] as the point generator with the concatenated state ζ as in [START_REF] Blanchini | A new class of universal Lyapunov functions for the control of uncertain linear systems[END_REF] and the parameters computed as

Q 6D = diag(Q 2D , Q 2D , Q 2D ), R 6D = diag(R 2D , R 2D , R 2D
), P 6D = diag(P 2D , P 2D , P 2D ) and consequently, K 6D = diag(K 2D , K 2D , K 2D ). Parameters' details are given in TABLE II.

Different from the previous case, for the admissible point collection, random initial conditions in {ζ ∈ R 6 : |ζ| ≤ 1.5}. The toolbox given in [START_REF] Benham | Uniform distribution over a convex polytope[END_REF] is employed to provide a randomly distributed initial conditions. Then, for each feasible initial condition, we sample along its trajectory to collect statecontrol pairs since the recursive feasibility of (21) ensures the existence of admissible pairs propagated from that initial state. The projections of those states are provided in Fig. 7. Then the new set of basis functions for this setup is reselected as follows: The first basis function remains as the LQR-based quadratic function in the same choice from (31):

V 1 (ζ) = ∥ζ∥ 2 P lqr , ζ ∈ R 6 . ( 35 
)
Moreover, taking advantage of the successfully generated CLFs for each subspace in ( 33) and ( 34), we adopt their basis by augmenting the vector F in (32), for q ∈ {x, y, z}, with the extended value assigned as 0. For example, for q = x, [1 1] becomes [1 1 0 0 0 0]. For the tuning of ℓ i , as suggested before, it is essential to include the LQR-based quadratic Lyapunov function in the parameterized CLF in order to attain local optimality. Therefore, in both cases, the weighting ℓ 1 associated with the function is progressively decreased so that its corresponding coefficient computed from ( 6) is non-zero.

With the pairs sampled and the choice of basis functions given, the LP (6) provides the CLF as: (36) with V (ζ) denoting the generated Lyapunov function for the six-dimensional system [START_REF] Blanchini | A new class of universal Lyapunov functions for the control of uncertain linear systems[END_REF]. The computational details of the procedure are provided in TABLE III. Therein, as expected, it is noticeable that the computation time for the LP ( 6) is relatively small in both cases, confirming the low complexity of the technique.

V (ζ) = 0.
To this end, the CLFs were generated for the control problem and examined via simulation tests. In the next section, we verify the constructed CLFs via experimental validation, showing their applicability in practice.

V. EXPERIMENTAL VALIDATION

Herein, the results from the previous section are validated via experimental tests over nano-drone platforms.

Motion capture cameras Active markers Fig. 8. The Crazyflie's motion restored with a system of cameras capturing the infrared lights from the active markers.

A. Experiment setup

In this section, the open-source quadcopter, Crazyflie 2.1, is used, since it allows customizing the position control within its hierarchical structure (See Fig. 9). We further assume that the integrated inner loop (the green block) is capable of sustaining the rotational dynamics in a properly high bandwidth compared to that of the outer loop, thereby ensuring that the roll and pitch angle commands from the outer loop are tracked with sufficient speed. A detailed description of this layer can be found in [START_REF] Huang | Closed-loop identification and realtime control of a micro quadcopter[END_REF]. For the outer loop, we substitute our position control, which is designed for system (26) (or equivalently [START_REF] Blanchini | A new class of universal Lyapunov functions for the control of uncertain linear systems[END_REF]) into the blue block to track the reference position ξ ref .

The control action u pos then transformed back to the inputs T, ϕ and θ by means of [START_REF] Mayne | Constrained model predictive control: Stability and optimality[END_REF]. Note that the normalized thrust T needs to be converted into the corresponding value in the digital scale of the nanodrone, ranging from 0 to 65535. The conversion is done via an interpolated curve identified experimentally (see Chapter 3,[START_REF] Förster | System identification of the crazyflie 2.0 nano quadrocopter[END_REF]). These signals are then packed with the value of the desired yaw rate, ψref ≜ 0. These calculations are carried out in a station computer and and sent to the onboard inner loop via a USB radio dongle. The sampling time is fixed at t s = 100 ms. For all the optimization problems employed in the experiments, the IPOPT solver is used within the Casadi optimization framework in Python 3.8.8, Intel Core, i5-10300H CPU @ 2.50GHz and 16GB RAM. The description of the test cases is given as follows.

On one hand, we use the controller [START_REF] Vitale | Lp metrics for compact, convex sets[END_REF] with the two setups Case 1 and Case 2 in the previous section with the same tuning given in TABLE II 

N * p k=0 ∥ζ(k) -ζ ref (k)∥ 2 Q 6D + ∥u pos (k)∥ 2 R 6D + ∥ζ(N * p ) -ζ ref (N * p )∥ 2 P 6D (37a)      ζ(k + 1) = (A 6D + t s I)ζ(k) + t s B 6D u pos (k), u pos (k) ∈ U pos as in (29), ζ(k) -ζ ref (k) ∈ Z, ζ(N * p ) -ζ ref (N * p ) ∈ Z f , (37b) 
where

A 6D , B 6D , P 6D , Q 6D , R 6D are given in Section IV-A, ζ ref (k) denotes the reference for ζ(k) to follow. Z = {ζ : ∥ζ∥ ∞ ≤ 1.
5} is the state constraint corresponding to that of the admissible pair generator in Case 1 and 2. Z f is the MPI set (as the terminal constraint) associated with the full-state gain K 6D given therein. For our setup, the largest prediction horizon N * p for (37) is 20, so that the online computation time does not exceed the sampling time t s .

On the other hand, for the position reference, the examined controllers will first track a set-point ξ ref = [0.6, 0.6, 0.8] ⊤ (m), noted as Scenario 1 (Sce. 1). Then, to further emphasize the computational advantage, we apply the same control laws for three Crazyflies in a centralized manner. The control then will be sent to each drone via the Swarm Python interface [START_REF]Step-by-step: Swarm interface[END_REF]. With this Scenario 2 (Sce. 2), a position swapping reference was given to the three drones, which is depicted Fig. 12.

B. Experimental results and discussions

The result of the first scenario (Sce. 1) is shown in Fig. 10. It can be seen that, the proposed schemes' tracking performances (Case 1 and 2) are commensurate with the MPC while respecting all the input constraints in [START_REF] Rockafellar | Convex analysis[END_REF]. However, it is noted from TABLE IV and Fig. 14 that the computation time (CT) of the proposed laws is 5 to 7 times lower than that of the MPC (37). This advantage directly comes from the simple QP formulation of (22) compared to (37) with regard to the complexity of both the cost and constraints. In Sce. 2, the proposed schemes are also successfully validated. It is noticeable that in this scenario, a centralized MPC for three quadcopters could not be performed since the required calculation time exceeds the sampling time t s . Meanwhile, even with three quadcopters, the tracking was possible for both Case 1 and 2 with the Avg. CT around 20ms. Fig. 11 depicts the value of the CLF in both cases and their monotonicity. This shows that the discussed technique generates effective CLF and is applicable in real-life implementation.

VI. CONCLUSION

In this work, an offline synthesis procedure for CLF (Control Lyapunov Function) was proposed via linear programming. The idea relied on the stabilizing MPC (Model Predictive Control)-based software to generate admissible control in the state-space and parameterizing a collection of candidate CLFs. The generated CLF's advantage was then validated via quadcopter stabilization experiments. The result showed that the offline calculation of the CLF can be implemented via a 

  terminal cost adopts the weighting P 2D from the discrete Riccati equation for the EAS of (26) (τ = 0.1s) with the penalty weighting Q 2D , R 2D , while the local controller uses the standard infinite-horizon unconstrained control. The terminal region X f is the maximal positive invariant (MPI) set computed with such a local control and input constraint |u q | ≤ ūq for each subsystem. Numerical details are given as Q 2D = [ 50 0 0 5 ], R 2D = 5, P 2D = [ 479.6118 181.0469 181.0469 155.5598 ], K 2D = -[2.7617 2.6491].

Fig. 3 .

 3 Fig. 3. The surface of V i (•) with different η and F (Case 1).

Fig. 7 .

 7 Fig. 7. Admissible pairs (red) collected for Case 2 (projected to each positionvelocity axis).

0244∥ζ∥ 2 P

 2 lqr 6D + 0.4508([0 1 0 0 0 0]ζ) 4 + 0.0674([1 1 0 0 0 0]ζ) 4 + 0.1631([0 0 1 0 0 0]ζ) 4 + 0.1841([0 0 1 1 0 0]ζ) 4 + 0.1103([0 0 0 0 0 1]ζ) 4 ,

  . The desired control u d (•) is chosen as u d (p q ) = -[k p , k d ]p q and u d (ζ) = -diag([k p , k d ], [k p , k d ], [k p , k d ])ζ for Case 1 and 2, respectively, and k p = 1, k d = 1.45. Then, for comparison, we stabilize the tracking error dynamics by employing the following optimization problem in a receding horizon fashion.
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 9 Fig. 9. Hierarchical control architecture of the Crazyflie quadcopter.
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 10 Fig. 10. Left: Set-point reference tracking experimented with the three scenarios. Right: The corresponding real input signals and their amplitude bound (dashed-dotted line).
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 1112 Fig. 11. Lyapunov function for Case 1 and 2 controllers in Scenario 1.
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 13 Fig. 13. The outer loop's input signals of the three quadcopters in Sce. 2 with the Case 2 controller.
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 14 Fig. 14. Computation time in Scenario 1.

TABLE II PARAMETERS

 II FOR POINT GENERATOR[START_REF] Hosseinzadeh | Robust to early termination model predictive control[END_REF] WITH τ = 0.1s, AND THE LP (6), q ∈ {x, y, z}.

	Representation	Variables x, u	Q	R	P	Constraints X , U for (21)	Np	β	ℓ i
	Case 1	p x , ux p y , uy p z , uz	Q 2D	R 2D	P 2D	|p q | ≤ 1.5, |uq| ≤ ūq	50	0.1275 0.1275 2.65	ℓ 1 = 0.05 ℓ i̸ =1 = 0.1
	Case 2	ζ, upos	Q 6D	R 6D	P 6D	|ζ| ≤ 1.5, upos ∈ Upos	50	0.15	ℓ 1 = 0.2 ℓ i̸ =1 = 1

TABLE III SPECIFICATIONS

 III OF THE LP (6) FOR THE TWO CASES

			Case 1		Case 2
		V x (p x )	V y (p y )	V z (p z )	V (ζ)
	No. basis functions N	100	100	100	10
	No. admissible pairs M	625	625	625	6330
	Computation time of (6)	0.03 (s)	0.03 (s)	0.05 (s)	0.11 (s)

  linear program, thereby allowing CLF construction for systems with nontrivial dimensions. With the experimental results, the generated non-quadratic CLF, can be employed to reduce the online computational demand while maintaining stability. The future work will investigate how to efficiently choose the sampled data from MPC, hence, providing theoretical guarantees over a finite set of constraints, and allowing scalability.

			TABLE IV		
			EXPERIMENT RESULTS		
		Controller	RMS tracking error (cm)	Avg. CT
		Case 1		14.11		7.02 ms
	Sce. 1	Case 2		11.39		10.74 ms
		MPC		11.48		54.70 ms
			Drone 1	Drone 2	Drone 3	
	Sce. 2	Case 1 Case 2	24.09 19.14	22.20 18.57	21.33 18.71	24.09 ms 20.51 ms
		MPC	×	×	×	×