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mm-Wave Power Amplifiers: a 2-Stage Class-A
Power Amplifier Case Study

Florent Cilici, Member, IEEE, Marc Margalef-Rovira, Member, IEEE, Estelle Lauga-Larroze, Sylvain
Bourdel, Member, IEEE, Gildas Leger, Loı̈c Vincent, Salvador Mir, Member, IEEE, and Manuel J.

Barragan, Member, IEEE

Abstract—State-of-the-art nanometric fabrication processes
enable the integration of monolithic millimeter-wave (mm-wave)
circuits. However, nanometric technologies are prone to process
variations that may significantly impact the performance of
the fabricated mm-wave circuits and dramatically reduce the
fabrication yield. In order to improve the fabrication yield,
extensive resources are required for tuning the functionality of
each fabricated die in the production line, especially in the mm-
wave domain. In this work, we implement and experimentally val-
idate a machine learning-based calibration strategy for mm-wave
circuits that significantly simplifies this tuning process. A machine
learning algorithm is employed to predict the optimum values of a
set of on-chip tuning knobs based on nonintrusive measurements
provided by embedded process monitor circuits. The proposed
technique is demonstrated on a 69 GHz power amplifier with
one-shot calibration capabilities integrated in STMicroelectronics
55 nm CMOS technology. Experimental results on a set of 39
fabricated samples demonstrate the feasibility and performance
of the proposed machine learning-based calibration for yield
recovery and performance recentering applications.

Index Terms—Machine learning-based calibration, machine
learning-based test, mm-wave integrated circuits, power ampli-
fiers, yield enhancement.

I. INTRODUCTION

NOWADAYS, the constant evolution of nanometric inte-
grated technologies with optimized Back-End-Of-Line

(BEOL) metal stacks allows the development of high-
performance monolithic mm-wave circuits. This evolution is
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Fig. 1. General scheme of an RF/mm-wave calibration strategy.

guided by the needs of a wide variety of applications such
as high data-rate communications, healthcare imaging sys-
tems, automotive radar, etc. Monolithic mm-wave integration
in conventional silicon technologies has the clear advantage
of reducing the cost and enabling the co-integration with
complex VLSI systems including analog, mixed-signal, and
digital functions. However, at the same time, integrating mm-
wave circuits in advanced nanometric technologies creates
new challenges. Nanometric technologies are prone to process
variations that may dramatically degrade the performance of
sensitive RF and mm-wave circuits [1], [2]. Additionally, mm-
wave circuits often include full-custom passive elements which
may complicate evaluating the impact of process variations at
the design stage. As a consequence, fabrication yield may be
significantly limited, especially for safety-critical applications
with stringent performance requirements.

Improving the fabrication yield is a major concern for the
IC industry that may be addressed in several ways. Simply
overdesigning the RF and mm-wave circuits to increase ro-
bustness is not usually a viable option due to the excessive
area and power overheads that it may require. Design-enabled
solutions targeted at the mitigation of process variations exist,
but they are usually limited to a given circuit architecture or
to particular circuit families [3]. A more general and common
solution is to add some embedded calibration capabilities to
be able to calibrate the design, should an excessive deviation
with respect to the design target occurs [4]–[20]. Moreover,
adding calibration capabilities to a mm-wave circuit has the
additional advantage of enabling the reuse of the circuit in
different applications within the tuning range of the circuit,
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which may open the door to reusable multi-purpose IPs that
could be re-tuned to address different application scenarios
requiring different performance trade-offs.

A general scheme for such a calibration strategy is repre-
sented in Fig. 1. In essence, a calibration strategy comprises
some performance measuring capabilities and/or appropriate
tunable elements (usually called tuning knobs), in such a way
that it is possible to a) evaluate the actual performance of the
circuit, and b) tune the performance of the circuit according
to a predefined design target. An optimization algorithm
oversees the calibration process by reading the performance
measurement and searching for the optimum position of the
tuning elements to comply with the given target performance.

In this work, we implement and experimentally demon-
strate a calibration technique for mm-wave integrated circuits.
The developed technique comprises a machine learning-based
calibration scheme based on the use of on-chip nonintrusive
process monitors and one-shot calibration techniques. The
proposed machine learning-based one-shot calibration brings
the advantages of:

1) Not requiring direct performance measurements to guide
the calibration process. mm-wave direct measurements
are costly, time-consuming, and highly subject to im-
precisions. Instead, we propose to employ on-chip non-
intrusive process monitor circuits to generate DC and
low-frequency indirect signatures sensitive to process
variations. These process signatures are specially de-
signed to be highly correlated to the circuit’s at-speed
performance. After a training process in which direct
performance measurements and nonintrusive signatures
are measured for a reduced subset of devices, a predic-
tive model is obtained allowing to guide the calibration
based only on the measurement of the sensor signa-
tures. Notice that the training set will always be small
in regard to the production volume. The performance
measurements can thus be performed using dedicated
high-performance test equipment and boards, which are
orders of magnitude cheaper than high-end Automated
Test Equipment (ATE) for the production line [21]. The
process monitor circuits are not connected or coupled
to the device under calibration, which also reduces the
design complexity.

2) Avoiding the need of test-and-tune iterations. The op-
timum position of the tuning knobs is predicted by a
machine learning algorithm from the set of nonintrusive
signatures, without the need for lengthy iterative cali-
bration loops.

This paper is an extension of our previous conference paper
[4]. This previous publication outlined the basic concepts of
one-shot statistical calibration based on nonintrusive process
monitors and offered a preliminary demonstration of a yield
enhancement application based on electrical simulations of
a power amplifier with built-in calibration capabilities. The
present manuscript expands our previous work in multiple
areas. Firstly, the scope of the proposed application has been
extended beyond yield enhancement. In this new manuscript,
we explore the capabilities of the proposed one-shot tun-

ing strategy for performance recentering and for exploring
performance trade-offs, based on a machine learning-based
generation of the circuit’s sample-dependent Pareto-optimal
fronts. Then, considering a case study implementation to
guide the discussion, the theoretical content of the paper has
been expanded to cover extensively the basis of the proposed
methodology and its practical implementation, including the
design of the tuning knobs, the selection of process monitor
circuits, and the implementation and training of the ma-
chine learning-based calibration model. Additionally, generic
methodological guidelines to extend the proposed technique
to other power amplifier architectures are detailed. Finally,
the described proof-of-concept case study has been fabricated
and fully characterized in the laboratory to experimentally
demonstrate the feasibility of the proposed yield enhancement
and performance recentering techniques. A critical comparison
to the existing state-of-the-art is also presented to put our
results into perspective.

The manuscript is organized as follows. Section II reviews
briefly the existing literature on RF and mm-wave integrated
circuits with embedded calibration and presents the key el-
ements of our proposal within this context. In Section III
we describe the theoretical basis of our calibration algorithm,
including the statistical one-shot calibration approach and the
proposed nonintrusive performance monitoring. Section IV
presents the complete design of a 2-stage class-A 69 GHz
PA with embedded calibration in STMicroelectronics 55 nm
CMOS technology, including a generic tuning knob based on
programmable decoupling capacitors and dedicated process
control monitors to guide the calibration algorithm. Detailed
guidelines are also provided to extend the proposed method-
ology to other architectures, implement the machine learning
calibration algorithm and define an appropriate training set.
Section V experimentally demonstrates the feasibility and
performance of the proposed calibration on a set of 39 fabri-
cated PA samples. Two calibration scenarios are considered:
a nominal calibration aimed at improving fabrication yield
and an aggressive calibration aimed at exploring different
performance trade-offs. Finally Section VI summarizes our
main contributions.

II. PREVIOUS WORKS

Initial works on embedded calibration for RF and mm-
wave circuits focus on simplifying complex RF and mm-wave
performance measurements, usually based on some built-in
test capabilities to guide an iterative calibration algorithm,
while tuning capabilities are usually provided by varying
the bias conditions of the circuit. Thus, the work in [5]
presents a classical test-and-tune calibration method for an
integrated 8-18 GHz receiver. A set of on-chip ring oscillators
is employed to excite the different elements in the receiver,
whereas external test equipment is employed for monitoring
the receiver’s performance. Tuning capabilities are achieved
by programming the bias currents and bias voltages of the
LNA and mixer in the receiver.

A power detector for non-invasive calibration of differential
PAs is presented in [6]. The power detector takes advantage
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of a dedicated output transformer designed to provide out-
put matching, differential-to-single-ended transformation, and,
thanks to the addition of a third extra winding, power sensing
capabilities. The work in [7] presents a load-insensitive PA that
employs a six-port reflectometer to monitor load mismatch. A
test-and-tune iterative algorithm is then employed to find the
optimum values of the PA power supply and input drive and
to tune a varactor in the matching network. The system is
demonstrated in a 900 MHz PA integrated on a PCB.

In the same line, the work in [8], [9] proposes a set of
embedded test instruments for on-chip calibration purposes.
In particular, a VCO and a peak detector for exciting and
acquiring, respectively, the output response of a 1.57 GHz
LNA. In this case, the calibration algorithm is based on a
machine learning regression that predicts the best bias and
power supply conditions based on the output of the peak
detector.

The calibration strategy in [10] is also based on a machine
learning algorithm. In this case, an embedded envelope detec-
tor is employed for predicting the performance of a 1.9 GHz
LNA from the response to an externally applied optimized
stimulus. Two dedicated tuning knobs are presented: a bias
voltage and a PMOS IMD sinker that is specially tailored
to the architecture of the LNA under study. The proposed
approach is further extended in [11] for the calibration of
complete RF front-ends using the bias and supply of the
different building blocks as tuning knobs.

Data-driven techniques for calibration are also explored in
[12], [13]. Thus, the approach in [12] explores the appli-
cation of reinforcement learning algorithms in the context
of performance control and calibration of mm-wave Doherty
PAs. The work in [13] explores the application of Bayesian
Model Fusion to improve the performance of a calibration
loop. The proposed technique is demonstrated in a 25 GHz
VCO with a phase noise calibration loop based on monitoring
indirect performances such as current consumption, oscillation
frequency, and oscillation amplitude.

The approach in [14] employs nonintrusive process variation
monitors, initially proposed in [15] for yield enhancement and
calibration of mixed-signal circuits, in a machine learning-
based calibration loop for a 2.4 GHz PA. The bias voltages and
power supplies act as the tuning knobs. This is a limitation that
is common to most of these early works on machine learning-
based calibration: the key element for tuning the performance
is the power supply of the device under calibration. From a
system-level design point of view, the required control on the
power supply, in addition to impacting the signal dynamic
range, would imply a deep re-design of the power management
circuit that may increase the complexity of the system, degrade
the system’s performance and create reliability risks if multiple
power domains are required.

To avoid power supply tuning, other works are focused on
novel design solutions for tunable elements suitable for RF and
mm-wave circuits. Thus, a tapped gate inductor is proposed in
[16] to calibrate the input matching of a 1.9 GHz LNA. The
measurement of the LNA bias current is used to guide the
calibration. The tunable element proposed in [17] is a tunable
transmission line stub that can be shorted at discrete lengths

to change the loading conditions of a 28 GHz PA. An iterative
test-and-tune calibration loop is employed to search for the
optimum position of the tuning knobs. Embedded instruments
for current, power, and temperature measurements are used to
monitor the performance of the PA in the calibration process.

The concept of digitally controlled transmission lines is also
exploited in [18], [19]. In [18], authors demonstrate a 60 GHz
amplifier where tunable transmission lines are employed to
mitigate the shift of the s-parameters due to process variations.
The proposed tunable transmission line is built as a differential
coplanar transmission line with an array of floating metal
finger pairs underneath. These metal fingers can be shorted to a
fixed voltage, resulting in an effective change of the dielectric
permittivity.

The work in [19] demonstrates a calibration procedure for
60 GHz LNA that is able to significantly reduce the power
consumption and NF dispersion due to process variations.
The proposed calibration loop is based on monitoring the
DC voltage at an internal node of the LNA and the device
temperature. Two tunable elements are provided. The first
one is a DAC that tunes the bias current of the LNA, while
the second one is a digitally controlled transmission line that
allows tuning the loading impedance of the LNA.

A tunable linearization block based on a feedback
bias/capacitive scheme is presented in [20]. Three DC bias
voltages are used to tune the operation of the linearization
block and reduce the impact of process variations in a 60 GHz
PA. The proposed calibration algorithm requires sweeping the
input power of the PA and monitoring the output power.

The tunable elements and measurement instruments that
have been presented in the literature enable calibration ca-
pabilities at the cost of increasing the design complexity,
especially as the operating frequency increases. Moreover,
many of the proposed tuning knobs and embedded instruments
are dedicated solutions tailored to a given circuit family or
even to a particular circuit architecture. Authors outlined in
[4] a machine learning-based calibration solution aimed at
simplifying this design complexity. The proposed solution was
based on the use of a novel variable decoupling capacitor as
a tuning knob. Electrical simulation results on a preliminary
case study validated the technique.

In this paper, we extend our previous work by demonstrating
the feasibility and performance of this technique with the de-
sign and experimental characterization of an integrated proof-
of-concept prototype featuring the proposed calibration tech-
nique. Compared to the state-of-the-art, the proposed prototype
combines the optimized nonintrusive performance monitoring
developed by the authors in [22] with the use of low design
complexity and generic tuning knobs that do not require mod-
ification of the circuit power supply. In this regard, this paper
presents a 69 GHz PA with embedded one-shot calibration and
non-intrusive performance monitoring. The demonstrator has
been integrated in STMicroelectronics 55 nm CMOS technol-
ogy. Experimental results on a set of 39 fabricated samples
demonstrate the feasibility and performance of the proposed
calibration in two different application scenarios. Firstly, the
proposed calibration technique is employed in the context of
yield enhancement to recover fabricated samples that, due to
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excessive process variations, do not comply with the nominal
design targets. Secondly, we further extend the application of
the proposed one-shot calibration to demonstrate aggressive
performance tuning to address different performance trade-
offs.

III. THEORETICAL BASIS

A. One-Shot Statistical Calibration

Statistical calibration, also known as machine learning-
based calibration in the literature, is a calibration technique
that employs a machine learning regression algorithm to guide
the tuning process. Initial works in this line follow the standard
calibration scheme in Fig. 1 but instead of a direct measure-
ment of the circuit performance, they employ regression algo-
rithms to predict the circuit performance in each iteration of
the calibration algorithm from a set of indirect measurements
[16]. More advanced statistical calibration techniques, on the
other hand, employ machine learning algorithms to predict,
directly, the best combination of tuning knobs from a set
of circuit measurements, to comply with a set of predefined
design goals. The need for multiple iterations in a test-and-
tune loop is then avoided. These calibration techniques are
usually known as one-shot statistical calibration techniques.
In this manuscript, we will focus on one-shot techniques.

Let us consider that the circuit under calibration has a set
of n performances P = [P1, P2, . . . , Pn] and k tuning knobs
T = [T1, T2, . . . , Tk]. In a one-shot statistical calibration,
the objective is to find a set of simple measurements (i.e.,
signatures) S = [S1, S2, . . . , Sl] such that we can build a
regression function f as

f : [T1, . . . , Tk, S1, . . . , Sl]→ [P1, P2, . . . , Pn] . (1)

Assuming that such a regression function f can be deter-
mined, the calibration procedure for each fabricated circuit
sample would be reduced to measuring the signature vector
[S1, . . . , Sl] for this particular sample and then employing
function f for exploring the space of tuning knob positions
[T1, . . . , Tk] to tune the circuit performances [P1, . . . , Pn]
according to the design specifications.

The regression function f can be obtained using a super-
vised machine learning regression algorithm. This procedure
is divided into two stages: in the first stage –the training
stage– for a small population of fabricated circuits (i.e., the
training set) both the performances and the signatures are
extracted under different combinations of tuning knobs. The
resulting data set (i.e., the training data) is then employed
to train a machine learning regression model that maps the
circuit performance to the signature measurements and the
tuning knob states. Then in a second stage –the calibration
stage– for each fabricated circuit in the production line only
the set of signatures is measured (under nominal tuning knob
positions) and the machine learning model previously obtained
is used for determining the best combination of tuning knobs
to comply with the design specifications. The process has
the advantage of avoiding iterative calibration loops since the
regression function allows finding the optimum calibration
point in one shot. The disadvantage with respect to the iterative

calibration is the need of the training phase, which requires the
measurement of a number of circuits to obtain the training data
set. It has to be noted, however, that this training is performed
only once on a limited subset of circuits and is then applied
directly to the full production. The proposed technique is then
particularly suitable for large circuit populations, or for high-
precision calibration that would require a large number of
iterations. Further discussion on the generation of appropriate
training data and the trade-off between the number of training
samples and regression accuracy will be offered in later
sections.

B. Nonintrusive Process Variation Monitoring

One of the key points for enabling one-shot statistical
calibration methods is to propose a suitable set of signatures
[S1, S2, . . . , Sl] such that a meaningful regression function
f can be built. In other words, we need to find a set of
indirect measurements that are strongly correlated to the circuit
performance, in such a way that a machine learning algorithm
can then extract a reliable mapping function f that accurately
reflects the main degradation mechanisms affecting the circuit
performance.

In this paper, to guide the calibration algorithm, we adapt
the nonintrusive test methodology proposed by the authors
in [22]. In this regard, we propose to integrate a set of
nonintrusive process monitors together with the circuit under
calibration. These process monitors are stand-alone circuits,
not connected to the circuit under calibration, that are de-
signed to output DC or low-frequency signatures sensitive
to the variations of a selected set of physical parameters in
the fabricated silicon. By targeting the physical parameters
critical for the performance of the circuit, it is possible, as
demonstrated in [22], to train a machine learning model to
predict the performance of the fabricated circuit from the
process signatures provided by the monitors. In this work, and
given that the process signatures are strongly correlated to the
circuit performances, we propose to employ this nonintrusive
on-chip monitoring strategy to guide the calibration algorithm
and provide the signatures to train the regression function in
(1).

IV. DESIGN OF A MM-WAVE POWER AMPLIFIER WITH
NONINTRUSIVE ONE-SHOT CALIBRATION

A. Overall System Architecture

The main goal of this paper is to experimentally demon-
strate a practical mm-wave PA with embedded calibration
based on the concepts of one-shot statistical calibration and
nonintrusive process monitoring discussed in the previous
section. Conceptually, the system block diagram is similar to
the one in Fig. 1, with the particularity that measurements
come from process monitors not connected to the circuit under
calibration. These monitor circuits generate a set of DC and
low-frequency signatures that are strongly correlated with the
PA performance. These signatures are read out by a machine
learning algorithm that predicts the best positions of the PA
tuning knobs to optimize the PA performance according to the
calibration targets. The following subsections detail the design
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TABLE I
POWER AMPLIFIER DESIGN TARGET

DC current, IDC < 30mA
Power supply, VDD 1.2 V
Gain (S21) ∈ [9, 10] dB @ 69 GHz
Power Added Efficiency, PAE > 12%
Output 1dB-Compression Point, CP1dB > 6 dBm
Saturation output power, Psat ∈ [9.5, 10.5] dBm
S11 < −10 dB
S12 < −15 dB

of the proposed system, especially focusing on the proposed
tuning knobs, the set of on-chip process monitors, and the
practical implementation of the calibration algorithm.

B. Power Amplifier Circuit Core

The core of the PA is a 2-stage class A 69 GHz power ampli-
fier designed in STMicroelectronics 55 nm CMOS technology.
The choice of a 2-stage structure provides a compelling valida-
tion for the proposed calibration strategy since the interactions
between the different circuit elements, including both active
devices and full-custom passive structures, make calibration
a complex task. In this regard, it is worth noticing that this
work does not target the design of a state-of-the-art PA for any
particular application, but to offer a compelling demonstration
of the proposed calibration technique in a challenging case
study.

The PA is composed of two stages of common source
NMOS transistors in class A operation. The matching net-
works use a structure based on microstrip transmission line
stubs. Fig. 2 shows the transistor-level schematic. The output
network has been designed to maximize the output compres-
sion point. Table I summarizes the design target performance
for the PA.

As is shown in Fig. 2, the gate bias voltage of the transistors
and the decoupling cells have been made programmable to
enable tuning capabilities. Concerning the decoupling capaci-
tor banks, they have been modified by embedding varactors
to provide variable termination loads for the stubs in the
matching networks. From a designer’s point of view, they act
as both a standard decoupling cell and an impedance tuner.
The functionality of these structures is further explored in the
next subsection.

C. Design of the Tuning Knobs

Together with the PA, we have implemented a total of six
tunable elements for calibration purposes: two DC gate bias
voltages, labeled VB1 and VB2 in Fig. 2, and four variable
decoupling cells, labeled CV 1 to CV 4 in Fig. 2. These six
tuning knobs are controlled by DC voltages provided by the
calibration algorithm, as conceptually depicted in Fig. 1. By
programming the DC voltage applied to the tuning knobs, it is
possible to modify the DC power consumption of the circuit
and the impedance at different internal nodes. Thus, the DC
gate bias voltages VB1 and VB2 offer a direct control on the
current consumption of the two stages of the amplifier, but
they also have an impact on the gate and drain impedances
of the transistors since MOS transistor parasitic capacitances

TABLE II
SIMULATED PA PERFORMANCE WITH AND WITHOUT VARIABLE

DECOUPLING CELLS

PA without tuning knobs PA with tuning knobs
IDC 29mA 29.2mA
S21@ 69GHz 9.3 dB 9.2 dB
PAE 12.9% 12.7%
CP1dB 7.1 dBm 7.1 dBm
Psat 10.3 dBm 10.4 dBm
S11@ 69GHz < −10 dB < −10 dB
S12@ 69GHz < −15 dB < −15 dB
k stability factor > 1.9 > 1.9

are bias-dependent. The variable decoupling cells are used as
termination loads for the stubs in the matching networks. Their
impedance value is low enough to work as a decoupling cell
at 69 GHz, and since their impedance can be programmed,
they provide the ability to modify the impedance matching
between the different elements of the PA. The proposed tuning
solutions have the advantage of avoiding a complex co-design
of the tuning knobs within the PA architecture.

Concerning the variable decoupling cells, their working
principle can be detailed as follows. Fundamentally, a decou-
pling cell is employed to guarantee a constant DC voltage
in a given node. In essence, a decoupling cell is simply
a capacitor whose value is high enough to provide an AC
short circuit at the operating frequency, which results in a
constant DC voltage in a given node. For our target calibration
application, this capacitor has been replaced with a variable
capacitor, implemented with a varactor and a MOM capacitor
in series. Fig. 3 shows an electrical schematic of the proposed
variable decoupling cell. A total of 20 unit cells (varactor plus
MOM capacitor) are connected in parallel to achieve a low
enough impedance value at the working frequency for a total
capacitance of 1.25 pF, i.e., 0.5 − j1.7 Ω at the PA operation
frequency and a nominal control voltage of 1 V. Depending
on the voltage applied to the control node, the decoupling
cell provides an imaginary impedance value that can be
programmed between −2.3 Ω and −1.1 Ω. Fig. 4 represents
the variation of the proposed programmable decoupling cell
when the control voltage varies from −1 V to 2.5 V. The
quality factor varies between 2 and 4.8. Although narrow,
it will be shown that this variation range is sufficient for
the purpose of this work. For comparison, notice that the
impedance of a standard decoupling cell built with six 0.2 pF
MOM capacitors in parallel displays a similar impedance
(0.5 − j1.8 Ω), as represented in Fig. 4, and quality factor
Q = 4.2. According to electrical simulations, the quality
factor of the decoupling cell has a negligible impact on the
performance of the amplifier, therefore it is not a critical design
element. This was verified by simulating the PA with and
without the variable decoupling cell. Table II shows a direct
comparison of the PA specifications obtained by electrical
simulations for the typical corner of the technology, with and
without the variable decoupling cells. No significant deviation
was observed for any of the PA performances in Table II
between the two versions of the PA and the PA remains
unconditionally stable.

To illustrate the functionality of the proposed tuning knobs
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Fig. 2. Transistor-level schematic view of the 2-stage PA and tuning knobs.
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cell, the importance of modeling the interconnections is even more crucial, as displayed with the blue
and green lines.

Fig. 3. Electrical schematic view of the variable decoupling cell proposed as
tuning knob.
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Fig. 4. Impedance variation range of the proposed variable decoupling cell
at 69 GHz for a variation of the control voltage from −1V to 2.5V.

and how they may be used to compensate for process vari-
ations, let us examine the electrical simulation results from
a simplified example in Fig. 5. Let us consider an output
matching network designed to match the optimal impedance
Zopt to be presented to the drain of a transistor to maximize
the PAE for a given input power. In the nominal (i.e., ideal)
case, the network may be able to present a matched impedance
Znetwork = Zopt. However, the actual values of Zopt and
Znetwork after fabrication will differ from the nominal due
to process variations, which results in Znetwork 6= Zopt. The
proposed tunable elements, that is, in this simplified case, the
transistor gate bias voltage and the output network decoupling
cell impedance may be used to recover the ideal matching.
Indeed, by varying the gate bias voltage, the required Zopt

is modified, and by varying the decoupling cell impedance
the actual Znetwork may be also modified resulting in an
approximate matching, Znetwork ≈ Zopt, after calibration.
For illustration purposes, Fig. 5 presents a Smith chart on

which we have represented impedances Zopt and Znetwork

obtained by electrical simulations. The required Zopt for
different process corners are represented by red dots. For a PA
in the typical corner, the Zopt excursion obtained by changing
the transistor gate bias is plotted in a pink dashed line and
the Znetwork excursion obtained by changing the decoupling
cell bias is plotted in a blue line. It is clear to see that the
complete corner variation area is reachable by varying these
tuning knobs.

Moreover, it should be noticed that varying the gate bias
voltages also has a direct effect on other key performance
parameters, such as the linearity or the power consumption
of the PA. To give a deeper insight into the feasible tuning
space when varying the complete set of 6 tuning knobs in the
PA, Table III shows the lower and upper reachable boundaries
for each PA specification obtained by electrical simulation in
the typical corner. The target PA specifications are also listed
in Table III for reference. The considered variation ranges
for the tuning knobs were of [0.6, 1] V for the bias voltages,
VB1 and VB2, and of [−1, 2.5] V for the variable decoupling
capacitor bias voltages, Vvar1 to Vvar4. It is clear to see
that the proposed tuning knobs offer a very wide variation
range for s-parameters, going even beyond the functional
limits of the amplification function, whereas there is also a
significant tuning range for linearity specifications. Moreover,
the amplifier remains stable in all the considered tuning range,
and the amplifier’s bandwidth is not significantly affected by
the tuning knobs either. It is worth noticing that these results
should be interpreted in the context of the multidimensional
interactions between tuning knobs and specifications. That
implies, for instance, that the upper (or lower) limit for each
specification in Table III corresponds to different combinations
of tuning knobs. By relying on a multidimensional regression
model for performing the calibration, we are able to perform
a global optimization of the circuit performance that naturally
takes into account these complex multi-parameter interactions,
as will be demonstrated in later sections.

Concerning the extension of these techniques to other PA
architectures beyond our case study, the described tuning
knobs are generic and simple enough to be readily incor-
porated into other architectures with minimum design mod-
ifications. However, it should be noticed that more complex
amplifier structures, such as power combining PAs, distributed
amplifiers, Doherty amplifiers, etc., may require additional
tuning knobs if the expected performance variation range
exceeds the correction capabilities of the proposed tuning
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TABLE III
BOUNDARIES OF THE REACHABLE TUNING SPACE FOR EACH

SPECIFICATION OF A PA IN THE TYPICAL CORNER

Lower boundary Upper boundary Design target
IDC 9mA 48mA < 30mA
S21@ 69GHz 0.6 dB 12 dB ∈ [9, 10] dB
PAE 0.1% 17% > 12%
CP1dB 4.5 dBm 10.2 dBm > 6 dBm
Psat 7.6 dBm 10.8 dBm ∈ [9.5, 10.5] dBm
S11@ 69GHz −27.6 dB −4.8 dB < −10 dB
S12@ 69GHz −25.3 dB −16.6 dB < −15 dB

Zopt worst-case 
corner variation

network

Zopt excursion for varying V_B

Z excursion for varying varactor bias

Input Output

1.2V

Znetwork

Zopt for typical corner 

under corner variationZopt

Transistor V_B

Varactor bias

VDD

Fig. 5. Working principle of the variable decoupling cell as a tuning knob,
illustrated with electrical simulation results.

knobs or if different calibrated performances are targeted (for
instance, calibrating the bandwidth in a wideband amplifier).
Considering each particular case study is beyond the scope of
this paper. However, it should be noticed that the choice of a
machine learning-based calibration strategy greatly simplifies
the addition of tuning knobs. Traditional iterative calibration
strategies usually rely on orthogonal tuning knobs (i.e., each
tuning knob affects, independently, a performance or a group
of performances) to reduce the number of search iterations. In
practice, this is a strict requirement that makes the design of
tuning knobs (or the addition of new ones) a challenging task.
In a statistical calibration, the multidimensional correlations
between tuning knobs and performances are naturally managed
by the learning algorithm, effectively removing this require-
ment for the design of the tuning knobs. In this regard, any
other tuning knob presented in the literature can be considered
as a potential candidate to enhance the set of tuning knobs,
and the effectiveness of the resulting tuning knob set can
be evaluated as a function of the accuracy of the resulting
calibration function f in (1).

D. Design of the Nonintrusive Process Monitors

As explained in previous sections, the calibration algorithm
is controlled by the readings of several on-chip process mon-
itor circuits that have been integrated together with the PA.
These process monitor circuits have to be specially designed to
be sensitive to the main performance degradation mechanisms
of the PA. Authors presented in [22] a systematic methodology
for the design of these process monitors in the context of
mm-wave circuit testing. The design methodology for the
proposed calibration application is a natural extension of the
one presented in [22].

In essence, we need to design process monitors that pro-
vide a set of signatures, i.e., simple measurements, that are
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Fig. 6. Learning curves: prediction error of the amplifier’s a) S21, b) PAE,
and c) CP1dB as a function of the number of process parameters selected as
input features. Process parameters, labeled for each data point, are added from
more relevant to less relevant to the prediction of the target performance.

strongly correlated to the circuit performance degradation due
to process variations. The proposed design methodology is
divided into two steps. The first step is aimed at identifying
the main root causes of performance degradation among the
different physical parameters affected by process variations
during production. Then in a second step, we target the design
of simple circuit structures that are sensitive to the set of
identified physical parameters.

Following the design methodology in [22], to identify
the root causes of performance degradation in an electrical
simulation environment, we can run a search algorithm in the
space of process variation parameters defined in the Monte
Carlo and corner models in the Process Design Kit (PDK)
of the selected technology. This algorithm, based on feature
selection techniques, is designed to identify the subset of
process variation parameters that are relevant for explaining
the variation observed in the circuit performance under process
variations. Detailing the functionality of this search algorithm
is out of the scope of this paper. The interested readers are
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referred to [22] for a thorough explanation.
If we consider the proposed two-stage PA in STMicroelec-

tronics 55 nm CMOS technology, the PDK of the selected
technology contains more than 500 independent process vari-
ation parameters. A search in the space of process parameters
based on 1000 instances of the PA generated using Monte
Carlo simulation, reveals that the main performance figures of
the PA (i.e., s-parameters, 1-dB compression point, saturation
power, power added efficiency, and current consumption) are
determined (to an accuracy about 1%) by a subset of only 16
technological parameters. For illustration purposes, Fig. 6 (a),
(b), and (c) show three learning curves for the amplifier S21,
PAE and CP1dB , respectively. These learning curves represent
the evolution of the Root-Mean-Square (RMS) prediction error
of regression models for these performances, as a function of
the number of process parameters considered as input features
for such regression models. Process parameters are added to
the models according to their relevance, as determined by
the proposed search in the process parameter space. Simple
perceptron models with 15 neurons in the hidden layer are
considered for this validation. The RMS prediction error is
computed on 200 independent validation samples generated
using Monte Carlo simulation. Due to confidentiality reasons,
we cannot disclose the actual names of these process pa-
rameters in the PDK. Instead, we have labeled the identified
parameters as NMOS x, CMOM x, and BEOL x, indicating
that they correspond to variations of the NMOS transistors,
MOM capacitors, and features of the technology Back-End-
Of-Line (BEOL), respectively. As can be seen, the set of iden-
tified parameters reflects a trade-off between inter-stage and
load adaptation, electrical losses, and the transistors operation
points, as could be expected by an electrical analysis of the
circuit in Fig. 2. Moreover, it is interesting to observe that the
most relevant process parameters for the prediction of large
signal and small signal performances differ, as can be clearly
observed in Fig. 6.

Once the set of relevant parameters is identified, we de-
signed a set of circuit structures that generate simple signatures
strongly correlated with the identified parameters. Table IV
shows the designed nonintrusive process monitor circuits, the
signatures generated from each process monitor, and to which
process parameters they are correlated. We have designed
five process monitors, a high-impedance transmission line, a
low-impedance transmission line, a MOM capacitor, a MOS
junction capacitance monitor, and a MOS transistor. We have
defined nine low-frequency or DC signatures. Since these
signatures are designed to be strongly correlated to the same
process parameters correlated to the PA performances (see Fig.
6), it follows that both the proposed signatures and the PA
performances should be also strongly correlated. In this work,
as a proof-of-concept, we target the measurement of these
signatures using external test equipment. It has to be noted,
however, that the test equipment requirements for signature
extraction are greatly reduced compared to the resources
needed for a functional test of the PA under calibration.

It is worth noticing that the proposed methodology is
generic and can then be directly applied to other PA architec-
tures. Needless to say, different PA topologies and different

target specifications not studied in this work (for instance
the amplifier’s bandwidth in wideband designs) may lead
to the design of a different set of process monitor circuits
and signatures depending on the identified relevant process
parameters for each case.

E. Machine Learning-Based Calibration Algorithm

As has been said above, the described calibration algorithm
has the goal of predicting the best position of the tuning knobs
for each fabricated PA sample –in our case the values of
the DC tuning voltages VB1, VB2, Vvar1, Vvar2, Vvar3, and
Vvar4– to comply with a given design target, as a function
of the readings of the process monitor circuits embedded in
each particular sample. The key element for this calibration
technique is the regression function f that maps the output of
the process monitors and the positions of the tuning knobs to
the performance of the PA.

In this work we train a machine learning regression model,
namely a perceptron neural network with one hidden layer
composed of 15 neurons, to build this regression function.
Training is performed in a classical supervised-learning fash-
ion [24], as conceptually depicted in the flow chart in Fig. 7.
Firstly, a number of PA samples, NT , are set apart as a training
set to generate the data for training the neural network. Then,
in a second stage, the trained regression model is deployed for
the rest of the fabricated samples in the production line. To
generate the data set required for training the neural network,
it is required to measure the set of process monitor signatures
and the PA performance under NC combinations of tuning
knob positions for each of the NT PA samples in the training
set. The efficient generation of an appropriate training set is
discussed in detail in the following section.

Once the regression function f is available, and given
a set of target specifications, the optimum position of the
tuning knobs for each fabricated sample can be determined
by measuring the process signatures for that particular sample
[S1, . . . , S9] and then minimizing the cost function F ,

F (VB1, VB2, Vvar1, . . . , Vvar4) = (2)
‖f(VB1, . . . , Vvar4, S1, . . . , S9)− [P t

1 , . . . , P
t
n]‖,

where [P t
1 , . . . , P

t
n] represents the target design performance

and ‖ · ‖ is the Euclidean distance operator, under the con-
straints,

Pi∈ [PL
i , P

U
i ],∀i (3)

Vj∈ [V L
j , V

U
j ],∀j,

where PL
i and PU

i represent the lower and upper bounds of
performance Pi defined by the target specifications, respec-
tively, and V L

j and V U
j are the lower and upper limits of the

variation range for each of the tuning voltages Vj , respectively.
Hence, the value of vector [VB1, VB2, Vvar1, . . . , Vvar4] that
minimizes function F and complies with the defined con-
straints would yield the closest performance to the design
targets that is attainable by a given PA sample. The proposed
cost function is then biased to center the specifications around
a target. It is worth noticing that different definitions are
possible for the cost function if other design requirements
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TABLE IV
DEVELOPED NONINTRUSIVE PROCESS MONITORS AND ASSOCIATED SIGNATURES FOR GUIDING THE PA CALIBRATION ALGORITHM

Process control monitor schematic Signature description Correlated process parameters

Input Output

High-impedance microstrip line • S1: Imag part of S11 @ 1 GHz
• S2: Imag part of S21 @ 1 GHz
• S3: Resistance

• BEOL 1, BEOL 2, BEOL 5, BEOL 3
• BEOL 1, BEOL 2, BEOL 8, BEOL 7
• BEOL 2

Input Output

Low-impedance microstrip line
• S4: Imag part of S11 @ 1 GHz • BEOL 5, BEOL 4, BEOL 7, BEOL 6

• S5: Real part of Y11 @ 1 GHz
• S6: Imag part of S21 @ 1 GHz

• CMOM 1, CMOM 3
• CMOM 2, CMOM 3

• S7: Imag part of S11 @ 1 GHz • NMOS 4, NMOS 7, NMOS 2, NMOS 6

• S8: Gate resistance = Re(Y11)/Im(Y11)2

• S9: Bias current
• NMOS 1, NMOS 2, NMOS 5, NMOS 3
• NMOS 5, NMOS 7

Training Phase

Calibration Phase

Calibration set Measurement of calibration data

for each sample

end

Calibration

solve: find            for minimizing

define:  calibration targets,

samples

tuning knob combinations, 

define:

define:

Training set

Measurement of training data

for each sample
measure: Signatures, 

for each TK combination
measure: Performances, 

end
end

Model training

define:  design constraints

define:                 samples

measure: Signatures, 

 within design constraints

define: cost function

design constraints,

Fig. 7. Conceptual flow chart for the proposed machine learning-based one-shot calibration.

are targeted. Indeed, by defining a different cost function or
modifying the constraints, it may be possible to recenter the
circuit performance, within its tunability limits, to address
different application scenarios and/or performance trade-offs.
Once the process monitor readings are measured and the target
specifications are defined, this recentering application does not
need the retraining of the machine learning regression function
f , which can be readily reused to predict, in one shot, the best
combination of tuning knobs for the newly defined application
scenario.

In this work, for the sake of proof-of-concept validation,
both the perceptron neural network and the cost function
minimization algorithm have been implemented externally
using Matlab.

F. Generation of Training Data
As is the case with any machine learning-based technique,

defining an appropriate training set is crucial for obtaining
an accurate predictive model for our calibration methodology.
Simply put, a machine learning model is as good as its training
data. Thus, a first concern in the generation of the training
data should be the accuracy of the required measurements.
Both the signatures and the PA performances are measured
for all the training samples. The accuracy of these measure-
ments represents a practical limit for the accuracy of the
machine learning predictions, and hence, for the accuracy of
the calibration. Nevertheless, this is also the case for traditional
iterative calibration where only functional measurements are
performed.

A second concern is the complexity of the considered
machine learning algorithm. Complex models with a large
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number of parameters, such as state-of-the-art deep learning
algorithms, require a large number of training samples. This
is the main reason that in this work we consider a simple
perceptron model, which offers a good trade-off between
model complexity and accuracy relaxing this way the need
for a large training set.

A third concern is the variety of the training data. Training
a machine learning model requires a significant training data
set to accurately capture the correlations between the input
features and the output targets. As depicted in Fig. 7, in our
calibration problem, two key parameters define the training
set: the number of circuit samples set apart for training, NT ,
and the number of different tuning knob positions considered
for each sample, NC . Increasing the product NT × NC

enhances the training set and improves the accuracy of the
resulting model, but at the same time increases the cost of
the calibration, since the number of functional measurements
for training also increases. A trade-off arises between the
accuracy of a machine learning-based calibration and its cost.
The cost of the proposed nonintrusive machine learning-based
calibration can be modeled as,

CML = Ctrain + Ccal = NT (NCD + I) + (N −NT )I, (4)

where Ctrain and Ccal are the costs associated to the training
and calibration phases, respectively, N is the total number of
fabricated samples in the production, D is the cost of the direct
performance measurements, and I is the cost of measuring
the indirect signatures. For reference, the cost of a standard
iterative calibration can be modeled as,

Citer = NNiD 6 NNCD (5)

where Ni is the number of iterations required for calibration.
By comparing (4) and (5) and taking into account that the
indirect signatures are designed to be cheaper than standard
direct measurements, it is easy to see that a machine learning-
based calibration becomes advantageous compared to tradi-
tional calibration for a large production of circuits (N >>), if
the product NT ×NC can be reasonably contained. This trade-
off can be further analyzed by considering the learning curves
representing the error in the prediction of the PA performances
(i.e., the accuracy of the calibration) as a function of the
number of training samples and the number of considered
tuning knob positions.

In order to illustrate this analysis, Fig. 8 (a) and (b) show
the evolution of the prediction error of the amplifier’s PAE as
a function of the number of training samples (for the nominal
positions of the tuning knobs) and the number of tuning
knobs combinations (for a fixed number of training samples
NT = 40, blue circle markers), respectively. These learning
curves have been obtained based on Monte Carlo simulations
by computing the RMS prediction error in an independent test
set. Again, a perceptron model with 15 neurons in the hidden
layer is employed in the analysis.

Concerning NT , Fig. 8 (a) shows a saturation of the
prediction error around NT ' 100 samples. A similar result
can be obtained for the rest of the amplifier’s performances. It
is worth pointing out that these results are highly dependent on
the particular case study. Other PA architectures may require a
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Fig. 8. Learning curves: Evolution of the PAE prediction error as a function
of a) the number of training samples; and b) the number of considered tuning
knob combinations for the proposed random sampling method (blue circle
markers), compared to the traditional full-factorial approach (red diamond
markers).

different number of training samples. In any case, the proposed
analysis based on learning curves is completely generic and
readily applicable to other case studies.

Analyzing the influence of the number of tuning knob
positions employed for training requires further considerations.
Previous works on machine learning-based calibration propose
a full-factorial Design-of-Experiment (DoE) approach [8], [9],
[14], inherited from traditional iterative calibration strategies.
That is, if the circuit under calibration has k tuning knobs, p
fixed positions evenly distributed are considered for each tun-
ing knob (for instance, a usual choice is to consider minimum,
typical, and maximum values), resulting in NC = pk possible
combinations. This approach has two key problems that make
it not suitable for machine learning-based calibration. The
first issue is that the number of tuning knob combinations
NC explodes as the number of tuning knobs increases. If we
consider the cost model in (4), this means that the machine
learning-based calibration would be less appealing as the
complexity of the circuit under calibration increases. The
second issue is related to the nature of learning machines.
A learning algorithm requires variety of data to learn. By
repeating the same tuning knob positions for each sample,
the learning process is actually hindered.

In this work, we present a solution to these issues, adapted
from our work in [23]. The data generation strategy in [23]
relies on random sampling of the tuning knob positions to
generate varied data for training. However, it assumes that
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NT = NC so the variety in training data comes at the cost
of increasing the number of required training samples. In this
work, we propose instead to measure a set of NC random
positions of the tuning knobs for each of the NT samples in
the training set. Values are drawn from a uniform distribution
between the minimum and maximum values for each tuning
knob. In this way, variety is ensured to improve the training
without the need to increase the number of training samples.
The value of NC , now decoupled from the value of NT , can be
determined by its associated learning curve. To exemplify this
technique, Fig. 8 (b) shows the evolution of the prediction error
of the amplifier’s PAE as a function of NC for a fixed value of
NT = 40 (blue circle markers). For comparison, Fig. 8 (b) also
shows the learning curve for a standard full-factorial strategy,
as proposed in [8], [9], [14], for three positions of the tuning
knobs (min., typ. and max.), i.e., NC = 36 = 729 possible
combinations, as a function of the number of training samples
NT (red diamond markers). The x-axis of the figure represents
the product NT ×NC for a direct comparison. In the view of
the cost model (4), the advantage of the proposed random
sampling for training set generation becomes clear. A better
accuracy is achieved with the proposed random sampling while
significantly reducing the amount of required training data.
To put these results in perspective, we can also compare them
with published iterative calibration methods. For instance, [17]
proposes, for each sample under calibration, an exhaustive
search in a space of NC = 262 144 tuning knob combinations
for maximizing the output power of a PA. Similarly, the work
in [18] relies on a full search in a space of NC = 65 536
possible combinations. Taking into account the cost function
(5), it is easy to see how the cost of iterative calibration may
become prohibitive for large values of N .

V. EXPERIMENTAL RESULTS

A. Characterization of the Proposed PA for Nominal Positions
of the Tuning Knobs

The proposed 2-stage 69 GHz PA with embedded calibration
has been fabricated in the selected 55 nm CMOS technology.
Fig. 9 shows a microphotograph of the complete system
including the 2-stage PA with tuning elements and the set of
process monitor circuits, together with a floorplan detailing the
positions of the main circuit elements (in the microphotograph
there are three additional structures not related to this project).
The system occupies an area of 690µm× 1090µm and, as
it can be observed, the process monitor circuits have been
placed in the free space left between the passive components
of the PA. It should be noted that the area overhead of the
process monitors is dominated by the area of the dedicated
test pads for each process monitor. In an actual application,
the test pads would be multiplexed, further reducing this way
the effective area overhead. In any case, to put these areas in
perspective, it should be noticed that the area of published mm-
wave transceivers is, on average, above 4 mm2 per Tx/Rx pair,
and multiple Tx/Rx pairs are implemented in a state-of-the-
art beamforming transceiver [25]–[27]. The total area of the
on-chip process monitors, including pads, is 0.34 mm2, which
is negligible compared to the area of a complete mm-wave
transceiver.

Fig. 9. a) Microphotograph of PA with embedded calibration; b) Floorplan of
PA and tuning knobs; c) Floorplan of nonintrusive process monitor circuits.

We have received a set of 39 fabricated PAs that contain
samples from both the center and the borders of the wafer
to better observe the effects of process variations. Firstly, to
verify the functionality of the fabricated PAs, the 39 samples
have been characterized in the laboratory under nominal
conditions. The power supply has been set to VDD = 1.2 V
and the tuning knobs have been set to VB1 = VB2 = 0.9 V,
Vvar1 = Vvar2 = Vvar3 = Vvar4 = 1 V. These tuning
knob values correspond to a centered performance under
typical corner conditions. Table V shows the measured max.
min. and average performance for the set of fabricated PAs
under nominal biasing conditions. Fig. 10 and 11 show the
measured s-parameters and the compression characteristic,
respectively, for a representative uncalibrated sample of the
PA. Measurements have been carried out using an Anritsu
ME7838D VNA, Cascade S300 semi-automatic probe station,
and 145 GHz Infinity Probes from Cascade. Large signal
measurements employ a Spacek Labs PA to drive the PA under
test.

In addition, Table V shows the fabrication yield taking
into account the target specifications. It has to be noted that
yield can only be properly computed at industrial level in
high-volume production. In our academic case study, we are
limited to a few fabricated samples. In this work, we denote as
yield the proportion of circuits within the target specifications
over the total fabricated samples. Regarding the specification
test limits, they are significantly more stringent than the 3σ
variation range obtained by Monte Carlo simulation. The
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TABLE V
POWER AMPLIFIER MEASURED PERFORMANCE SUMMARY FOR 39 FABRICATED SAMPLES BEFORE CALIBRATION

Design target Min. Max. Average Yield
S21@69 GHz ∈ [9, 10] dB 8.2 dB 11.9 dB 9.5 dB 51% (20 out of 39)
PAE > 12% 4.4% 15.5% 9.7% 31% (12 out of 39)
CP1dB > 6 dBm 4.6 dBm 8.8 dBm 6.9 dBm 77% (30 out of 39)
Psat ∈ [9.5, 10.5] dBm 6.7 dBm 10.4 dBm 9.7 dBm 74% (29 out of 39)
IDC < 30mA 24 mA 58 mA 29 mA 72% (28 out of 39)
S11@69 GHz < −10 dB −16 dB −6 dB −12.4 dB 90% (35 out of 39)
S12@69 GHz < −15 dB −22 dB −16 dB −17.6 dB 100% (39 out of 39)

Fig. 10. Scattering parameters for a representative PA sample and nominal
positions of the tuning knobs.
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Fig. 11. Output power characteristic measured at 69 GHz for a representative
PA sample and nominal positions of the tuning knobs.

rationale behind that choice is that the included calibration
capabilities will be able to recover excessive yield loss without
the need of overdesigning the PA to make it insensitive to
process variations. In any case, even for our limited number
of fabricated samples, it is clear that the fabrication yield
is severely impacted by the wide performance variance due
to process variations. It can be noticed that the average
performance for critical specifications such as gain, saturation
power, and compression point are well centered within the
target performance. However, if we consider the complete set
of target specifications, 37 out of the 39 fabricated samples do
not comply simultaneously with all the design targets, which
clearly justifies the need of a yield recovery strategy.

B. One-Shot Calibration for Yield Enhancement

To verify the feasibility and performance of the proposed
machine learning-based calibration strategy, we first applied
it to improve the fabrication yield of the set of fabricated PA
samples. As explained before, our goal is to predict, using
a machine learning regression function, the best position of
the tuning knobs for each fabricated PA sample from the set
of DC and low-frequency signatures generated by the process
monitor circuits embedded with each PA sample. Thus, the
set of DC and low-frequency signatures, S1 to S9, defined in
Table IV was extracted for each of the 39 fabricated samples.
The AC signatures associated with each nonintrusive process
monitor were extracted using 50-µm GSG 145-GHz Infinity
Probes from Cascade on the same VNA and probe station
employed for characterizing the PA. For DC signatures, the
operating point of the monitor circuits was provided through
the VNA bias tee.

In high-volume production, we would use a fraction of the
fabricated circuits (i.e., the training set, typically a few hundred
devices) to train the machine learning prediction function
(1), and then we would apply this function to recenter the
performance of the rest of the produced circuits by predicting
the best position of the tuning knobs. Since we only have
access to 39 fabricated samples, and based on the theoretical
results in Fig. 8, to provide an accurate estimation of the
calibration performance we resort to a k-fold cross-validation
technique to train our regression function [24]. Thus, we
divided our 39 PA samples into 8 subsets (7 subsets with 5
samples and 1 subset with 4 samples). One of these subsets is
kept apart as an independent verification set and the remaining
samples are used as the training set to train the perceptron
neural network f . For this purpose, each sample in the training
set is characterized under 250 randomly generated positions of
the tuning knobs, considering a variation range of [0.6, 1] V
for VB1 and VB2 and of [−1, 2.5] V for Vvar1 to Vvar4. Using
the notation introduced in the previous section, this strategy
results in 7 cross-validation folds using NT = 34 samples
and NC = 250, and 1 cross-validation fold using NT = 35
samples and NC = 250.

Once the regression model for a cross-validation fold has
been trained, we employ it to calibrate the performance of
the samples in the corresponding verification set (i.e., the
samples left out of the training set). The process is then
repeated leaving out a different subset as verification set until
all samples have been tuned. Notice that for the samples in
the verification set, only the DC and low-frequency signatures
provided by the process monitors are measured as inputs for
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Fig. 12. Histograms of PA performance before and after calibration.
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TABLE VI
PERFORMANCE SUMMARY OF THE MACHINE LEARNING-BASED

CALIBRATION FUNCTION

Performance RMS prediction error r2 coefficient
S21@69 GHz 0.7 dB 0.90
PAE 0.8% 0.87
CP1dB 0.6 dBm 0.97
Psat 0.2 dBm 0.92
IDC 0.4 mA 0.99
S11@69 GHz 0.9 dB 0.91
S12@69 GHz 0.8 dB 0.90

the calibration algorithm. As demonstrated in [23], [24], this
cross-validation technique allows us to provide an accurate
validation in a scenario with limited available data.

Fig. 12 shows the histograms of the PA specifications before
and after calibration, obtained for the 39 fabricated samples
following the described calibration procedure, together with
the target specification limits. It is clear to see a dramatic
increase in the fabrication yield for each of the PA specifi-
cations. Indeed, it is apparent that the calibration effectively
reduces the spread of the performance distribution and centers
it around the design targets. This effect is clearly observed
for S21, PAE, CP1dB , Psat, and IDC , while the S11 and S12

parameters are optimized to comply with the design targets.
To evaluate the accuracy of the trained machine learning

models linking the set of nonintrusive signatures and the tuning
knob positions to the PA performance, Table VI lists the
obtained Root-Mean-Square (RMS) errors for the predictions
on the independent validation set, together with the square of
the correlation coefficient, r2, between the predicted and the
actual performances. These two metrics are indicative of the
accuracy of the proposed machine learning-based calibration
and, as it can be observed, the trained machine learning model
offers good predictive capabilities for the complete set of
considered PA performances. It is also worth noticing that
the obtained accuracy figures are in good agreement with the
learning curves presented in Section IV.

Further insight can be gained by analyzing the set of opti-
mum tuning knob values selected by the calibration algorithm.
Thus, Table VII shows the min., max., average and standard
deviation for the obtained optimum values of the tuning
knobs, across our 39 PA samples. The wide variety observed
across the different samples clearly shows that the calibration
algorithm corrects sample-to-sample variations rather than a
global shift (otherwise the tuning knobs would converge to a
common value for all samples). This result can also be seen as
a sanity check for our experiment, as it shows that we are not
correcting a global shift caused by an incorrect set of initial
nominal values for the tuning knobs.

The obtained yield estimations before and after calibration
for the 39 fabricated samples are represented in Fig. 13 consid-
ering each individual specification and the overall specification
set. The significant improvement for each of the considered
PA specifications translates to an overall yield improvement
from 5% (2 out of 39 samples) before calibration to 92%
(36 out of 39 samples) after calibration. The obtained results
demonstrate the feasibility and performance of the proposed
machine learning-based calibration technique.

TABLE VII
STATISTICS OF THE OBTAINED OPTIMUM TUNING KNOB VALUES

Tuning knob Min. (V) Max. (V) Average (V) σ (V)
VB1 0.6 0.875 0.79 0.1
VB2 0.6 0.9 0.66 0.06
Vvar1 −1 2.5 −0.03 0.9
Vvar2 −1 2.5 0 0.8
Vvar3 −1 2.5 −0.28 0.8
Vvar4 −1 2.5 1.74 1.1

Fig. 13. Yield improvement using the proposed calibration strategy.

C. One-Shot Calibration for Design Recentering

Beyond yield enhancement applications, the proposed ma-
chine learning-based calibration also enables one-shot design
recentering capabilities that may allow us to address different
performance trade-offs for different application scenarios. In-
deed, a different trade-off between the specifications in the
PA can be targeted simply by modifying the optimization
goals and/or the constraints in (2)-(3). The same machine
learning function f (i.e., the function linking the position
of the tuning knobs and the process monitor readings to
the PA performance) can then be used to explore the tuning
knob space and set the updated values corresponding to the
new application scenario in one shot, without the need of an
iterative search, with the only input of the set of signatures
generated by the process monitor circuits.

To demonstrate the feasibility of the proposed recentering
strategy, Fig. 14 represents the space of available solutions to
the PA performance optimization equations (2)-(3) for three
representative samples of the fabricated PA, labeled A, B, and
C in the figure, obtained by exploring the tuning knob space
using the machine learning function f previously trained for
calibration purposes. For an easier interpretation, we represent
2-dimensional plots considering two PA specifications in each
figure. Thus, Fig. 14 (a), shows the Psat versus IDC trade-
off for the three considered samples, when all the other PA
specifications comply with the nominal targets. Similarly, Fig.
14 (b) and (c) show the PAE and CP1dB versus IDC trade-
offs, respectively, for the three considered PA samples. Each
marker in the plots corresponds to a combination of tuning
knob values that has been predicted by the proposed machine
learning model from the set of process monitor readings
corresponding to the considered PA sample.

From Fig. 14, a clear trade-off between PA performance
and power consumption can be observed for each of the
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Fig. 14. Exploration of the tuning knob space and attainable performance fronts predicted by the machine learning model for three representative PA samples:
a) Psat vs. IDC trade-off; b) PAE vs. IDC trade-off; and c) CP1dB vs. IDC trade-off. Each marker corresponds to a different tuning knob combination.

considered specifications, represented in the figure by a linear
approximation of the Pareto-optimal fronts for each of the
considered performances. Additionally, we have highlighted
the PA configurations corresponding to the 5% maximum
performance for each specification and to the 5% minimum
DC current consumption. This analysis illustrates the wide
reconfiguration capabilities offered by the tuning knobs and
justifies that they can be effectively employed for addressing
different performance trade-offs. It is also worth noticing that
these reconfiguration capabilities are sample-dependent, as it
can be clearly ascertained by comparing the obtained results
for samples A, B, and C in Fig. 14. Thus, due to sample-to-
sample variations, we can observe that the DC current needed
for a given performance target varies among the three samples
in Fig. 14 and even the maximum attainable performance for
each sample is different. In our proposed approach, the ma-
chine learning model that predicts the positions of the tuning
knobs takes process variations into account by construction,
as its input includes the set of signatures generated by the
process monitor circuits, highly correlated to the variations of
technological parameters.

To exemplify the design recentering capabilities, besides the
nominal PA operation targets, we could define two aggressive
goals for the calibration of the complete set of fabricated
samples: a low-power operation mode with slightly degraded
performance, and a high-performance operation mode with
a higher power consumption. Table VIII lists the design
constraints for the three proposed calibration targets for the
fabricated PA: the aforementioned aggressive calibration tar-
gets aimed at minimizing power consumption and maximizing

the PA performance, respectively, and the nominal calibration
target already defined in the previous section. The proposed
recentering technique was applied, with the constraints in
Table VIII, to the set of 36 fabricated PA samples that comply
with the nominal design goals after nominal calibration. Fig.
15 shows the histograms of the obtained recentering results
for the set of 36 fabricated PA samples in low-power, high-
performance, and nominal operation modes. It is clear to
observe that the distribution of each PA performance is shifted
towards the different design goals defined in Table VIII. In
terms of yield, 97% of the samples (35 out of 36) are success-
fully recentered to the new low-power and high-performance
design targets.

It is worth remembering that the only input of the cali-
bration algorithm, besides the calibration goals, is the set of
nonintrusive measurements provided by the process monitor
circuits in each of the samples. The machine learning function
f previously trained for nominal calibration is then readily
available to predict the new combination of tuning knobs that
is compatible with the new performance target, allowing in this
way an easy on-the-fly performance re-tuning just by changing
the calibration targets.

D. Comparison to State-of-the-Art

To better highlight our contributions, Table IX compares
our work to the state-of-the-art on calibrated RF and mmW
amplifiers published in the literature. Table IX is not to be read
as a direct comparison between very different approaches, but
it is intended to put our results into perspective. Calibration
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Fig. 15. Histograms of PA performance for different calibration targets: low-power operation mode (in blue), nominal operation mode (in cyan), and high-
performance operation mode (in yellow).
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TABLE VIII
CALIBRATION TARGETS FOR THE LOW-POWER, NOMINAL, AND HIGH-PERFORMANCE OPERATION MODES

Low-power mode Nominal calibration High-performance mode
S21@69 GHz ∈ [9, 10] dB ∈ [9, 10] dB ∈ [9, 10] dB
PAE > 10% > 12% maximize, > 13%
CP1dB > 6 dBm > 6 dBm maximize, > 8 dBm
Psat > 8 dBm ∈ [9.5, 10.5] dBm maximize, > 9.5 dBm
IDC < 15mA < 30mA < 30mA
S11@69 GHz < −10 dB < −10 dB < −10 dB
S12@69 GHz < −15 dB < −15 dB < −15 dB

approaches for LNAs and PAs are considered, as the general
calibration principles are similar even if the functions of these
two circuits are different in nature. Compared to the state-
of-the-art, our work presents a very low design complexity.
Since we rely on nonintrusive process monitors to guide the
calibration and tunable decoupling capacitors and bias voltages
as tuning knobs, we avoid circuit-specific architectures and
complex co-design that may require deep modifications on
the circuit under calibration. The fact that all required mea-
surements are DC or low-frequency measurements and that no
high-frequency test stimulus is required greatly relaxes the test
requirements.

The proposed calibration strategy also seems particularly
suitable for multidimensional problems. As it can be seen in
Table IX, most of the previously published calibration strate-
gies are limited to less than 4 simultaneously corrected param-
eters, while our proposed strategy demonstrated the simulta-
neous correction of 7 performance parameters. This is due
to the multidimensional nature of the machine learning-based
performance monitoring and correction algorithm, which takes
into account the complex multi-variate dependencies between
nonintrusive signatures, tuning knobs, and performance param-
eters.

It is also worth noticing that experimental validations based
on a significant number of fabricated samples remain rare in
the existing literature. In this regard, our proposal is demon-
strated in a set of 39 fabricated samples, that, although far from
high-volume fabrication numbers, is a valuable contribution in
the light of the existing literature.

On the other hand, as a disadvantage compared to other
published approaches, self-healing applications, for instance,
targeting temperature or aging compensation, are not possible
with the proposed strategy. Adapting the proposed calibra-
tion technique to self-healing would require adding on-chip
instruments to monitor some critical nodes of the circuit under
calibration.

VI. CONCLUSION

We have experimentally validated a machine learning-based
calibration methodology for mm-wave integrated PAs. The
proposed calibration strategy employs a one-shot statistical
calibration technique guided by nonintrusive process monitors.
The developed calibration algorithm is able to predict the
best position of the tuning knobs for reaching a predefined
calibration target, without the need for a test-and-tune iterative
loop.

A 69 GHz PA with one-shot calibration capabilities has been
designed and fabricated in STMicroelectronics 55 nm CMOS
technology. The proposed PA includes five on-chip process
monitor circuits for nonintrusive performance monitoring and
integrates a generic tuning knob based on variable decoupling
capacitors. Experimental results on 39 fabricated samples of
the proposed PA demonstrate the feasibility and performance
of the proposed calibration methodology. Two experimental
scenarios are considered. The first one aims at improving
fabrication yield by compensating performance degradation
due to excessive process variations, while the second one
is aimed at recentering the fabricated PA performance by
considering aggressive calibration targets far from the nominal
design. Regarding yield enhancement, obtained results show
that the proposed strategy dramatically reduces the impact of
process variations, significantly improving the PA performance
of individual samples and the overall fabrication yield. Re-
centering applications, on the other hand, are demonstrated by
considering two opposite performance trade-offs: one targeting
high-performance operation at the cost of power consumption
and another targeting low-power operation at the cost of a
slightly degraded performance.

Compared to the current state-of-the-art, the proposed cali-
bration circuitry has the advantages of not requiring the tuning
of the power supply and not loading the nodes of the PA
with embedded test instruments, avoiding this way complex
co-design. Moreover, performance monitoring is achieved by
indirect DC and low-frequency signatures, relaxing this way
the requirements on the test equipment. As a disadvantage, the
price to pay for the simplicity of the proposed approach is that
it is not suitable for self-healing applications, since the process
monitor circuits do not track degradations of the actual PA
circuitry. Future research in this line may target an extension
to self-healing applications by including additional on-chip
resources to monitor key internal nodes in the PA circuitry
and exploring the application of the proposed techniques to
different PA architectures.
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